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Abstract: The present paper describes a method to calculate velocity profiles in the boundary layer of 
rotating blade. A differential approach is used to solve the laminar boundary layer equations. The 
effects of tip speed ratio, dimensionless radial position r/R and angle of attack have been analyzed. 
The test airfoils used in the simulations are NACA 63-215 and S809. The resulting velocity profiles in 
the chordwise and spanwise directions are mapped and stored in a Database according to the 
boundary layer parameters. 
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1. INTRODUCTION

Accurate prediction of the wind turbine performance is mandatory for designing new wind 
turbine blades. This demands access to accurate and fast CFD tools, such advanced Navier-
Stokes solvers or viscous-inviscid interactive codes. Most of the existing CFD codes assume 
that the boundary layer is completely turbulent or employ inadequate or oversimplified 
criteria for the prediction of laminar-turbulent transition. The laminar-turbulent transition 
process is related to the stability of the boundary layer, and rotational effects must be 
included in the stability analysis of the velocity profiles. It is the aim of the present work to 
establish a Database of velocity profiles on rotating wings that can be used in subsequent 
analysis as base flow either to a stability analysis or to an integral boundary layer 
formulation. 

Three dimensional boundary layer equations have been extensively studied; a very 
complete review by Hansen [1] explains in detail the principle of the similarity analysis for 
the boundary layer equations. Cooke [2] gives a summary of the first approximation to 3-
dimensional boundary layers. 

The inconvenience of the previous work is that rotational effects are not included. The 
formulation of the boundary layer equations in a rotating reference frame was given by Snel 
[3] in order to carry out an order of magnitude analysis and to develop a quasi-3-dimensional 
formulation that includes rotational effects. 
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In the present work the boundary layer parameters are calculated from the integral 
formulation by Mager [4]. Two different approaches can be used to calculate the velocity 
profiles: the momentum integral and the differential approach. If an integral approach is used 
a reasonable assumption of the velocity profiles needs to be defined. In contrast, if a 
differential approach is used the exact velocity profile is found as a part of the solution. This 
is the idea behind the Blasius solution on a flat plate and its generalization for positive and 
adverse pressure gradients using the Falkner-Skan solution. A similarity variable 
transformation technique applied to the boundary layer equations that includes three 
dimensional and rotational effects, i.e. the Coriolis and centrifugal forces, have been studied 
by [5] and [6]. The main advantage of using the similarity variable transformation technique 
is that the equations only need to be solved once, because they cover the full range of 
Reynolds numbers. A database approach is used to map the velocity profiles that in a future 
work will be used for the stability analysis to calculate the transition from laminar to 
turbulent flow. 

2. NUMERICAL METHOD 

For a rotating wind turbine blade (see Figure 1), the three-dimensional boundary layer 
equations can be obtained from the incompressible Navier-Stokes equations in curvilinear 
coordinates using boundary layer approximations. To solve the differential boundary layer 
equations, the common way is to find a similarity variable to regroup the equations and then 
integrate the final equations using some numerical techniques. Unfortunately, it is very 
difficult or even impossible to find a common similarity variable for the three-dimensional 
boundary layer equations of a rotating blade. In 2003, Dumitrescu and Cardos [5] presented 
a similarity approach to solve the three-dimensional boundary layer of a rotating wing 
consisting of flat plates whose leading edges are set in the radial direction. 

Considering a sectional cut, the similarity formulation was achieved for a flat plate 
aligned with the azimuth direction in the cylindrical coordinates. Since a flat plate wing is 
not used for wind turbines, it is thus needed to extend a technique to solve the three-
dimensional boundary layer of a wind turbine wing by using a similar tool developed in [5]. 
In the following, the quasi-3D boundary layer equations together with a similarity approach 
for a general flat plate are described in 2.1 and the quasi-3D approach for an airfoil using the 
theory for a flat plate is discussed in 2.2. Initial conditions are discussed in 2.3 and followed 
by numerical integrations in 2.4. 

 
Fig. 1 – Reference system for a rotating wing. 
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2.1. Boundary layer equations for a flat wing 

In this section, the boundary layer equations for a rotating flat wing are presented. For a 
rotating wind turbine wing, it is preferable to use cylindrical coordinates where the origin is 
chosen at the rotor center and the radial axis passes the positions of 1/4 chords from the 
leading edge (see Figure 1). In the system, the wing is rotating with an angular velocity of Ω 
around the z-axis and the wind comes from the negative direction of z. In order to achieve a 
similarity variable, the real wing is transformed to a flat wing aligned with the azimuth 
direction (see also Figure 1). In the cylindrical coordinates the steady laminar incompressible 
boundary layer equations are expressed 
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where u, v, and w are the velocity components in the θ, r and z directions, respectively, p is 
the pressure, and  and r   are the wall shear stresses in the radial and tangential directions, 
respectively. The pressure gradient is found from the equations by applying the equations at 

the edge of a boundary layer with u=U and v =0.  

Before introducing similarity variables, two cases are needed to be considered. The first 
case (Case1) comprises the area from the stagnation point to the leading edge and the second 
one (Case 2) counts from the leading edge to the trailing edge on the suction side. In order to 
use the method presented in [5], the following transformations are used 
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where sx  and lx  are the θ-coordinate of the stagnation point and the leading edge, 
respectively, and U is the edge velocity at the edge of a boundary layer that is a function of r 
and θ. Using the similarity variables, the velocity is expressed as 
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Substituting the velocity definitions using the similarity variables to the boundary layer 
equations, the following PDE system is obtained 
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where m and n are the pressure gradients in the azimuth and radial directions, respectively, 

ws  is the sign function that is equal to -1 in Case 1 and 1 in Case 2, and subscript with ξ  
designates the derivatives with respect to ξ . 

Equations (4) and (5) are solved with the following boundary conditions: 

at        0, ,0 0, ' ,0 0, ,0 0, ' ,0 0f f g g          . (6)

at    , ' 1, 'f g 0       . (7)

2.2. Solving the boundary layer of a real wing 

As we know that the true boundary layer equations of a rotating wind turbine wing are 
complicated, one way to solve the boundary layer is to use the equations (4) and (5) but with 
some changes. From the similarity approach made by Blasius in 1908 for the 2D boundary 
layer equations of a flat plate, Falkner and Skan developed in 1931 a more general similarity 
approach for wedge flows. Their final equation is very similar to the equation for a flat plate 
but with a term of pressure gradient. The idea can be generalized for a rotating blade (see 
Figure 2) by: 
1. The equations (4) and (5) are used with true pressure gradients m and n. 
2. The coordinate x needs to be used as the arc length. 
3. The centrifugal and Coriolis forces should take true values at a blade. 
4. The minimum point in the azimuth direction is considered as the leading edge of a flat 
plate in the transformation. 

  

Fig. 2 – Coordinate system attached to the blade. 
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The dimensionless pressure-gradient parameters on the chordwise and spanwise 

directions at a given r/R and ξ  position are found 
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where  is the total arc length from the leading edge to the trailing edge and  is the edge 
velocity. In order to find the edge velocity, the reference velocity at a point on a rotating 
wind turbine blade is 
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where U  is the wind speed, 
R

U


   is the tip-speed-ratio, R is the radius of the turbine and 

a is the axial induced velocity interference factor. From the data of induced velocity [7] a is 

a function of the tip speed ratio λ . 

From the idea of Fogarty and Sears [8], an inviscid edge velocity can be calculated as 

   1 2, ,U r z U z         , (11)

 1 , 2V z        , (12)

   1 2, ,z zW r z U z       , (13)

where U, V and W represent the velocity components in the reference system defined in 
Figure 1.  and 1 , z    2 , z   denote the 2D potential solutions, that are constant at all 

radial positions. The interesting point regarding to this set of equations is that the spanwise 
component V can be derived from the local 2-dimensional velocity potential. However, this 
spanwise component is very small and thus neglected in the present study. The potential 
edge velocity components can be approached as: 

e r xfoU U U il , (14)

0V  . (15)

xfoilU  is the velocity obtained from the inviscid XFOIL [9] for flow past a 2D airfoil with a 

unit free stream velocity. 

2.3. Initial Conditions 

In order to solve the equations (4) and (5), an initial condition or the solution at a starting 
point needs to be found. For flow past an airfoil of a wind turbine blade, the starting point 
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would be the stagnation point. The initial velocity profile is dependent on the blade radius R, 

the local chord c, the tip speed ratio λ  and the angle of attack α  but is not dependent on the 

airfoil geometry. In the area near the stagnation point, the flow is symmetrical on both sides 
of the stagnation line and the dimensionless pressure-gradient parameter m is equal to 1 as in 
the case of flow against a wall (see also Figure 2). 

Based on these observations, the Partial Differential Equations (4) and (5) are 
degenerated to a set of Ordinary Differential Equations 

   2''' 0.5 '' 1 0.5 '' ' 2 / ' 0f ff ff f c R g       , (16) 

      ''' 0.5 '' 0.5 '' ' ' 2 / ' 1 cos 0g fg fg f g c R f          . (17) 

If we know the position of a cross-sectional airfoil, the local angle of attack and the tip-

speed ratio, a velocity profile  ' ',p pf g  can be obtained by solving the equations (10) (11). 

This profile will be used as an initial guess for integrating the equations (4) and (5) with 
modifications. 

2.4. Numerical integrations 

The numerical technique used to solve the set of PDE system is a collocation method that 
uses the 3-stage Lobatto IIIa formula and the collocation polynomial provides continuous 
solution that is fourth order accurate [10]. This approach is found to be more stable that the 
classical shooting method that combines the Keller’s box and the Newton linearization 
technique. The resulting PDE set is solved on the blade for different transversal cuts (r/R). 
Two test airfoils of constant chord: NACA 63-215 and S809 were used in the simulations. A 
Database was built up with 40 middle radial cuts with the angle of attack ranging between 

 and and the tip-speed-ratio ranging between 3 and 12. 00 020  

In order to determine the boundary layer correlations, the boundary layer parameters 
used by Mager are adopted. The displacement and momentum thickness in the chordwise 
direction are defined as 
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The cross flow parameters are calculated as 
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The shape factors in the chordwise and spanwise directions are defined as  

and . The skin friction coefficient in the chordwise and spanwise directions are 
defined as follows: 
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3. RESULTS AND DISCUSSION 

The variation of the parameter m at different angles of attack α  is shown in Figures 3 and 4 

for the tested airfoils. The shape factor on the chordwise and spanwise directions Hο  and Hr 
are plotted in Figures 5 and 6, is seen that they are independent of the radial position (r/R) 

and λ  However, they are dependent on the parameter m. However, small variations are 

observed before separation occurs. 

  
Fig, 3 – Variation of the parameter m with x/c at 

different angles of attack NACA 63-215 
Fig. 4 – Variation of the parameter m with x/c at 

different angles of attack S 809 

  

Fig. 5 – Relation between Ho and Hr at r/R=0.25, 0.35, 

0.45, 0.75, λ =3,12 α =0 NACA 63-215 
Fig. 6 – Relation between Ho and Hr at 

r/R=0.25, 0.35, 0.45, 0.75, λ =3,12 α =0 S 809 

  

Fig. 7 – Variation of g’’(0) with m at r/R=0.25, 0.35, 

0.45, 0.75, λ =3,12 α =0 NACA 63-215 

Fig. 8 – Variation of g’’(0) with m at r/R=0.25, 

0.35, 0.45, 0.75, λ =3,12 α =0 S 809 
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Fig. 9 – Variation of f’’(0) with m at r/R=0.25, 0.35, 

0.45, 0.75, λ =3,12 α =0 NACA 63-215 

Fig. 10 – Variation of f’’(0) with m at r/R=0.25, 

0.35, 0.45, 0.75, λ =3,12 α =0 S 809 

Figure 7 and 8 shows that the skin friction coefficient on the spanwise direction is 

sensitive to the radial position r/R, the tip speed ratio λ , and the parameter m. As the 

parameter r/R is increased the rotational effects are less evident, as shown on the figures 7 

and 8, small influence on the tip speed ratio λ  is observed. It is interesting to note in Figures 

9 and 10 that in comparison to the 2D case the velocity profile is more stable in the rotational 
cases for a given value of m, due to the preventing effect of the cross flow of negative 
pressure gradients. The spanwise dimensionless pressure-gradient parameter is small but has 
an important effect before separation occurs. In all cases the separation point is delayed due 
to the rotational effects. To calculate the stability of the velocity profiles a group of families 
need to be defined. In the 2D case the skin friction coefficient f’’(0), the shape factor H, or 
the dimensionless pressure-gradient parameter m define a unique family. 

To group and map the velocity profiles on the rotating blade, additional parameters are 
required. The value of m similar to the 2D case, with the corresponding skin friction 
coefficient f’’(0), since deviations are observed due to the rotation of the blade, see Figures 9 
and 10. The skin friction coefficient ratio g’’(0)/f’’(0) and the radial position r/R to quantify 
the rotational effects see Figure 11 and 12. It is interesting to note the influence of the 
rotational effects, when a favorable pressure gradient is acting on the boundary layer, the 
skin friction coefficient f’’(0) is lower than the corresponding 2D case. When the pressure 
gradient is negative the behavior is similar to Figures 9 and 10. The tangential and cross flow 
velocity profiles for the tested airfoils can be seen in Figure 13 and 14. 

  

Fig. 11 – Relation between f´´(0) and g’’(0) at r/R=0.25, 

0.35, 0.45, 0.75, λ =3,12 α=0, NACA 63-215 

Fig. 12 – Relation between f´´(0) and g’’(0) at 

r/R=0.25, 0.35, 0.45, 0.75, λ =3,12, S 809 
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Fig. 13 – Velocity profiles at x/c=0.01-0.49 r/R=0.25 

λ =12 α =0 NACA 63-215 

Fig. 14 – Velocity profiles at x/c=0.01-0.49 

r/R=0.25 λ =12 α =0, S809 

3. CONCLUSIONS 

The 3D boundary layer on a rotating wind turbine blade has been solved using a similarity 
variable approach based on the boundary layer equations in cylindrical coordinates. The 
three-dimensional inviscid edge-velocity was approached as a decomposition of a relative 
velocity and a 2D inviscid edge velocity around the cross-sectional airfoil obtained using the 
XFOIL code. The velocity profiles in the tangential and radial directions have been obtained 
by solving the boundary layer equations for different pressure gradients, tip-speed-ratios, 
radial positions and airfoil shapes. Finally, all the velocity profiles have been stored in a 
database that will be used for predicting transitions on a rotating wind turbine blade in the 
future. 
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