
INCAS BULLETIN, Volume 12, Issue 1/ 2020, pp. 59 – 66 (P) ISSN 2066-8201, (E) ISSN 2247-4528

Development and validation of constraints handling in a
Differential Evolution optimizer

Mihai-Vladut HOTHAZIE*,1, Georgiana ICHIM1, Mihai-Victor PRICOP2

*Corresponding author
1University “POLITEHNICA” of Bucharest, Faculty of Aerospace Engineering,

str. Polizu 1, Bucharest, Romania, 011061,
vlad.hothazie@gmail.com*, georgianaichim.gi@gmail.com

2INCAS – National Institute for Aerospace Research “Elie Carafoli”,
B-dul Iuliu Maniu 220, Bucharest 061126, Romania,

pricop.victor@incas.ro
DOI: 10.13111/2066-8201.2020.12.1.6

Received: 06 January 2020/ Accepted: 05 February 2020/ Published: March 2020
Copyright © 2020. Published by INCAS. This is an “open access” article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

The 38th “Caius Iacob” Conference on Fluid Mechanics and its Technical Applications
7 - 8 November, 2019, Bucharest, Romania, (held at INCAS, B-dul Iuliu Maniu 220, sector 6)

Section 4. Mathematical Modeling

Abstract: Research work requires independent, portable optimization tools for many applications, most
often for problems where derivability of objective functions is not satisfied. Differential evolution
optimization represents an alternative to the more complex, encryption based genetic algorithms.
Various packages are available as freeware, but they lack constraints handling, while constrained
optimizations packages are commercially available. However, the literature devoted to constraints
treatment is significant and the current work is devoted to the implementation of such an optimizer, to
be applied in low-fidelity optimization processes. The parameter free penalty scheme is adopted for
implementation, and the code is validated against the CEC2006 benchmark test problems and compared
with the genetic algorithm in MATLAB. Our paper underlines the implementation of constrained
differential evolution by varying two parameters, a predefined parameter for feasibility and the scaling
factor, to ensure the convergence of the solution.

Key Words: evolutionary algorithm, differential evolution, constraints, optimization

1. INTRODUCTION

Nowadays, evolutionary algorithms (EAs) are widely used to solve optimization problems,
non-linear, non-convex, multi-modal and non-differentiable [1] functions in the continuous
parameter space. In its original form, EA is not compatible to perform operations with
constraint problems. Thus, a multitude of methods have been developed to search for the
feasible region of the fitness function. The most popular approach is the use of penalty
functions [2]. Even so, the drawback of the penalty function is that it must be carefully chosen,
depending on the constraint problem, thus, losing the generality.

Differential Evolution algorithm (DEC) was introduced by Storn and Price [3] and it is
primarily used for constraint optimization problems due to its simplicity and performance.

Mihai-Vladut HOTHAZIE, Georgiana ICHIM, Mihai-Victor PRICOP 60

INCAS BULLETIN, Volume 12, Issue 1/ 2020

DE consist of a uniform population consisting of a random set of candidate solutions,
known as target vectors, from the given search space. Compared to a basic evolutionary
algorithm, DE implies a secondary parent, namely a mutation vector which scales the
difference of two random members of the current population and added to another member.
The scaling factor “F” scales the pair of random vectors to obtain the donor/mutant vector.
Next, the crossover between a target vector and the mutant vector is done to form an offspring
vector. The crossover parameter “CR” defines the influence of the parent in the next generation
[4]. In the end a selection is undergone to determine whether the target vector or the offspring
survives for the next generation. Therefore, if the offspring yields an equal or lower value of
the objective function, it becomes the new parent in the next generation. With every iteration,
the population tends to adapt to the natural scale of the feasible landscape, converging to the
optimal solution.

The purpose of this paper is to implement the Differential Evolution algorithm in a
standard programming language (FORTRAN 9x), enforcing our own contribution so that it is
robust, compact and reliable, with a maximal computational speed. The following approach
consists of an initial population of at least 50% feasible target vectors and for every iteration,
the scaling factor F is a uniformly distributed random number lying between 0 and 2. To
accurately demonstrate the performance of the algorithm, a set of standard benchmark
functions with nonlinear constraints are minimized.

2. METHODS
Constrained systems brought a subtle challenge in finding the optimum. These constraints are
coming from the physical modeling of various systems. In most cases the optimal value
changes, calling for different handling techniques on finding the minimum. A general
constrained optimization problem with n parameters to be optimized is usually written as a
nonlinear programming problem of the following form:

Minimize 𝑓𝑓(𝑥𝑥) subjected to [5]

𝑔𝑔𝑘𝑘(𝑥𝑥) ≤ 0,𝑘𝑘 = 1, …𝐾𝐾, (1)

ℎ𝑙𝑙(𝑥𝑥) = 0, 𝑙𝑙 = 1, … 𝐿𝐿, 𝐿𝐿 < 𝑛𝑛, (2)

𝑙𝑙𝑘𝑘 ≤ 𝑥𝑥𝑗𝑗 ≤ 𝑢𝑢𝑗𝑗, 𝑗𝑗 = 1, …𝑛𝑛. (3)

Where 𝑔𝑔𝑘𝑘(𝑥𝑥) define the inequality constraints and ℎ𝑙𝑙(𝑥𝑥), the equality constraints. The
lower bounds and the upper bounds within the variables lie are [𝑙𝑙𝑗𝑗 ,𝑢𝑢𝑗𝑗]. Thus, the feasible
region is given by:

Ω = {𝑥𝑥 = [𝑥𝑥1,𝑥𝑥2, … 𝑥𝑥𝑛𝑛] ∊ ℝ𝘯𝘯|𝑔𝑔𝑘𝑘(𝑥𝑥) ≤ 0,ℎ𝑙𝑙(𝑥𝑥) = 0, 𝑙𝑙𝑗𝑗 ≤ 𝑥𝑥𝑗𝑗 ≤ 𝑢𝑢𝑗𝑗 ,∀𝑗𝑗} (4)

Regarding our perspective on the constrained optimization, when we deal with equality
constraints they are written as follows:

𝑔𝑔𝑙𝑙(𝑥𝑥) = ℎ𝑙𝑙(𝑥𝑥)− 𝜀𝜀 ≤ 0 (5)

𝑔𝑔𝑙𝑙+1(𝑥𝑥) = −ℎ𝑙𝑙(𝑥𝑥)− 𝜀𝜀 ≤ 0 (6)

Having 𝜀𝜀 as a small positive value that is automatically changed, depending on the
objective function. The constraint handling technique used in the approach of the evolutionary
algorithm is based on preservation of the feasibility of solutions. Namely we restrict the search

61 Development and validation of constraints handling in a Differential Evolution optimizer

INCAS BULLETIN, Volume 12, Issue 1/ 2020

process to the boundary of the feasible space. The major limitation is finding a feasible starting
point and consequently a feasible population. Different constraint problems may have a very
small search design space thus, the process of localizing this space becomes difficult regarding
time and processing.

2.1 The parameter free penalty-scheme [5]

Implemented by Deb in 2000, the parameter-free penalty scheme (PFP) is similar to the
superiority feasible points only that it lacks the penalty coefficient. In this scheme, we use a
modified fitness function in order to ensure that the feasible points will always have a better
fitness function than unfeasible ones.

The modified fitness function for this scheme is obtain as follows:

𝑓𝑓�𝑥𝑥𝑖𝑖,𝑔𝑔� = 𝑓𝑓�𝑥𝑥𝑖𝑖,𝑔𝑔 � + 𝐺𝐺�𝑥𝑥𝑖𝑖 ,𝑔𝑔 � + 𝜃𝜃𝑔𝑔�𝑥𝑥𝑖𝑖,𝑔𝑔�, 𝑥𝑥𝑖𝑖,𝑔𝑔 ∊ 𝑠𝑠𝑔𝑔 (7)

where 𝑓𝑓�𝑥𝑥𝑖𝑖,𝑔𝑔 � is the original fitness function, 𝐺𝐺�𝑥𝑥𝑖𝑖,𝑔𝑔 � is the constraint violation function and
𝜃𝜃𝑔𝑔�𝑥𝑥𝑖𝑖,𝑔𝑔� is an additional penalty term which guarantees that the infeasible points will always
have a worse modified fitness function. The additional penalty term has the next possible
cases:

Θ𝑔𝑔(𝑥𝑥𝑖𝑖,𝑔𝑔) = �
0 𝑖𝑖𝑖𝑖 𝑥𝑥𝑖𝑖,𝑔𝑔 ∈ Ω

−𝑓𝑓(𝑥𝑥𝑖𝑖,𝑔𝑔) 𝑖𝑖𝑖𝑖 𝑠𝑠𝑔𝑔 ∈ Ω = ∅
−𝑓𝑓(𝑥𝑥𝑖𝑖,𝑔𝑔) + 𝑚𝑚𝑚𝑚𝑚𝑚𝑦𝑦∈𝑠𝑠𝑔𝑔∩Ω𝑓𝑓(𝑦𝑦) 𝑖𝑖𝑖𝑖 𝑠𝑠𝑔𝑔 ∈ Ω = ∅, 𝑥𝑥𝑖𝑖,𝑔𝑔 ∉ Ω

� (8)

The main use of this penalty term is to direct the search process to a feasible region but
still maintaining a random factor in order to keep the highest chances of finding the global
minimum and not a local one. This penalty term can have different values depending on the
number of feasible points in our population.

The first case deals with an ideal population where all the points are feasible. Thus, the
penalty term is equal to 0 because there is no need to penalize points that are in the feasible
region. Therefore, the modified fitness function will be equal only to the sum of the constraint
violation function and the original fitness function.

𝑓𝑓(𝑥𝑥𝑖𝑖,𝑔𝑔) = 𝑓𝑓(𝑥𝑥𝑖𝑖,𝑔𝑔)
𝐺𝐺(𝑥𝑥𝑖𝑖,𝑔𝑔) = 0
𝜃𝜃(𝑥𝑥𝑖𝑖,𝑔𝑔) = 0

In the second instance, if the population consists only of infeasible points, the penalty
function will be equal to the negative of the original fitness function. This procedure enables
an improvement in the calculation time because the modified fitness function will only be
equal to the constraint violation function. As such, there is no need to evaluate the original
fitness function, and in many cases, this is a major improvement.

𝑓𝑓(𝑥𝑥𝑖𝑖,𝑔𝑔) = 𝑓𝑓(𝑥𝑥𝑖𝑖,𝑔𝑔)
𝐺𝐺(𝑥𝑥𝑖𝑖,𝑔𝑔) > 0

𝜃𝜃(𝑥𝑥𝑖𝑖,𝑔𝑔) = −𝑓𝑓(𝑥𝑥𝑖𝑖,𝑔𝑔)

In the last situation, if there are both feasible and unfeasible points in the population, the
penalty term for an unfeasible point will take the sum of the maximum value of the original
fitness function from all the feasible points minus the original fitness function for the

Mihai-Vladut HOTHAZIE, Georgiana ICHIM, Mihai-Victor PRICOP 62

INCAS BULLETIN, Volume 12, Issue 1/ 2020

respective unfeasible point. This ensures that every unfeasible point will always have a worse
modified fitness function then the feasible ones. So, the search will be directed to the feasible
ones.

𝑓𝑓(𝑥𝑥𝑖𝑖,𝑔𝑔) = 𝐺𝐺(𝑥𝑥𝑖𝑖,𝑔𝑔) + 𝑚𝑚𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓(𝑓𝑓(𝑥𝑥𝑖𝑖,𝑔𝑔))
𝐺𝐺(𝑥𝑥𝑖𝑖,𝑔𝑔) ≥ 0

𝜃𝜃(𝑥𝑥𝑖𝑖,𝑔𝑔) = −𝑓𝑓(𝑥𝑥𝑖𝑖,𝑔𝑔) + 𝑚𝑚𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓(𝑓𝑓(𝑥𝑥𝑖𝑖,𝑔𝑔))

The resulting fitness function is the most appropriate choice for solving problems with
constraints and also encourages a relatively modified basic structure of the usual algorithm.
A standard differential algorithm is used but slightly different to obtain the best solution in a
time-efficient way. Four main stages are necessarily required at every iteration, presented as
follows:

1. Initial population
In order to start the process, we generate a random population. To ensure that our code has a
higher convergence rate, we impose that a minimum percent of this startup randomly selected
individuals is feasible and higher than a parameter 𝒎𝒎𝒑𝒑 that can be modified in the program.

2. Mutation population
To obtain mutated individuals, the algorithm uses the difference between two randomly
selected points from the parent population as a root for a third individual, also randomly
chosen, in order to spawn a new element. This method proves to be a good approach because
if we repeat the process for a number of iterations the point converges to a feasible region.

This method can have different forms. The one used in our code is:

𝑋𝑋�𝑖𝑖
𝑔𝑔+1 = 𝑋𝑋𝑟𝑟1

𝑔𝑔 + 𝐹𝐹 ∙ �𝑋𝑋𝑟𝑟2
𝑔𝑔 − 𝑋𝑋𝑟𝑟2

𝑔𝑔 � (9)

where 𝑟𝑟1, 𝑟𝑟2, 𝑟𝑟3 are randomly generated integers within the total number of the elements from
the population. 𝐹𝐹 represents the scaling factor and can be used as a fixed parameter or can be
initiate randomly for every point.

However, it can be easily changed to other alternatives. For example:

𝑋𝑋�𝑖𝑖
𝑔𝑔+1 = 𝑋𝑋𝑟𝑟1

𝑔𝑔 + 𝐹𝐹2 ∙ �𝑋𝑋𝑟𝑟2
𝑔𝑔 − 𝑋𝑋𝑟𝑟2

𝑔𝑔 � (10)

𝑋𝑋�𝑖𝑖
𝑔𝑔+1 = 𝑋𝑋𝑟𝑟1

𝑔𝑔 + 𝐹𝐹 ∙ �𝑋𝑋𝑟𝑟2
𝑔𝑔 − 𝑋𝑋𝑟𝑟2

𝑔𝑔 � + 𝐹𝐹2 ∙ �𝑋𝑋𝑟𝑟2
𝑔𝑔 − 𝑋𝑋𝑟𝑟2

𝑔𝑔 � (11)

Lower

boundary

Upper

boundary

Initial

Population
--- --- 𝑋𝑋𝑖𝑖,1

𝑔𝑔 𝑋𝑋𝑖𝑖,2
𝑔𝑔 𝑋𝑋𝑖𝑖,𝑗𝑗

𝑔𝑔 𝑋𝑋𝑖𝑖,𝑛𝑛𝑛𝑛−1
𝑔𝑔 𝑋𝑋𝑖𝑖,𝑛𝑛𝑛𝑛

𝑔𝑔

Feasible population
dictated by mp
parameter.

63 Development and validation of constraints handling in a Differential Evolution optimizer

INCAS BULLETIN, Volume 12, Issue 1/ 2020

𝑋𝑋�𝑖𝑖
𝑔𝑔+1 = 𝑋𝑋𝑟𝑟1

𝑔𝑔 + 𝐹𝐹1 ∙ �𝑋𝑋𝑟𝑟2
𝑔𝑔 − 𝑋𝑋𝑟𝑟2

𝑔𝑔 � + 𝐹𝐹2 ∙ �𝑋𝑋𝑟𝑟2
𝑔𝑔 − 𝑋𝑋𝑟𝑟2

𝑔𝑔 � (12)

In this phase, another parameter (NMP) is added. It corresponds to the minimum number
of feasible elements necessary to complete the mutation population. The process is repeated
until the NMP satisfies a percentage added by the user.

3. Cross-over population
The cross-over is the next phase of the algorithm. For each mutated vector, a trial one is
generated by using the following rule:

a. A cross-over parameter 𝑐𝑐𝑐𝑐 ∈ (0,1) is considered and two random numbers are
generated: 𝑅𝑅𝑖𝑖 ∈ 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(0,1), 𝐼𝐼𝑖𝑖 ∈ 1,𝑛𝑛𝑛𝑛.

b. Every individual from the cross-over vector is selected from the mutated vector if
𝑅𝑅𝑖𝑖 < 𝑐𝑐𝑐𝑐 or 𝐼𝐼𝑖𝑖 = 𝑗𝑗. Otherwise, it is picked from the parent vector. This ensures that at
least one element from the parent population is taken into account in the newly created
vector.

𝑌𝑌𝑖𝑖,𝑔𝑔 = �
𝑋𝑋�𝑖𝑖,𝑗𝑗 𝑖𝑖𝑖𝑖 𝑅𝑅𝑖𝑖 < 𝑐𝑐𝑐𝑐 𝑜𝑜𝑜𝑜 𝐼𝐼𝑖𝑖 = 𝑗𝑗

𝑋𝑋𝑖𝑖,𝑗𝑗 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 (13)

4. Acceptance phase
A selection criterion is applied to create the new parent population for the next generation. The
acceptance operator implies a one-to-one competition between two points: one from the
current parent population and one from the cross-over population.

𝑋𝑋𝑖𝑖
𝑔𝑔+1 = �

𝑋𝑋�𝑖𝑖,𝑗𝑗 𝑖𝑖𝑖𝑖 𝑓𝑓(𝑋𝑋𝑖𝑖
𝑔𝑔) < 𝑓𝑓(𝑌𝑌𝑖𝑖

𝑔𝑔)
𝑌𝑌𝑖𝑖
𝑔𝑔 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

 (14)

We now present the DEC algorithm below:
1. Set control parameters: 𝒎𝒎𝒎𝒎, 𝒄𝒄𝒄𝒄,𝒇𝒇,𝒆𝒆𝒆𝒆𝒆𝒆.
2. IF condition for 𝒎𝒎𝒎𝒎 not met:

a. Generate initial population
b. Evaluate modified objective function 𝑓𝑓(𝑥𝑥𝑖𝑖,𝑔𝑔), constraint violation function

𝐺𝐺(𝑥𝑥𝑖𝑖,𝑔𝑔) and the penalty function 𝜃𝜃(𝑥𝑥𝑖𝑖,𝑔𝑔) for each point in the population.
3. Determine the penalty function 𝜃𝜃(𝑥𝑥𝑖𝑖,𝑔𝑔) and compute the modified fitness function
𝑓𝑓(𝑥𝑥𝑖𝑖,𝑔𝑔) once again for the initial population.
4. IF stopping criteria not met:

a. Generate mutated population;
b. Generate cross-over population;
c. Evaluate 𝐺𝐺(𝑥𝑥𝑖𝑖,𝑔𝑔), 𝑓𝑓(𝑥𝑥𝑖𝑖,𝑔𝑔), 𝜃𝜃�𝑥𝑥𝑖𝑖,𝑔𝑔�;
d. Update parent population.

3. RESULTS
In the extent of running our algorithm for each minimization problem in particular, the
following results presented in Table 1 have been obtained. The size of population and number
of generations are chosen depending on the convergence of each problem. The number of
generations for each problem ran with differential evolution is represented in the table below
with “nGen”. Denoted with “%” is a predefined parameter which implies what percentage of

Mihai-Vladut HOTHAZIE, Georgiana ICHIM, Mihai-Victor PRICOP 64

INCAS BULLETIN, Volume 12, Issue 1/ 2020

the initial population must be feasible so that the algorithm continues running. The crossover
parameter “CR” has a fixed value and ε is an adjustable parameter for merging the equality
constraints into inequalities. Our obtained value of the minimize function is represented in the
table as (*)f x . The last column of the table, “fval”, has the values obtained with the genetic
algorithm.

To make a fair comparison between the results, a cross-over parameter is set. In our tests,
we observed that this parameter has a high accuracy rate if is above 0.7. The number of
generations for each problem is chosen in order to converge as fast as possible. The population
size is desired to be as low as possible, but maintaining the best result.

Table 1 - Results

Prob. Pop. nGen % CR ε 𝑓𝑓(𝑥𝑥) fval
g01 102 104 0.8 0.9 - -0.1500000000E+02 -0.1500112511E+02
g02 102 108 0.8 0.9 - -0.8029606447E+00 -0.1809705412E+00
g03 102 106 0.8 0.9 10-4 -0.1000044328E+01 -0.9979858426E+00
g04 102 104 0.5 0.9 10-2 -0.3060118322E+05 -0.3007533718E+05
g05 No feasible point found 0.54184790878E+04
g06 102 5.e6 0.5 0.9 - -0.6932086083E+04 -0.6963708061E+04
g07 102 2.e4 0.8 0.9 - 0.2441341031E+02 0.2586227704E+02
g08 102 1.e3 0.8 0.9 - -0.9582504142E-01 -0.9582050424E-01
g09 103 1.e4 0.8 0.9 - 0.6812588890E+03 0.6819709217E+03
g10 No feasible point found
g11 102 1.e3 0.8 0.9 10-3 0.7496893234E+00 0.7499988873E+00
g13 103 5.e4 0.5 0.9 - 0.5484121102E-01 0.1490996960E+00
g14 0.4719957105E+00
g15 102 103 0.8 0.9 10-1 0.9582137398E+03 0.96171521921E+03
g18 -0.8500959489E-03
g24 102 104 0.8 0.9 - -0.5508013272E+01 -0.5509003070E+01
P04 103 12.e4 0.8 0.9 10-2 -0.4532419854E+01 -0.4453184391E+01
P06 102 104 0.8 0.9 10-1 -0.1286788746E+02 -0.1264548378E+02
P08 103 3.e3 0.8 0.9 10-5 -0.1673888371E+02 -0.1657674053E+02

The optimum solution for each problem is presented in Table 2. All variables are compared
with a high order of accuracy to the specified constraints for each problem to make a
comparison as clean as possible.

Table 2 - Solutions

g01 0.4709424817E+00 0.8694350187E+00 -0.1652805832E+01
0.1000000000E+01 0.4549283240E+00 g07 0.1519419318E+01
0.1000000000E+01 0.4731322305E+00 0.2155801854E+01 0.1930927354E+01
0.1000000000E+01 0.4331673978E+00 0.2413759969E+01 0.6125975779E+00
0.1000000000E+01 0.4566534626E+00 0.8742887898E+01 0.9773569805E+00
0.1000000000E+01 0.4490200205E+00 0.5036086968E+01 g15
0.1000000000E+01 0.4397910488E+00 0.9865799789E+00 0.5331076897E+01
0.1000000000E+01 0.4193101507E+00 0.1400319589E+01 0.3191077212E-01
0.1000000000E+01 g03 0.1287114899E+01 0.1839882632E+01
0.1000000000E+01 0.3159080639E+00 0.9796314515E+01 g24

65 Development and validation of constraints handling in a Differential Evolution optimizer

INCAS BULLETIN, Volume 12, Issue 1/ 2020

0.3000000000E+01 0.3167447079E+00 0.8296434608E+01 0.2329520197E+01
0.3000000000E+01 0.3165286793E+00 0.8532309349E+01 0.3178493074E+01
0.3000000000E+01 0.3161828299E+00 g08 P04
0.1000000000E+01 0.3161392258E+00 0.1227971352E+01 0.1336666666E+01
g02 0.3162191244E+00 0.4245373367E+01 0.4000000000E+01
0.3151573513E+01 0.3160117527E+00 g09 0.6305358251E-10
0.3118072951E+01 0.3160833764E+00 0.2149871648E+01 0.1189899211E-16
0.3086665232E+01 0.3163388956E+00 0.1951091213E+01 P06
0.3055059035E+01 0.3161359041E+00 -0.3406304372E+00 0.1639924104E+00
0.3021179622E+01 g04 0.4394110482E+01 0.1889573051E+01
0.2980726117E+01 0.7800000000E+02 -0.5257916209E+00 0.3882797751E+01
0.2944331331E+01 0.3300789591E+02 0.1118017674E+01 0.4671558308E+00
0.2920353116E+01 0.3021031943E+02 0.1517986013E+01 0.3456871167E-01
0.5095040982E+00 0.4390435446E+02 g11 0.1967281535E+01
0.5069184137E+00 0.3669881882E+02 0.6908307223E+00 P08
0.4987658001E+00 g06 0.4780400049E+00 0.7169765266E+00
0.4887158913E+00 0.1410729830E+02 g13 0.1471494488E+01

4. CONCLUSIONS
The results support our initial hypothesis, that the minimum of the function is found with better
accuracy using the parameter-free penalty scheme. This shows that the unfeasible solutions
are penalized so that they do not interfere with the feasible ones.

The results are close, if not the same, with the ones given in CEC2016 which emphasize
the performance of the algorithm. In addition to this comparison, a set of results obtained with
the genetic algorithm from MATLAB Global Optimization Toolbox is added to the list. A
difference is noted between our differential evolution algorithm and the GA, namely, the
number of generations and the size of the population are fixed in GA. If changed, the runtime
is larger and there are chances for the problem not to converge to the optimal solutions and
fall to an unfeasible one as there is no scheme used. The solution obtained with no parameter
changed in the standard GA is worse than the one obtained with DE.

In the case of problem g05 and g10, the algorithm did not converge because there was no
initial population with a minimum of 50% feasible elements. The values obtained with the
genetic algorithm shown in Table 1 in bold are a clear example of how the solution fall into a
local minimum, thus unfeasible.

Nowadays, the main challenging problem is to find a robust and intelligent computational
scheme that can be easily applied to solve a problem that cannot be determined analytically or
is too complicated or time-consuming.

The algorithm should respect a set of rules, so it can be easily understood by engineers
and efficiently applied for the specific problem.

1. The scheme should not require an initial feasible population inserted by the user in
order to converge.
2. It should not be too sensitive if one or more parameter is changed.
Taking everything into account, our program achieved performance comparable to or

better than the MATLAB genetic algorithm. In addition, although there are some variants of
this algorithm on the market, they aren’t free to use. Therefore, for our institute, our code will
be accessible to anyone in order to facilitate optimized results for specific problems.
Furthermore, the basic structure was designed to be modular so it can be easily debugged and
modified for their specific needs.

Mihai-Vladut HOTHAZIE, Georgiana ICHIM, Mihai-Victor PRICOP 66

INCAS BULLETIN, Volume 12, Issue 1/ 2020

REFERENCES
[1] S. Das, S. Subhra Mullick, P. N. Suganthan, Recent advances in differential evolution - An updated survey,

Swarm and Evolutionary Computation, 27: 1–30, Elsevier, 2016.
[2] R. Storn, K. Price, Differential Evolution – A Simple and Efficient Heuristic for Global Optimization over

Continuous Spaces, Journal of Global Optimization, 11: 341–359, Kluwer Academic Publishers, 1997.
[3] E. Mezura-Montes, J. Velazquez-Reyes and C. A. Coello Coello, Modified Differential Evolution for

Constrained Optimization, Evolutionary, Computation Group (EVOCINV) at CINVESTAV-IPN,
Computer Science Section, Electrical Engineering Department, 2508 Col. San Pedro Zacatenco M´exico
D.F. 07300, MEXICO, 2006.

[4] S. Dominguez-Isidro, Memetic Differential Evolution for Constrained Numerical Optimization Problems,
Doctoral Thesis, University of Veracruz, 2017.

[5] Z. Kajee-Bagdadi, Differential Evolution Algorithms for Constrained Global Optimization, Master Thesis,
Faculty of Science, University of the Witwaterstrand, Johannesburg, 2007.

