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Abstract: This paper presents a methodology for constructing iterative schemes of any order of 

convergence for solving nonlinear systems of equations. It also provides formulas for the order of 

convergence of any iterative schemes constructed using the method proposed in this paper. A test case 

is conducted numerically for the second and third order of convergence using a computer algebra 

system called Maxima. The code used is listed at the end of the test case. 
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1. INTRODUCTION 

The problem of solving a nonlinear system of equations has applications in many fields of 

study. In the field of structural mechanics, the fundamental conservation laws are based on 

partial differential equations that are usually nonlinear. When converted into numerical 

schemes for solving complex problems, they retain their nonlinearity. In order to make this 

problem tractable, either of the following two techniques are employed: linearizing the 

numerical scheme for finding a solution using linear algebra; and using an iterative 

numerical scheme that directly solves the nonlinear system of equations. 

There are three important practical properties that apply to numerical methods used in 

the latter technique. 

The first property, the order of convergence, is of importance because it represents how 

fast the number of correct digits of the current solution grows. For example, the most 

commonly used iterative method is the Newton-Raphson method. It has a convergence of 

order two. That means that the solution’s number of correct digits doubles each iteration. 

Another iterative method is Halley’s method. It has a convergence of order three, which 

means that the number of exact digits triples with each iteration, and so on. 

The second property is the iteration computational cost, or more precisely, how much 

computer time does it take to compute one iteration. The advantage of having a higher 

convergence rate is that the number of exact digits grows much faster. The disadvantage is 

that it takes a higher amount of computer time to compute each iteration. This problem can 
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be solved in various ways, from rewriting the numerical scheme in discrete form to using 

mathematical manipulation to reduce the amount of calculations needed. 

Lastly, the third property is the dimensionality of the numerical method: whether a 

single equation of one variable is solved, or a system of equations of multiple variables is 

solved. This property simply distinguishes the iterative methods by their ability to solve for 

one variable or for multiple variables. 

Whenever an iterative numerical method is created, two issues must be clarified. The 

iteration formula, convergence rate and computational cost must be mentioned, and, if 

possible, a proof of the convergence rate must be given. So far, many iterative methods have 

been created, many of which have a proof for convergence. Unfortunately, to the best of our 

knowledge, there is no unifying theory underlying the domain of numerical iterative schemes 

for solving nonlinear systems of equations. This paper will attempt to provide such a theory 

with which iterative schemes of any order of convergence can be constructed. It will also 

present formulas for calculating order of convergence of these numerical methods. More 

details on the state of the art on this subject are presented in chapter 7. 

2. ITERATIVE METHODS CONCERNING THE ONE-DIMENSIONAL 

CASE 

The technique presented in this paper, for creating iterative schemes, focuses mainly on 

systems of nonlinear equations, but, for the purpose of continuity, we shall start by 

discussing the one-dimensional case. This reduces to the classical single variable nonlinear 

equation of the form: 

𝑓(𝑥) = 0 

The main idea behind obtaining the solution �̅� is to find the inverse 𝑓−1(𝑥) and evaluate 

it at the point 𝑥 = 0: 

�̅� = 𝑓−1(0) 

For the purpose of readability, the inverse function will be renamed as: 

𝑔(𝑥):= 𝑓−1(𝑥) 

𝑔(𝑓(𝑥)) = 𝑓−1(𝑓(𝑥)) = 𝑥 (1) 

The steps to assembling the iterative formulas are:  

1. Write the Taylor series of the inverse function in 𝑓(𝑥) and, 

2. Transform all the derivatives into functions of 𝑥. 

We start by expanding the function 𝑔 into its Taylor series in 𝑓(𝑥), around a point 𝑓(𝑥0): 

𝑔(𝑓(𝑥)) = 𝑔(𝑓(𝑥0)) +
𝑑𝑔

𝑑𝑓
|
𝑓(𝑥0)

(𝑓(𝑥) − 𝑓(𝑥0)) +
𝑑2𝑔

𝑑𝑓2
|
𝑓(𝑥0)

(𝑓(𝑥) − 𝑓(𝑥0))
2

2
+⋯ 

The next step is to evaluate the derivatives of 𝑔 as functions of 𝑥 . This is done by 

differentiating with respect to 𝑥 equation (1). The following calculations are for the first 

derivative of 𝑔: 

 
𝑑

𝑑𝑥
(𝑔(𝑓(𝑥))) =

𝑑𝑓

𝑑𝑥
|
𝑥

𝑑

𝑑𝑓
(𝑔(𝑓(𝑥))) =

𝑑𝑓

𝑑𝑥
|
𝑥

𝑑𝑔

𝑑𝑓
|
𝑓(𝑥)
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𝑑

𝑑𝑥
(𝑔(𝑓(𝑥))) =

𝑑

𝑑𝑥
(𝑥) = 1 

⇒  
𝑑𝑔

𝑑𝑓
|
𝑓(𝑥)

=
1

𝑑𝑓
𝑑𝑥|𝑥

 
(2) 

For derivatives of higher order, we repeat the same procedure, differentiating each time 

the previous expression. We will do one more for the second derivative, as an example: 

𝑑

𝑑𝑥
(
𝑑𝑔

𝑑𝑓
|
𝑓(𝑥)

) =
𝑑𝑓

𝑑𝑥
|
𝑥

𝑑

𝑑𝑓
(
𝑑𝑔

𝑑𝑓
|
𝑓(𝑥)

) =
𝑑𝑓

𝑑𝑥
|
𝑥

𝑑2𝑔

𝑑𝑓2
|
𝑓(𝑥)

 

𝑑

𝑑𝑥
(
𝑑𝑔

𝑑𝑓
|
𝑓(𝑥)

) =
𝑑

𝑑𝑥
(
1

𝑑𝑓
𝑑𝑥
|
𝑥

) = −

𝑑2𝑓
𝑑𝑥2

|
𝑥

(
𝑑𝑓
𝑑𝑥|𝑥

)
2 

⇒   
𝑑2𝑔

𝑑𝑓2
|
𝑓(𝑥)

= −

𝑑2𝑓
𝑑𝑥2

|
𝑥

(
𝑑𝑓
𝑑𝑥|𝑥

)
3 (3) 

We are now ready for the complete substitution. The resulting Taylor series using 

equations (1), (2) and (3) is: 

𝑥 = 𝑥0 +
1

 
𝑑𝑓
𝑑𝑥
|
𝑥0

(𝑓(𝑥) − 𝑓(𝑥0)) −

𝑑2𝑓
𝑑𝑥2

|
𝑥0

(
𝑑𝑓
𝑑𝑥|𝑥0

)

3

(𝑓(𝑥) − 𝑓(𝑥0))
2

2
+⋯ (4) 

Writing (4) as a fixed-point iteration, around the solution �̅�, and noting that 𝑓(�̅�) = 0 , 
we have: 

�̅� = 𝑥0 +
1

 
𝑑𝑓
𝑑𝑥|𝑥0

(𝑓(�̅�) − 𝑓(𝑥0)) −

𝑑2𝑓
𝑑𝑥2

|
𝑥0

(
𝑑𝑓
𝑑𝑥|𝑥0

)

3

(𝑓(�̅�) − 𝑓(𝑥0))
2

2
+⋯ (5) 

𝑥𝑛+1 = 𝑥𝑛 +
1

 
𝑑𝑓
𝑑𝑥|𝑥𝑛

(−𝑓(𝑥𝑛)) −

𝑑2𝑓
𝑑𝑥2

|
𝑥𝑛

(
𝑑𝑓
𝑑𝑥|𝑥𝑛

)

3

(−𝑓(𝑥𝑛))
2

2
+⋯ (6) 

If we had the complete infinite series, we would have got the exact solution �̅� directly 

by evaluating expression (5) just once. Due to the fact that we cannot, in practice, calculate 

all the terms of the Taylor series expansion of the inverse function, we will be forced to 
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truncate it after a finite number of terms and use it iteratively as a fixed-point method, like 

(6), to converge to a solution. 

If we truncate the series after the first term we obtain the second order Newton-Raphson 

method: 

𝑥𝑛+1 = 𝑥𝑛 −
𝑓(𝑥𝑛)

 
𝑑𝑓
𝑑𝑥
|
𝑥𝑛

 

Furthermore, if we truncate it after the third term we obtain a variant of Halley’s method 

[4], which is a third order method: 

𝑥𝑛+1 = 𝑥𝑛 −
𝑓(𝑥𝑛)

 
𝑑𝑓
𝑑𝑥|𝑥𝑛

−

𝑓(𝑥𝑛)
2 𝑑

2𝑓
𝑑𝑥2

|
𝑥𝑛

2 (
𝑑𝑓
𝑑𝑥|𝑥𝑛

)

3  

If we continue to truncate the series after more and more terms, iteration formulas of 

higher and higher order will be obtained. This problem has already been solved extensively 

in the one-dimensional case by Schröder [2], who arrives at the same generalized iteration 

schemes, by using a different derivation.  

3. CALCULATING THE ORDER OF CONVERGENCE IN THE ONE-

DIMENSIONAL CASE 

Let �̅� be a solution to 𝑓(𝑥) = 0 and 𝑥𝑛 a point close to �̅�. Let us rewrite the previous Taylor 

series (5) in compact form: 

�̅� = 𝑥𝑛 +∑𝑎𝑖

∞

𝑖=1

(𝑓(�̅�) − 𝑓(𝑥𝑛))
𝑖
 (7) 

𝑎𝑖 =

𝑑𝑖𝑔
𝑑𝑓𝑖

|
𝑓(𝑥𝑛)

𝑖!
 

The terms 𝑎𝑖 are the derivatives of the inverse function of the ith order, which can all be 

evaluated to dependent only on the variable 𝑥 using the procedure described in the previous 

chapter. 

Since we deal with a truncated version of the above series, we will write for 𝑥𝑛+1 the 

first 𝑘 terms of the summation: 

𝑥𝑛+1 = 𝑥𝑛 +∑𝑎𝑖

𝑘

𝑖=1

(𝑓(�̅�) − 𝑓(𝑥𝑛))
𝑖
 (8) 

If we subtract (8) from (7), we have: 

�̅� − 𝑥𝑛+1 = 𝑎𝑘+1(𝑓(�̅�) − 𝑓(𝑥𝑛))
𝑘+1

+⋯ 

We divide and multiply by (�̅� − 𝑥𝑛)
𝑖 to obtain: 
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�̅� − 𝑥𝑛+1 = 𝑎𝑘+1 (
𝑓(�̅�) − 𝑓(𝑥𝑛)

�̅� − 𝑥𝑛
 )

𝑘+1

(�̅� − 𝑥𝑛)
𝑘+1 +⋯ (9) 

Since the point 𝑥𝑛 is close to �̅�, the term in parenthesis can be further simplified: 

𝑓(�̅�) − 𝑓(𝑥𝑛)

�̅� − 𝑥𝑛
~

𝑓(�̅�) − (𝑓(�̅�) +
𝑑𝑓
𝑑𝑥
|
�̅�
(𝑥𝑛 − �̅�) + 𝑂((𝑥𝑛 − �̅�)

2))

�̅� − 𝑥𝑛

=
𝑑𝑓

𝑑𝑥
|
�̅�
+ 𝑂((�̅� − 𝑥𝑛))

 (10) 

We define the error 𝛿 as being the difference between the solution �̅� and the current 

point of evaluation 𝑥: 

𝛿𝑛 = �̅� − 𝑥𝑛 

𝛿𝑛+1 = �̅� − 𝑥𝑛+1  

Substituting the expressions above in (9) and (10), we have: 

𝛿𝑛+1 = 𝑎𝑘+1 (
𝑑𝑓

𝑑𝑥
|
�̅�
+ 𝑂(𝛿𝑛) )

𝑘+1

𝛿𝑛
𝑘+1 +⋯ = 𝑎𝑘+1 (

𝑑𝑓

𝑑𝑥
|
�̅�
 )
𝑘+1

𝛿𝑛
𝑘+1 + 𝑂(𝛿𝑛

𝑘+2) 

After dropping the higher order terms, it can be clearly seen from (11),/ that a scheme, 

that uses 𝑘 terms, has an order of convergence of  𝑘 + 1: 

𝛿𝑛+1 = 𝑎𝑘+1 (
𝑑𝑓

𝑑𝑥
(�̅�) )

𝑘+1

𝛿𝑛
𝑘+1 (11) 

The conditions for 𝑘 + 1 order of convergence are the following: 

- 
𝑑𝑓

𝑑𝑥
|
𝑥𝑖
≠ 0 for all 𝑥𝑖, 𝑖 = 1, 𝑛̅̅ ̅̅̅ 

- 𝑎𝑘+1|𝑥𝑖 is continuous for all 𝑥𝑖, 𝑖 = 1, 𝑛̅̅ ̅̅̅ 

- 𝑥𝑖 is sufficiently close to the root �̅� 

The first condition allows for the construction of the iterative formulas, because we need 

to divide by the first derivative to obtain the terms 𝑎𝑘, see (2) and (3).  

The second condition ensures that the terms 𝑎𝑗|𝑥𝑖
 for 𝑗 = 1, 𝑘̅̅ ̅̅̅  are computable and 

bounded for each iteration at every point 𝑥𝑖 for 𝑖 = 1, 𝑛̅̅ ̅̅̅. The last condition ensures 𝑘 + 1 

order of convergence, because, for this to be possible, the Taylor series approximation (11) 

has to be valid, which involves higher order terms to be negligible. 

4. ITERATIVE METHODS CONCERNING THE MULTIDIMENSIONAL 

CASE 

In order to construct iteration schemes in the case of systems of nonlinear equations we have 

to define the notion of the inverse of a multivariate function. Since the purpose of an inverse 

function, when applied to the function itself, is to output the independent variable, the logical 

extension to multivariate functions is to have as many inverse functions as there are 

independent variables. Before providing the technique for the general case, we shall first 

start with a smaller example of a system of nonlinear equations in two variables 𝑥0 and 𝑥1: 
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𝑓0(𝑥0, 𝑥1) = 0 

𝑓1(𝑥0, 𝑥1) = 0 
(12) 

Since we have two variables, we now need two inverse functions 𝑔0 and 𝑔1, with the 

following properties: 

𝑔0(𝑓0(𝑥0, 𝑥1), 𝑓1(𝑥0, 𝑥1)) = 𝑥0 

𝑔1(𝑓0(𝑥0, 𝑥1), 𝑓1(𝑥0, 𝑥1)) = 𝑥1 

We follow the same procedure as before and write the Taylor series of the two inverse 

functions 𝑔0 and 𝑔1 around a point (𝑥0, 𝑥1): 

𝑔0(𝑓0(𝑥0̅̅ ̅, 𝑥1̅̅̅), 𝑓1(𝑥0̅̅ ̅, 𝑥1̅̅̅))

= 𝑔0(𝑓0(𝑥0, 𝑥1), 𝑓1(𝑥0, 𝑥1))  +
𝜕𝑔0
𝜕𝑓0

|
𝑓0(𝑥0,𝑥1),𝑓1(𝑥0,𝑥1)

(𝑓0(𝑥0̅̅ ̅, 𝑥1̅̅̅) − 𝑓0(𝑥0, 𝑥1))

+
𝜕𝑔0
𝜕𝑓1

|
𝑓0(𝑥0,𝑥1),𝑓1(𝑥0,𝑥1)

(𝑓1(𝑥0̅̅ ̅, 𝑥1̅̅̅) − 𝑓1(𝑥0, 𝑥1))

+
𝜕2𝑔0

𝜕𝑓0
2 |
𝑓0(𝑥0,𝑥1),𝑓1(𝑥0,𝑥1)

(𝑓0(𝑥0̅̅ ̅, 𝑥1̅̅̅) − 𝑓0(𝑥0, 𝑥1))
2

2

+
𝜕2𝑔0
𝜕𝑓0𝜕𝑓1

|
𝑓0(𝑥0,𝑥1),𝑓1(𝑥0,𝑥1)

(𝑓0(𝑥0̅̅ ̅, 𝑥1̅̅̅) − 𝑓0(𝑥0, 𝑥1))(𝑓1(𝑥0̅̅ ̅, 𝑥1̅̅̅) − 𝑓1(𝑥0, 𝑥1))

+
𝜕2𝑔0

𝜕𝑓1
2 |
𝑓0(𝑥0,𝑥1),𝑓1(𝑥0,𝑥1)

(𝑓1(𝑥0̅̅ ̅, 𝑥1̅̅̅) − 𝑓1(𝑥0, 𝑥1))
2

2
+ ⋯ 

 

𝑔1(𝑓0(𝑥0̅̅ ̅, 𝑥1̅̅̅), 𝑓1(𝑥0̅̅ ̅, 𝑥1̅̅̅))

= 𝑔1(𝑓0(𝑥0, 𝑥1), 𝑓1(𝑥0, 𝑥1)) +
𝜕𝑔1
𝜕𝑓0
|
𝑓0(𝑥0,𝑥1),𝑓1(𝑥0,𝑥1)

(𝑓0(𝑥0̅̅ ̅, 𝑥1̅̅̅) − 𝑓0(𝑥0, 𝑥1))

+
𝜕𝑔1
𝜕𝑓1
|
𝑓0(𝑥0,𝑥1),𝑓1(𝑥0,𝑥1)

(𝑓1(𝑥0̅̅ ̅, 𝑥1̅̅̅) − 𝑓1(𝑥0, 𝑥1))

+
𝜕2𝑔1

𝜕𝑓0
2 |
𝑓0(𝑥0,𝑥1),𝑓1(𝑥0,𝑥1)

(𝑓0(𝑥0̅̅ ̅, 𝑥1̅̅̅) − 𝑓0(𝑥0, 𝑥1))
2

2

+
𝜕2𝑔1
𝜕𝑓0𝜕𝑓1

|
𝑓0(𝑥0,𝑥1),𝑓1(𝑥0,𝑥1)

(𝑓0(𝑥0̅̅ ̅, 𝑥1̅̅̅) − 𝑓0(𝑥0, 𝑥1))(𝑓1(𝑥0̅̅ ̅, 𝑥1̅̅̅) − 𝑓1(𝑥0, 𝑥1))

+
𝜕2𝑔1

𝜕𝑓1
2 |
𝑓0(𝑥0,𝑥1),𝑓1(𝑥0,𝑥1)

(𝑓1(𝑥0̅̅ ̅, 𝑥1̅̅̅) − 𝑓1(𝑥0, 𝑥1))
2

2
+ ⋯  

The next step is the computation of the derivatives of 𝑔0 and 𝑔1 as functions of 𝑥0 and 𝑥1. 

As an example, we will carry out the computations only for the first and second derivatives: 

𝜕

𝜕𝑥0
(𝑔0(𝑓0(𝑥0, 𝑥1), 𝑓1(𝑥0, 𝑥1))) =

𝜕𝑓0
𝜕𝑥0

𝜕𝑔0
𝜕𝑓0

|
𝑓0(𝑥0,𝑥1),𝑓1(𝑥0,𝑥1)

+
𝜕𝑓1
𝜕𝑥0

𝜕𝑔0
𝜕𝑓1

|
𝑓0(𝑥0,𝑥1),𝑓1(𝑥0,𝑥1)

 

𝜕

𝜕𝑥1
(𝑔0(𝑓0(𝑥0, 𝑥1), 𝑓1(𝑥0, 𝑥1))) =

𝜕𝑓0
𝜕𝑥1

𝜕𝑔0
𝜕𝑓0

|
𝑓0(𝑥0,𝑥1),𝑓1(𝑥0,𝑥1)

+
𝜕𝑓1
𝜕𝑥1

𝜕𝑔0
𝜕𝑓1

|
𝑓0(𝑥0,𝑥1),𝑓1(𝑥0,𝑥1)
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𝜕

𝜕𝑥0
(𝑔1(𝑓0(𝑥0, 𝑥1), 𝑓1(𝑥0, 𝑥1))) =

𝜕𝑓0
𝜕𝑥0

𝜕𝑔1
𝜕𝑓0

|
𝑓0(𝑥0,𝑥1),𝑓1(𝑥0,𝑥1)

+
𝜕𝑓1
𝜕𝑥0

𝜕𝑔1
𝜕𝑓1
|
𝑓0(𝑥0,𝑥1),𝑓1(𝑥0,𝑥1)

 

𝜕

𝜕𝑥1
(𝑔1(𝑓0(𝑥0, 𝑥1), 𝑓1(𝑥0, 𝑥1))) =

𝜕𝑓0
𝜕𝑥1

𝜕𝑔1
𝜕𝑓0

|
𝑓0(𝑥0,𝑥1),𝑓1(𝑥0,𝑥1)

+
𝜕𝑓1
𝜕𝑥1

𝜕𝑔1
𝜕𝑓1
|
𝑓0(𝑥0,𝑥1),𝑓1(𝑥0,𝑥1)

 

𝜕

𝜕𝑥0
(𝑔0(𝑓0(𝑥0, 𝑥1), 𝑓1(𝑥0, 𝑥1))) =

𝜕

𝜕𝑥0
(𝑥0) = 1 

𝜕

𝜕𝑥1
(𝑔0(𝑓0(𝑥0, 𝑥1), 𝑓1(𝑥0, 𝑥1))) =

𝜕

𝜕𝑥1
(𝑥0) = 0 

𝜕

𝜕𝑥0
(𝑔1(𝑓0(𝑥0, 𝑥1), 𝑓1(𝑥0, 𝑥1))) =

𝜕

𝜕𝑥0
(𝑥1) = 0 

𝜕

𝜕𝑥1
(𝑔1(𝑓0(𝑥0, 𝑥1), 𝑓1(𝑥0, 𝑥1))) =

𝜕

𝜕𝑥1
(𝑥1) = 1  

Written as a matrix equation, we have: 

(

 
 

𝜕𝑔0
𝜕𝑓0

𝜕𝑔0
𝜕𝑓1

𝜕𝑔1
𝜕𝑓0

𝜕𝑔1
𝜕𝑓1)

 
 

(

 
 

𝜕𝑓0
𝜕𝑥0

𝜕𝑓0
𝜕𝑥1

𝜕𝑓1
𝜕𝑥0

𝜕𝑓1
𝜕𝑥1)

 
 
= (
1 0
0 1

) 

Therefore, the resulting derivatives are: 

(

 
 

𝜕𝑔0
𝜕𝑓0

𝜕𝑔0
𝜕𝑓1

𝜕𝑔1
𝜕𝑓0

𝜕𝑔1
𝜕𝑓1)

 
 
= 𝐽−1 ,where  𝐽 =

(

 
 

𝜕𝑓0
𝜕𝑥0

𝜕𝑓0
𝜕𝑥1

𝜕𝑓1
𝜕𝑥0

𝜕𝑓1
𝜕𝑥1)

 
 
  

The matrix 𝐽 is the Jacobian of the system. In order to compute the second derivatives, 

we must employ a compact system of notation that uses the Einstein summation convention. 

We shall use the symbol ∗, which signifies that the whole range of possible variables are 

taken into account. It basically shortens the following expressions: 

𝑥∗ ≔ 𝑥0, 𝑥1, 𝑥2, 𝑥3, 𝑥4, … 
𝑓∗ ≔ 𝑓0, 𝑓1, 𝑓2, 𝑓3, 𝑓4, … 

The nonlinear system of equations (12), rewritten in the new system of notation, is: 

𝑓𝑖(𝑥∗) = 0 

Furthermore, the previous computation of the first derivative becomes: 

𝑔𝑖(𝑓∗(𝑥∗)) = 𝑥𝑖 

𝜕

𝜕𝑥𝑗
(𝑔𝑖(𝑓∗(𝑥∗))) =  

𝜕𝑓𝑘
𝜕𝑥𝑗

𝜕

𝜕𝑓𝑘
(𝑔𝑖(𝑓∗(𝑥∗))) =

𝜕𝑓𝑘
𝜕𝑥𝑗

𝜕𝑔𝑖
𝜕𝑓𝑘
|
𝑓∗(𝑥∗)

 

𝜕

𝜕𝑥𝑗
(𝑔𝑖(𝑓∗(𝑥∗))) =

𝜕

𝜕𝑥𝑗
(𝑥𝑖) = 𝛿𝑖𝑗  
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𝜕𝑓𝑘
𝜕𝑥𝑗

𝜕𝑔𝑖
𝜕𝑓𝑘
|
𝑓∗(𝑥∗)

= 𝛿𝑖𝑗 

𝜕𝑔𝑖
𝜕𝑓𝑘
|
𝑓∗(𝑥∗)

= (
𝜕𝑓𝑘
𝜕𝑥𝑗
)

−1

𝛿𝑖𝑗 = (
𝜕𝑓𝑘
𝜕𝑥𝑖
)
−1

= 𝐽𝑘𝑖
−1 

The term 𝛿𝑖𝑗 is the Kroneker delta symbol and 𝐽𝑘𝑖
−1 is the inverse of the Jacobian matrix. 

We can now compute the second derivative: 

𝜕

𝜕𝑥𝑝
(
𝜕𝑔𝑖
𝜕𝑓𝑘
|
𝑓∗(𝑥∗)

) =
𝜕𝑓𝑟
𝜕𝑥𝑝

𝜕

𝜕𝑓𝑟
(
𝜕𝑔𝑖
𝜕𝑓𝑘
|
𝑓∗(𝑥∗)

) =
𝜕𝑓𝑟
𝜕𝑥𝑝

𝜕2𝑔𝑖
𝜕𝑓𝑘𝜕𝑓𝑟

|
𝑓∗(𝑥∗)

 

𝜕

𝜕𝑥𝑝
(
𝜕𝑔𝑖
𝜕𝑓𝑘
|
𝑓∗(𝑥∗)

) =
𝜕

𝜕𝑥𝑝
(𝐽𝑘𝑖
−1) 

𝜕𝑓𝑟
𝜕𝑥𝑝

𝜕2𝑔𝑖
𝜕𝑓𝑘𝜕𝑓𝑟

|
𝑓∗(𝑥∗)

=
𝜕

𝜕𝑥𝑝
(𝐽𝑘𝑖
−1) 

𝜕2𝑔𝑖
𝜕𝑓𝑘𝜕𝑓𝑟

|
𝑓∗(𝑥∗)

= (
𝜕𝑓𝑟
𝜕𝑥𝑝

)

−1
𝜕

𝜕𝑥𝑝
(𝐽𝑘𝑖
−1) = 𝐽𝑟𝑝

−1
𝜕𝐽𝑘𝑖
−1

𝜕𝑥𝑝
 

The Taylor series around the point (𝑥∗
𝑛)  evaluated at the solution (𝑥∗̅) , before 

substitution is: 

𝑔𝑖(𝑓∗(𝑥∗̅)) = 𝑔𝑖(𝑓∗(𝑥∗
𝑛)) +

𝜕𝑔𝑖
𝜕𝑓𝑗
|
𝑓∗(𝑥∗)

(𝑓𝑗(𝑥∗̅) − 𝑓𝑗(𝑥∗
𝑛))

+
1

2

𝜕2𝑔𝑖
𝜕𝑓𝑗𝜕𝑓𝑘

|
𝑓∗(𝑥∗)

(𝑓𝑗(𝑥∗̅) − 𝑓𝑗(𝑥∗
𝑛)) (𝑓𝑘(𝑥∗̅) − 𝑓𝑘(𝑥∗

𝑛)) + ⋯ 

After substitution, and change of dummy indices, the previous Taylor series becomes 

the following iteration scheme: 

𝑥𝑖
𝑛+1 = 𝑥𝑖

𝑛 + 𝐽𝑗𝑖
−1 (−𝑓𝑗(𝑥∗

𝑛)) +
1

2
𝐽𝑘𝑝
−1
𝜕𝐽𝑗𝑖
−1

𝜕𝑥𝑝
(−𝑓𝑗(𝑥∗

𝑛)) (−𝑓𝑘(𝑥∗
𝑛)) + ⋯ (13) 

If we truncate (13) to just the first two terms, we obtain the second order Newton-

Raphson scheme for systems of nonlinear equations: 

𝑥𝑖
𝑛+1 = 𝑥𝑖

𝑛 − 𝐽𝑗𝑖
−1𝑓𝑗(𝑥∗

𝑛) (14) 

Truncating to the first three terms, we obtain the equivalent of Schröder’s third order 

method for multivariate systems: 

𝑥𝑖
𝑛+1 = 𝑥𝑖

𝑛 − 𝐽𝑗𝑖
−1𝑓𝑗(𝑥∗

𝑛) +
1

2
𝐽𝑘𝑝
−1
𝜕𝐽𝑗𝑖
−1

𝜕𝑥𝑝
𝑓𝑗(𝑥∗

𝑛)𝑓𝑘(𝑥∗
𝑛) (15) 

Further truncating the series to more terms, we obtain even higher orders of 

convergence. 
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5. CALCULATING THE ORDER OF CONVERGENCE CONCERNING THE 

MULTIDIMENSIONAL CASE 

Let the Taylor series be rewritten in compact form as: 

𝑥�̅� = 𝑥𝑖
𝑛 + 𝑎𝑖𝑗0 (𝑓𝑗0(𝑥∗̅) − 𝑓𝑗0(𝑥∗

𝑛)) + 𝑎𝑖𝑗0𝑗1 (𝑓𝑗0(𝑥∗̅) − 𝑓𝑗0(𝑥∗
𝑛)) (𝑓𝑗1(𝑥∗̅) − 𝑓𝑗1(𝑥∗

𝑛))

+ 𝑎𝑖𝑗0𝑗1𝑗2 (𝑓𝑗0(𝑥∗̅) − 𝑓𝑗0(𝑥∗
𝑛)) (𝑓𝑗1(𝑥∗̅) − 𝑓𝑗1(𝑥∗

𝑛)) (𝑓𝑗2(𝑥∗̅) − 𝑓𝑗2(𝑥∗
𝑛))

+ ⋯  

𝑥�̅� = 𝑥𝑖
𝑛 +∑𝑎𝑖𝑗0𝑗1…𝑗𝑝∏(𝑓𝑗𝑘(𝑥∗̅) − 𝑓𝑗𝑘(𝑥∗

𝑛))

𝑝

𝑘=0

∞

𝑝=0

 (16) 

𝑥𝑖
𝑛+1 = 𝑥𝑖

𝑛 +∑𝑎𝑖𝑗0𝑗1…𝑗𝑝∏(𝑓𝑗𝑘(𝑥∗̅) − 𝑓𝑗𝑘(𝑥∗
𝑛))

𝑝

𝑘=0

𝑚

𝑝=0

 (17) 

We define the error 𝛿∗ as being the difference between the solution 𝑥∗̅ and the current 

point of evaluation 𝑥∗ as: 

𝛿𝑖
𝑛 = 𝑥�̅� − 𝑥𝑖

𝑛

𝛿𝑖
𝑛+1 = 𝑥�̅� − 𝑥𝑖

𝑛+1  (18) 

Let 𝑥∗
𝑛 and 𝑥∗

𝑛+1 be two points close to the solution 𝑥∗̅. Multiplying and dividing the 

term in parenthesis in (16) and (17) by 𝑥�̅� − 𝑥𝑖
𝑛, we have: 

𝑥�̅� = 𝑥𝑖
𝑛 +∑𝑎𝑖𝑗0𝑗1…𝑗𝑝∏(

𝑓𝑗𝑘(𝑥∗̅) − 𝑓𝑗𝑘(𝑥∗
𝑛)

𝑥𝑗𝑘̅̅ ̅̅ − 𝑥𝑗𝑘
𝑛 )

𝑝

𝑘=0

(𝑥𝑗𝑘̅̅ ̅̅ − 𝑥𝑗𝑘
𝑛 )

∞

𝑝=0

 (19) 

𝑥𝑖
𝑛+1 = 𝑥𝑖

𝑛 +∑𝑎𝑖𝑗0𝑗1…𝑗𝑝∏(
𝑓𝑗𝑘(𝑥∗̅) − 𝑓𝑗𝑘(𝑥∗

𝑛)

𝑥𝑗𝑘̅̅ ̅̅ − 𝑥𝑗𝑘
𝑛 )

𝑝

𝑘=0

(𝑥𝑗𝑘̅̅ ̅̅ − 𝑥𝑗𝑘
𝑛 )

𝑚

𝑝=0

 (20) 

The term in parenthesis from (19) and (20) can be rewritten as: 

𝑓𝑗𝑘(𝑥∗̅) − 𝑓𝑗𝑘(𝑥∗
𝑛)

𝑥𝑗𝑘̅̅ ̅̅ − 𝑥𝑗𝑘
𝑛 ~

𝑓𝑗𝑘(𝑥∗̅) − (𝑓𝑗𝑘(𝑥∗̅) +
𝜕𝑓𝑗𝑘
𝜕𝑥𝑗𝑘

|
𝑓∗(𝑥∗)

(𝑥𝑗𝑘
𝑛 − 𝑥𝑗𝑘̅̅ ̅̅ ) + 𝑂 ((𝑥𝑗𝑘

𝑛 − 𝑥𝑗𝑘̅̅ ̅̅ )
2
))

𝑥𝑗𝑘̅̅ ̅̅ − 𝑥𝑗𝑘
𝑛

=
𝜕𝑓𝑗𝑘
𝜕𝑥𝑗𝑘

|
𝑓∗(𝑥∗)

+ 𝑂 ((𝑥𝑗𝑘̅̅ ̅̅ − 𝑥𝑗𝑘
𝑛 ))

 (21) 

Substituting the expression for the term in parenthesis (21) in (19) and (20), we have: 

𝑥�̅� = 𝑥𝑖
𝑛 +∑𝑎𝑖𝑗0𝑗1…𝑗𝑝

∞

𝑝=0

∏
𝜕𝑓𝑗𝑘
𝜕𝑥𝑗𝑘

|
𝑓∗(𝑥∗)

𝑝

𝑘=0

(𝑥𝑗𝑘̅̅ ̅̅ − 𝑥𝑗𝑘
𝑛 ) 
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𝑥𝑖
𝑛+1 = 𝑥𝑖

𝑛 +∑𝑎𝑖𝑗0𝑗1…𝑗𝑝

𝑚

𝑝=0

∏
𝜕𝑓𝑗𝑘
𝜕𝑥𝑗𝑘

|
𝑓∗(𝑥∗)

𝑝

𝑘=0

(𝑥𝑗𝑘̅̅ ̅̅ − 𝑥𝑗𝑘
𝑛 ) 

We arrive at the following expression for the difference between the solution 𝑥∗̅  and the 

next point of iteration 𝑥∗
𝑛+1: 

𝑥�̅� − 𝑥𝑖
𝑛+1 = 𝑎𝑖𝑗0𝑗1…𝑗𝑚+1 ∏

𝜕𝑓𝑗𝑘
𝜕𝑥𝑗𝑘

𝑚+1

𝑘=0

(𝑥𝑗𝑘̅̅ ̅̅ − 𝑥𝑗𝑘
𝑛 ) + ⋯ (22) 

Neglecting higher order terms and substituting the expressions for the errors (18) in 

(22), we have: 

𝛿𝑖
𝑛+1 = 𝑎𝑖𝑗0𝑗1…𝑗𝑚+1 ∏

𝜕𝑓𝑗𝑘
𝜕𝑥𝑗𝑘

𝑚+1

𝑘=0

𝛿𝑗𝑘
𝑛  (23) 

Expression (23) clearly states that the order of convergence of the iteration scheme 

truncated to 𝑚+ 2 terms is 𝑚 + 2, since 𝑘 ranges from 0 to 𝑚 + 1. 

The conditions for 𝑚 + 2 order of convergence are the following: 

- det (𝐽)|𝑥𝑖
𝑝 ≠ 0 for all 𝑥𝑖

𝑝
, 𝑝 = 1, 𝑛̅̅ ̅̅̅ 

- 𝑎𝑖𝑗0𝑗1…𝑗𝑚+1|𝑥𝑖
𝑝 is continuous for all 𝑥𝑖

𝑝
, 𝑝 = 1, 𝑛̅̅ ̅̅̅ 

- 𝑥𝑖
𝑝
 is sufficiently close to the root �̅� 

As for the one-dimensional case, the first condition allows for the construction of the 

iterative formulas, because we need to invert the Jacobian of the system to obtain the terms 

𝑎𝑖𝑗0𝑗1…𝑗𝑚 , see (13). The second condition ensures that the terms 𝑎𝑖𝑗0𝑗1…𝑗𝑞|𝑥𝑖
 for 𝑞 = 1,𝑚̅̅ ̅̅ ̅̅  are 

computable and bounded for each iteration at every point 𝑥𝑖
𝑝

 for 𝑝 = 1, 𝑛̅̅ ̅̅̅.  

The last condition ensures 𝑚 + 2 order of convergence, because, for this to be possible, 

the Taylor series approximation (23) has to be valid, which involves higher order terms to be 

negligible. 

6. TEST CASE 

The Newton-Raphson second order iterative scheme (14), the third order Halley’s method 

(15), and the fourth and fifth order methods, are tested in a computer algebra system called 

Maxima. The Newton-Raphson method is used as a comparison, while the third order 

extension of Halley’s method [3] to systems of nonlinear equations is tested. For simplicity a 

two by two nonlinear system is chosen, since the actual number of variables is not important. 

The system of nonlinear equations is: 

{
𝑓1(𝑥1, 𝑥2) = 𝑥1 − 𝑥2

𝑓2(𝑥1, 𝑥2) = 𝑥1
2 + 𝑥2

2 − 2
 

This system has the solutions (1,1) and (−1,−1). 
The numerical schemes used for solving the above nonlinear system of equations are: 

 2nd order: 

𝑥𝑖
𝑛+1 = 𝑥𝑖

𝑛 − 𝐽𝑘1𝑖
−1𝑓𝑘1(𝑥∗

𝑛) 
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 3rd order: 

𝑥𝑖
𝑛+1 = 𝑥𝑖

𝑛 − 𝐽𝑘1𝑖
−1𝑓𝑘1(𝑥∗

𝑛) +
1

2
𝐽𝑘3𝑘2
−1

𝜕𝐽𝑘1𝑖
−1

𝜕𝑥𝑘2
𝑓𝑘1(𝑥∗

𝑛)𝑓𝑘3(𝑥∗
𝑛) 

 4th order: 

𝑥𝑖
𝑛+1 = 𝑥𝑖

𝑛 − 𝐽𝑘1𝑖
−1𝑓𝑘1(𝑥∗

𝑛) +
1

2
𝐽𝑘3𝑘2
−1

𝜕𝐽𝑘1𝑖
−1

𝜕𝑥𝑘2
𝑓𝑘1(𝑥∗

𝑛)𝑓𝑘3(𝑥∗
𝑛)

−
1

3!
𝐽𝑘5𝑘4
−1

𝜕

𝜕𝑥𝑘4
(𝐽𝑘3𝑘2
−1

𝜕𝐽𝑘1𝑖
−1

𝜕𝑥𝑘2
)𝑓𝑘1(𝑥∗

𝑛)𝑓𝑘3(𝑥∗
𝑛)𝑓𝑘5(𝑥∗

𝑛) 

 5th order: 

𝑥𝑖
𝑛+1 = 𝑥𝑖

𝑛 − 𝐽𝑘1𝑖
−1𝑓𝑘1(𝑥∗

𝑛) +
1

2
𝐽𝑘3𝑘2
−1

𝜕𝐽𝑘1𝑖
−1

𝜕𝑥𝑘2
𝑓𝑘1(𝑥∗

𝑛)𝑓𝑘3(𝑥∗
𝑛)

−
1

3!
𝐽𝑘5𝑘4
−1

𝜕

𝜕𝑥𝑘4
(𝐽𝑘3𝑘2
−1

𝜕𝐽𝑘1𝑖
−1

𝜕𝑥𝑘2
)𝑓𝑘1(𝑥∗

𝑛)𝑓𝑘3(𝑥∗
𝑛)𝑓𝑘5(𝑥∗

𝑛)

+
1

4!
𝐽𝑘7𝑘6
−1

𝜕

𝜕𝑥𝑘6
(𝐽𝑘5𝑘4
−1

𝜕

𝜕𝑥𝑘4
(𝐽𝑘3𝑘2
−1

𝜕𝐽𝑘1𝑖
−1

𝜕𝑥𝑘2
))𝑓𝑘1(𝑥∗

𝑛)𝑓𝑘3(𝑥∗
𝑛)𝑓𝑘5(𝑥∗

𝑛)𝑓𝑘7(𝑥∗
𝑛) 

Each of the following tables shows, for each iteration of its formula, the solution to 50 

significant digits and the difference between successive solutions.  

Table 1 – Newton Raphson second order multivariate method 

Iteration 

number 

Solution (𝒙𝟏 = 𝒙𝟐) Difference between 

solutions (𝛅 = 𝒙𝐢+𝟏 − 𝒙𝒊) 
0 4e0 - 

1 2.125e0 1.875b0 

2 1.29779411764705882352941176470588235294117e0 8.272058823e-1 

3 1.03416618063656057323779370104982502916180e0 2.636279370e-1 

4 1.00056438119963058597486609415384203374824e0 3.360179943e-2 

5 1.00000015917323486698635849032681600137216e0 5.642220263e-4 

6 1.00000000000001266805733259473578107074834e0 1.591732221e-7 

7 1.00000000000000000000000000008023983829095e0 1.266805733e-14 

8 1.00000000000000000000000000000000000000000e0 8.023983829e-29 

9 1.00000000000000000000000000000000000000000e0 3.219215824e-57 

10 1.00000000000000000000000000000000000000000e0 5.181675262e-114 

11 1.00000000000000000000000000000000000000000e0 1.342487926e-227 

12 1.00000000000000000000000000000000000000000e0 9.011369159e-455 

13 1.00000000000000000000000000000000000000000e0 4.060238706e-909 

Table 2 – Halley’s third order multivariate method 

Iteration 

number 

Solution (𝒙𝟏 = 𝒙𝟐) Difference between 

solutions (𝛅 = 𝒙𝐢+𝟏 − 𝒙𝒊) 
0 4e0 - 

1 1.685546875e0 2.314453125e0 

2 1.05093669710446668578038273953086034451734e0 6.346101778e-1 

3 1.00005910371154170756114074221442391204039e0 5.087759339e-2 

4 1.00000000000010321825550347214780221994316e0 5.910371143e-5 

5 1.00000000000000000000000000000000000000054e0 1.032182555e-13 

6 1.00000000000000000000000000000000000000000e0 5.498440738e-40 
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7 1.00000000000000000000000000000000000000000e0 8.311676855e-119 

8 1.00000000000000000000000000000000000000000e0 2.871018262e-355 

Table 3 – Fourth order multivariate method 

Iteration 
number 

Solution (𝒙𝟏 = 𝒙𝟐) Difference between 
solutions (𝛅 = 𝒙𝐢+𝟏 − 𝒙𝒊) 

0 4e0 - 

1 1.47955322265625e0 2.520446777e0 

2 1.00832805021999203253155486858343263965267e0 4.712251724e-1 

3 1.00000000291805361538124559234554057497560e0 8.328047301e-3 

4 1.00000000000000000000000000000000004531615e0 2.918053615e-9 

5 1.00000000000000000000000000000000000000000e0 4.531615792e-35 

6 1.00000000000000000000000000000000000000000e0 2.635677954e-138 

7 1.00000000000000000000000000000000000000000e0 3.016125394e-551 

Table 4 – Fifth order multivariate method 

Iteration 

number 

Solution (𝒙𝟏 = 𝒙𝟐) Difference between 

solutions (𝛅 = 𝒙𝐢+𝟏 − 𝒙𝒊) 
0 4e0 - 

1 1.358853816986083984375e0 2.641146183e0 

2 1.00116069568552031665772086358127934091978e0 3.576931213e-1 

3 1.00000000000000183265685289786233037850973e0 1.160695685e-3 

4 1.00000000000000000000000000000000004531615e0 1.832656852e-15 

5 1.00000000000000000000000000000000000000000e0 1.808896959e-74 

6 1.00000000000000000000000000000000000000000e0 1.694639002e-369 

From Table 1 and Table 2 it can be concluded that the number of correct digits between 

iterations, when the point is close to the solution, doubles, while from Table 3 and 4, the 

number of exact digits triples with each iteration, and so on. 

This confirms that the iteration formulas built are of second, third, fourth and fifth order 

of convergence in the multivariable case and that formula (23) from chapter 5, which 

provides the order of convergence, is indeed correct. 

The code used for this test case is listed below: 
 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

kill(all)$ 

numer:false$ 

/*==========================================DEFINITIONS*/ 

f:[ 

    x[1]+2*x[2]+x[3], 

    2*x[1]-x[2]-x[3], 

    x[1]^2+x[2]^2+x[3]^2-3 

]$ 

n:length(f)$ 

j:zeromatrix(n,n)$ 

for p0:1 thru n do 

for p1:1 thru n do 

    j[p0,p1]:diff(f[p1],x[p0])$ 

j:j^^-1$ 

id:ident(n)$ 

/*==========================================TERMS*/ 

nb_term:0$ 

 

/*2nd order*/ 

nb_term:nb_term+1$      

for i:1 thru n do  

    t[nb_term,i]:sum(sum(  

        j[p1,p0]*id[i,p0]*(-f[p1])  

        ,p1,1,n),p0,1,n)$ 
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25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

63 

64 

65 

66 

67 

68 

69 

70 

71 

72 

73 

74 

75 

76 

77 

78 

 

/*3rd order*/ 

nb_term:nb_term+1$      

for i:1 thru n do  

    t[nb_term,i]:sum(sum(sum(sum(j[p3,p2]*diff(j[p1,p0]*id[i,p0] 

    ,x[p2])*(-f[p1])*(-f[p3])/2,p3,1,n),p2,1,n),p1,1,n),p0,1,n)$ 

 

/*4th order*/ 

nb_term:nb_term+1$      

for i:1 thru n do  

    t[nb_term,i]:sum(sum(sum(sum(sum(sum(j[p5,p4]*diff(j[p3,p2]* 

    diff(j[p1,p0]*id[i,p0],x[p2]),x[p4])*(-f[p1])*(-f[p3])*(-f[p 

    5])/3!,p5,1,n),p4,1,n),p3,1,n),p2,1,n),p1,1,n),p0,1,n)$ 

 

/*5th order*/ 

nb_term:nb_term+1$      

for i:1 thru n do  

    t[nb_term,i]:sum(sum(sum(sum(sum(sum(sum(sum(j[p7,p6]*diff(j 

    [p5,p4]*diff(j[p3,p2]*diff(j[p1,p0]*id[i,p0],x[p2]),x[p4]),x 

    [p6])*(-f[p1])*(-f[p3])*(-f[p5])*(-f[p7])/4!,p7,1,n),p6,1,n) 

    ,p5,1,n),p4,1,n),p3,1,n),p2,1,n),p1,1,n),p0,1,n)$ 

 

/*==========================================ITERATE*/ 

numer:true$ 

fpprec:1000$ 

nb_iter:10$ 

for i:1 thru n do( 

    x0[i]:0, 

    x1[i]:0, 

    x2[i]:0 

)$ 

x[1]:2.1$ 

x[2]:2.2$ 

x[3]:-1$ 

listarray(x); 

for p0:1 thru nb_iter do( 

    for i:1 thru n do( 

        x_temp[i]:bfloat(x[i]), 

        for p1:1 thru nb_term do 

            x_temp[i]:bfloat(x_temp[i]+ev(t[p1,i])) 

    ), 

    for i:1 thru n do x[i]:bfloat(x_temp[i]), 

    disp(""), 

    display(p0), 

    for i:1 thru n do( 

        x0[i]:x1[i], 

        x1[i]:x2[i], 

        x2[i]:x[i], 

        d1:bfloat(abs(x1[i]-x0[i])), 

        d2:bfloat(abs(x2[i]-x1[i])), 

        display(x[i]), 

        disp(d2) 

    ) 

)$ 
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7. A BRIEF EXPLORATION OF THE STATE OF ART 

In the one-dimensional case, there are extensive studies, including methods of various orders 

and proofs of their order convergence. Among these methods there are the second order 

Newton-Raphson method, the third order Halley’s method, [4] and [6], the extensive work 

done by Schröder, [2] and [3], to encapsulate the various methods in two families of iterative 

schemes, Householder’s method [1], and many others, [8],[5] and [7]. Regarding the 

multidimensional case, the most common method is the Newton-Raphson method, and other 

of its higher order variations. It is known that the order of convergence can be proved by 

considering the inverse function. To the best of our knowledge, we have not yet found papers 

where the idea of using multiple inverse functions, to derive and prove iterative schemes of 

order higher than two for systems of nonlinear equations, has been explicitly stated. 

8. CONCLUSIONS 

The detailed derivation of the iteration schemes for systems of nonlinear equations provides 

a simple way of quickly constructing such schemes when a higher order of convergence is 

needed.  The idea of using multiple inverse functions explains some of the general structure 

of iterative numerical schemes, and also lends more insight to the user over their properties. 

The generalised proof, presented in chapters three and five, offers a quick way to check the 

order of convergence of any iterative numerical scheme used for solving nonlinear systems 

of equations. 

The original contributions of the author are: 

- A quick methodology to construct iterative numerical schemes of any order for 

solving nonlinear systems of equations. 

- Formulas for calculating the order of convergence of the iterative numerical schemes 

constructed using the methodology presented in this paper. 

- Insights regarding the form and application of the iterative schemes. 
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