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Abstract 

Based on the concepts outlined by Joukowsky nearly a century ago, an analytical aerodynamic 
optimization model is developed for rotors with a finite number of blades and constant circulation 
distribution. In the paper we show the basics of the new model and compare its efficiency with 
results for rotors designed using the optimization model of Betz. 
 
1. Introduction 
 

In the history of rotor aerodynamics two schools have dominated the conceptual 
interpretation of the optimum rotor. In Russia, Joukowsky [3] defined the optimum rotor 
as one having constant circulation along the blades, such that the vortex system for a Nb – 
bladed rotor consists of Nb helical tip vortices of strength  and an axial center vortex of 
strength -Nb. The other school, which essentially was formed by Prandtl and Betz [1], 
assumed that optimum efficiency is obtained when the distribution of circulation along the 
blades produces a rigid helicoidally wake that moves in the direction of its axis with a 
constant velocity. This distribution, the so-called Goldstein circulation function, is rather 
complex and difficult to determine accurately [2]. Hence, in practice, the blades are 
normally modeled using Blade-Element-Momentum (BEM) theory, corrected by the tip 
correction of Prandtl [4]. In the following, we consider various classical theories for the 
optimum rotor. First, we repeat the Betz limit using axial momentum theory. Next, we 
consider a rotor with an infinite number of blades using the general momentum theory to 
include rotational velocities. Finally, we analyze a realistic rotor with a finite number of 
blades using the new solution of the Goldstein function based a recent mathematical 
approximation for the induced velocities [5]. The present modifications of the vortex 
theory for the ideal rotor enables for the first time to compare the theoretical maximum 
efficiency of rotors designed using Goldstein’s circulation function (Betz rotor) with 
rotors designed using constant circulation (Joukowsky rotor) along the blades. 
 

2. Theory 
 

Dimensionless Parameters.  
The aerodynamic operation of a wind turbine can be characterized by the following 
quantities: the rotor angular velocity 0, the rotor torque Q or the power output  

and the rotor thrust T. These quantities are put into dimensionless form as follows: 

QP 0
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VR /000     (rotor tip-speed ratio), (1)

 3
02/1/ VAPC p      (power coefficient), (2)

 2
02/1/ VATCT       (thrust coefficient), (3)

where R0 is the radius of the rotor, V is the undisturbed wind speed,  is the density of the 

air and  is the area of the rotor. The maximum power that can be extracted from 

a stream of air contained in the area equivalent to that swept out by the rotor corresponds 
to the maximum value of the power coefficient defined in equation (2). 

2
00 RA 

 
 
Optimum Rotor: Rankine-Froude Theory. We first consider the simple axial 
momentum theory as it originated by Rankine [6], W. Froude [7] and R.E. Froude [8]. 
Here, we consider axial flow past an actuator disk representing the axial load on a rotor. 
Denoting by  the axial velocity in the rotor plane, the axial interference factor is 

defined as 
0zu

V

uV
a

z0


  (4)

From one-dimensional axial momentum theory, we get the following expressions for the 
axial load (thrust) and power extraction 

   aaVAuVuAT zz  122 2
00 00

 (5)

 23
0 12

0
aaVATuP z   (6)

Introducing the dimensionless power coefficient, equation (2), we get 

 20 14 aaACP   with 593.0
27

16
max

PC  for 
3

1
a  (7)

This result is usually referred to as the Betz limit and states the upper maximum for power 
extraction: not more than 59% of the kinetic energy contained in a stream tube having the 
same cross section as the disk area can be converted to useful work by the disk. However, 
it does not include the losses caused by the rotation of the wake, and therefore, it 
represents a conservative upper maximum. 
 
 
Optimum Rotor: General Momentum Theory. Utilizing the general momentum theory, 
Glauert [9] developed a simple model for the optimum rotor that included rotational 
velocities. In this approach, Glauert treated the rotor as a rotating axisymmetric actuator 
disk, corresponding to a rotor with an infinite number of blades. Denoting the angular 
velocity of the rotor blade as 0, and the azimuthal velocity in the rotor plane as , the 

azimuthal interference factor is defined as 
0

u
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r

u
a

0

0'


 
. (8)

Employing Euler’s turbine equation with some additional assumptions, in dimensionless 
form, the total power is found as 

  
1

0

0
3
0

2
0 1'8 dxxaaCP  (9)

where . By assuming that the different stream tube elements behave 

independently of each other, it is possible to optimize the integrand for each x0 separately 
leading to the relationship 

00 / Rrx 

14

31
'





a

a
a . (10)

The analysis shows that the optimum axial interference factor is no longer a constant but 
will depend on the rotation of the wake, and that the operating range for an optimum rotor 

is . The relations between a, ,  and 0x0 for an optimum rotor are 

given in Table 1, and the maximal power coefficient as a function of tip speed ratio is 
shown in Table 2. The optimal power coefficient approaches 0.593 at large tip speed ratios 
only. 

3/14/1  a 'a 2
0

2
0' xa

It shall be mentioned that these results are valid only for a rotor with an infinite number of 
blades, and that the analysis is based on the assumption that the rotor can be optimized by 
considering each blade element independently of the remaining blade elements. 
 

Table 1. Flow conditions for the optimum actuator disk 

a a’ 2
0

2
0' xa  00 x  

0.25  0 0 
0.26 5.500 0.0296 0.073 
0.27 2.375 0.0584 0.157 
0.28 1.333 0.0864 0.255 
0.29 0.812 0.1136 0.374 
0.30 0.500 0.1400 0.529 
0.31 0.292 0.1656 0.753 
0.32 0.143 0.1904 1.150 
0.33 0.031 0.2144 2.630 
1/3 0 0.2222  
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Table 2. Power coefficient as function of tip speed ratio for optimum actuator disk 

0 CPmax 

0.5 0.288 
1.0 0.416 
1.5 0.480 
2.0 0.512 
2.5 0.532 
5.0 0.570 
7.5 0.582 

10.0 0.593 
 

Optimum Rotor: Vortex Theory. The flow over a real rotor with a finite number of 
blades is very different from the properties of the flow models used previously to describe 
the optimum rotor. Indeed, important phenomena such as tip losses and azimuthally 
dependencies of the induced velocities are neglected in the momentum theory of the 
optimum rotor. An alternative model is the vortex theory in which each of the rotor blades 
is replaced by a lifting line about which the circulation is associated  with the bound 
vorticity, and a vortex sheet is continuously shed from the trailing edge. 
In the vortex theory of Joukowsky [3] each of the blades is replaced by a lifting line about 
which the circulation associated with the bound vorticity is constant, resulting in a free 
vortex system consisting of helical vortices trailing from tips of the blades and a 
rectilinear hub vortex, as sketched in Fig. 1a). Using vortex theory, the bound vorticity 
serves to produce the local lift on the blades while the trailing vortices induce the velocity 
field in the rotor plane and in the wake. The fundamental expressions for the forces acting 
on a blade (Fig. 2) is most conveniently expressed by the Kutta– Joukowsky theorem, 
which in vector form reads 

drd 00 ΓUL  . (11)

where dL is the lift force on a blade element of radial dimension dr, U0 is the resultant 
relative velocity and 0 = const is the bound circulation. 

 
a 

 
 

b 
Figure 1: (a) Vortex system corresponding to lifting line theory of the ideal propeller of Joukowsky 

[3]; (b) helical vortex structure representing the ideal far wake behind the Joukowsky rotor.  
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Figure 2: Velocity triangles in the rotor plane of an ideal wind turbine. 

 
Let  and  be the axial and circumferential components of the velocity, respectively, 

induced at a blade element in the rotor plane by the free tip vortices, and  the 

circumferential velocity induced by the hub vortex. Then, in accordance with Fig. 2, we 
can write the local torque dQ of the rotor as follows  

0zu
0

u

0
v

 rdruVΓdQ z00  , (12)

Integrating these quantities (12) along each blade and summing up, we get the following 
expression for the power 

  
0

0

0

00

R

zb rdruVΓNP , (13)

where Nb is the number of blades. 
For a rotor with a finite number of blades we can replace the free vortex system behind the 
rotor (Fig. 1a) by a vortex system, extended to infinity in both directions (Fig. 1b). The 
vortex system consists of a multiplet of helical tip vortices with constant pitch h and 
circulation  in which a finite vortex core moves backward (in the case of a propeller) or 
forward (in the case of a wind turbine) in the direction of its axis with a constant velocity 
V −w. The far wake includes an additional rectilinear hub vortex of strength- Nb , 
resulting in a simple formula for the induced velocity, which only consists of the 
circumferential component, 

R

N
v b




 2
, (14)
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Denoting the angle between the axis of the tip vortex and the rotor plane as , the pitch is 
given as 

 tan2 Rh , (15)

or, in alternative dimensional form, 

 tan2/ Rhl , (16)

where R is the radial extent of the tip vortices. According to [5], in cylindrical coordinates 
(r, θ, z) the components of fluid velocity induced by Nb helical vortices outside the vortex 
cores are given as 
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where  and  xIm  xKm  are modified Bessel functions and 
 

l

z

N

n

b
n 




12
θ  

When the dominant first two singularity terms are extracted, (17) and (18) are reduced to 
the following rough-and-ready formulas [9] 
 

 
   

 




































































b

n

n

n
N

n

i
i

i
b

z e
Rl

lR

rl

lrl

ee

e

rl

Rl

ll

N
ru

1
2/322

22

2/322

22

4 22

4 22

1ln
2323

24
Re

20

1

2
,



, 

 
   

 







 




























































b

n

n

n
N

n

i
i

i
b e

Rl

lR

rl

lrl

ee

e

rl

Rl

rr

N
ru

1
2/322

22

2/322

22

4 22

4 22

1ln
2323

24
Re

21

0

2
,



, 

where 





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
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
 
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exp
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e . Here we use the notations “” or “ ” or 

“ ”, where the upper sign or symbol corresponds to r < R , and the lower to r ≥R . It 

follows immediately from Eqs. (17) and (18) that the velocity of the resulting motion of 
the helical vortex in the axial direction remains constant and obeys the following 
relationship 









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z 

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. (19)
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Moreover, if the vorticity field in the helix cores is collinear to the center of the helical 
lines, then condition (19) holds true for all points of the flow field, including the vortex 
cores [5]. The velocity component orthogonal to ur and u is given as 

zu
l

r
uu   . (20)

Introducing azimuthally averaged induced velocities as 






2

0
2

1
duua zz , from Eq. 

(17) we get 

l

N
a b





2

. (21)

It should be mentioned that the averaged induced velocity is identical to the wake 
interference factor a and that it takes the same constant value as the velocity in Eq. (19). 
In accordance with (14) and (21), it is possible to derive a simple relation between the 
circumferential component velocity induced by the hub vortex and the interference factor 
a induced by the helical multiplet 

R

al
v  . (22)

Assuming the relative wake motion with constant axial speed, w, to correspond to half the 
averaged induced velocity, , the helical vortices included in the finite vortex cores of 
radius, , are translated in the bi-normal direction with the velocity 

a2/1

222

1
cos

2

1
cos

lR

l
aawub


 . (23)

The problem of finding the induced equilibrium motion of multiple of helical vortices in 
an unbounded domain was solved in [5]. Employing the velocity component u , defined 
by 

22 lR

l
uub


  . (24)

the total induced and self-induced motion of the tip vortices can be found as 
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 (25)

where  is the non-dimensional pitch and (3) = 1.20206… is the Riemann zeta 
function. 

Rl /

Finally, to determine the conditions for equilibrium motion of the far wake we must define 
a radius  of the tip vortex core by solving the equation 

 
2


bN

u
ind

. (26)
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                                         a)                                                                               b) 

Figure 3 (a) The vortex core radius for equilibrium motion of tip vortex multiplet as function of 
helical pitch for different numbers of blades;  

(b) Singularity elimination in axial velocity profile along blade. 
 
Figure 3a shows the vortex core radius as function of R/ l for different numbers of blades. 
It may be noted that for a rotor with infinitely many blades the vortex radius tends to zero 
when the tip vortex system tends to a cylindrical surface. 
In the present work we represent the vortex system behind the rotor by a set of helical 
vortices with finite core to eliminate the singularity of the induced velocity field in 
vicinity of the each filament described by solution (16) and (17). The regularization was 
achieved by restricting the velocity inside vortex cores  (also see Fig. 3b): 

 
   

   







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

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,

,

,
,

,~

rif
a

Ru

rif
a

ru

ru
z

z

z . (27)

Thus, for any given value of the wake pitch l and number of rotor blades b Nb , we 
compute the radius of the tip vortex core and determine the finite velocity values induced 
by the vortices in all points of the unbounded space. 
The above introduced vortex system, extended to infinity in both directions, can be 
described by parameters defining the far wake properties in the so-called Trefftz plane, 
which per definition is the plane normal to the relative wind far downstream of the rotor. 
It now remains to establish the characteristics in the rotor plane in order to utilize the 
Kutta–Joukowsky theorem to determine the power (13). In accordance with Helmholtz’ 
vortex theorem the bound circulation 0 about a blade element is uniquely related to the 
circulation  of a corresponding tip vortex at the Trefftz plane. It is here seen that there is 
a simple relation between the bound circulation and the interference factor, 
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laNb  20 . (28)

If the expansion of the wake is neglected ( RR 0 ), it is readily seen that the induced 

velocities by the vortex system in the rotor plane tend to be half the induced velocity at a 
corresponding point in the Trefftz plane (see e.g. [3]). Thus, as a first order approximation 
we assume that 

zz uuuuvv
2

1
 and 

2

1
;

2

1
000
  . (29)

From simple geometric considerations in the rotor plane (Figure 2b), using Eqs. (22) and 
(23), the angular pitch is given as 
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1

2

1
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a)                                                                                   b) 

Figure 4 (a) Power coefficient as function of tip speed ratio for different number of blades of an 
optimum rotor. Points: General momentum theory [4]; lines: Present theory; (b) Difference 

between the optimum coefficients of the “Joukowsky rotor” with constant circulation along the 
blades and a “Betz rotor” with circulation given by Goldstein’s function [5]. 

 
Eq. (30) can be written as 

2
0 2

1

2

1
 aaVl . (31)

Introducing dimensionless variables 

V

a
a  , (32)

and inserting Eqs. (27), (28) and (31) into Eq. (13), the power can be determined from the 
following integral 
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Performing the integration and introducing the dimensionless power coefficient (Eq. 2), 
we get 
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where  and . For a given helicoidally wake structure, the 

power coefficient is seen to be uniquely determined, except for the parameter 

2
1 1 J  

1

0

3 0,~ xdxxuJ z

a . 
Differentiation of CP with respect to a  yields the maximum value of CPmax , resulting in 
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3. Results and Discussion 
 
In the following we compare results from the new analytical models for wind turbine 
rotors with finite number of blades for the case of a rotor with constant circulation 
(Joukowsky rotor), described above, and a rotor designed using the Goldstein distribution 
(Betz rotor), recently developed in [5]. In addition we evaluate the error committed when 
approximating the aerodynamics of a rotor with finite number of blades by Prandtl’s tip 
correction. 

  
a)                                                                                        b) 

Figure 5 (a) Approximation of the optimum power coefficient by Prandtl‘s tip correction as 
function of tip speed ratio. Points: General momentum theory [4]; lines: Prandtl‘s approximation; 
(b) Difference between Prandtl‘s approximation of the optimum coefficients and the solution for 

the “Betz rotor” with circulation given by Goldstein’s function [5]. 
 

Fig. 4a presents the optimum power coefficient of the present model, Eqs. (33) and (34), 
as function of tip speed ratio for different number of blades. In Fig. 4b the corresponding 
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difference between the optimum coefficients of the Joukowsky and the Betz rotor is 
depicted. From the figures it is evident that the optimum power coefficient of the 
Joukowsky rotor for all number of blades is higher than that for the Betz rotor. 
 

Fig. 5a shows an approximation of the optimum power coefficient as a function of tip 
speed ratio calculated for different number of blades, based on the dimensionless power 
coefficient from [5] 







 





  31

~

2

1~

2

1
12 IwIwwCP , (36)

where the mass coefficient 
 

 


1

0
22

3

1
,

2
~

dx
xl

xlxF
I  and the axial energy factor 

 
 




1

0
222

5

3
,

2
~

dx
xl

xlxF
I  were estimated with help of the reduction factor in Prandtl’s tip 
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Differentiation of Eq. (36) with respect to w determines the maximum value of the power 
coefficient, resulting in the value 
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In Fig. 5 the CP -values obtained with the original analytical solution using Goldstein’s 
circulation [5] are subtracted from those obtained using the Prandtl approximation. The 
difference shows that the error committed by using Prandtl’s tip correction formula, Eq. 
(37) depends on the number of blades, but in all cases results in a higher performance than 
obtained from the exact solution [5]. The difference, however, vanishes for . bN
 

4. Conclusions 
 

An analytical optimization model has been developed for a rotor with a finite number of 
blades and constant circulation (“Joukowsky rotor”). The method is based on an analytical 
solution to the problem of the equilibrium motion of a helical vortex multiplet in a far 
wake. The main achievement of the model is that it eliminates the singularity of the 
solution at all operating conditions. In contrast to earlier models, the new model enables 
for the first time to determine the theoretical maximum efficiency of rotors with constant 
circulation and an arbitrary number of blades. 
Optimum conditions for finite number of blades as function of tip speed ratio has been 
compared for two models: (a) “Joukowsky rotor” with constant circulation along blade (b) 
“Betz rotor” with circulation given by Goldstein’s function [5]. For all tip speed ratios the 
“Joukowsky rotor” achieves a higher efficiency than the “Betz rotor”. 
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