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Abstract: This paper presents a methodology for constructing iterative schemes of any order of
convergence for solving nonlinear systems of equations. It also provides formulas for the order of
convergence of any iterative schemes constructed using the method proposed in this paper. A test case
is conducted numerically for the second and third order of convergence using a computer algebra
system called Maxima. The code used is listed at the end of the test case.
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1. INTRODUCTION

The problem of solving a nonlinear system of equations has applications in many fields of
study. In the field of structural mechanics, the fundamental conservation laws are based on
partial differential equations that are usually nonlinear. When converted into numerical
schemes for solving complex problems, they retain their nonlinearity. In order to make this
problem tractable, either of the following two techniques are employed: linearizing the
numerical scheme for finding a solution using linear algebra; and using an iterative
numerical scheme that directly solves the nonlinear system of equations.

There are three important practical properties that apply to numerical methods used in
the latter technique.

The first property, the order of convergence, is of importance because it represents how
fast the number of correct digits of the current solution grows. For example, the most
commonly used iterative method is the Newton-Raphson method. It has a convergence of
order two. That means that the solution’s number of correct digits doubles each iteration.
Another iterative method is Halley’s method. It has a convergence of order three, which
means that the number of exact digits triples with each iteration, and so on.

The second property is the iteration computational cost, or more precisely, how much
computer time does it take to compute one iteration. The advantage of having a higher
convergence rate is that the number of exact digits grows much faster. The disadvantage is
that it takes a higher amount of computer time to compute each iteration. This problem can
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be solved in various ways, from rewriting the numerical scheme in discrete form to using
mathematical manipulation to reduce the amount of calculations needed.

Lastly, the third property is the dimensionality of the numerical method: whether a
single equation of one variable is solved, or a system of equations of multiple variables is
solved. This property simply distinguishes the iterative methods by their ability to solve for
one variable or for multiple variables.

Whenever an iterative numerical method is created, two issues must be clarified. The
iteration formula, convergence rate and computational cost must be mentioned, and, if
possible, a proof of the convergence rate must be given. So far, many iterative methods have
been created, many of which have a proof for convergence. Unfortunately, to the best of our
knowledge, there is no unifying theory underlying the domain of numerical iterative schemes
for solving nonlinear systems of equations. This paper will attempt to provide such a theory
with which iterative schemes of any order of convergence can be constructed. It will also
present formulas for calculating order of convergence of these numerical methods. More
details on the state of the art on this subject are presented in chapter 7.

2. ITERATIVE METHODS CONCERNING THE ONE-DIMENSIONAL
CASE

The technique presented in this paper, for creating iterative schemes, focuses mainly on
systems of nonlinear equations, but, for the purpose of continuity, we shall start by
discussing the one-dimensional case. This reduces to the classical single variable nonlinear
equation of the form:

fx)=0
The main idea behind obtaining the solution x is to find the inverse f~*(x) and evaluate
it at the point x = 0:
x=f71(0)
For the purpose of readability, the inverse function will be renamed as:

gO):=f71(0)
g(fe)) =1 (f(0) =x 1)

The steps to assembling the iterative formulas are:
1. Write the Taylor series of the inverse function in f(x) and,
2. Transform all the derivatives into functions of x.
We start by expanding the function g into its Taylor series in f(x), around a point f(x,):

(f@) —Zf(xo))z .

d?g

d
1)+ g

CAVIEN Fxo)

The next step is to evaluate the derivatives of g as functions of x. This is done by
differentiating with respect to x equation (1). The following calculations are for the first
derivative of g:

9(f () = g(f(x0)) +

dg
xdf

d df| d df
(00 @) = 3| @) =3 -
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(@) =m=1

1
_F
flx) ==
dxx

For derivatives of higher order, we repeat the same procedure, differentiating each time
the previous expression. We will do one more for the second derivative, as an example:

dg

T )

d<dg >_df d<dg >_df d%g
dx\dfl;,) ~ dxledf\dfl, )~ dxl df?|,
azf
d <dg >_ d 1) dx?l,
dx\dfl,,) dx\df| |~ (df )2
dx X dx .
d%f
d?g dx?
T TR @
e <_f )
dx X

We are now ready for the complete substitution. The resulting Taylor series using
equations (1), (2) and (3) is:

dzf
1 dx?|, - ?
X =xp+ T(f(x) - f(xo)) - * 03 (f(x) Zf(xO)) + ... (4)
a Xo <% )

Writing (4) as a fixed-point iteration, around the solution X, and noting that f(x) = 0,

we have:
d2f 2
1 dx?|, %) —
X = X0+ (f@ = f(x0)) = - °3(f(x) Zf(x")) + e (5)
@ (#,)
Xo dx Xo
d2f 2
1 dx? x - n
s = g (f ) o (TED) ©)
i (#,)
Xn X Xn

If we had the complete infinite series, we would have got the exact solution x directly
by evaluating expression (5) just once. Due to the fact that we cannot, in practice, calculate
all the terms of the Taylor series expansion of the inverse function, we will be forced to
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truncate it after a finite number of terms and use it iteratively as a fixed-point method, like
(6), to converge to a solution.
If we truncate the series after the first term we obtain the second order Newton-Raphson
method:
f ()
Xn+1 = Xp — df

dx

Xn

Furthermore, if we truncate it after the third term we obtain a variant of Halley’s method
[4], which is a third order method:

d2f
o S T @,
n+l — n df - 3
)

Xn Xxn

If we continue to truncate the series after more and more terms, iteration formulas of
higher and higher order will be obtained. This problem has already been solved extensively
in the one-dimensional case by Schréder [2], who arrives at the same generalized iteration
schemes, by using a different derivation.

3. CALCULATING THE ORDER OF CONVERGENCE IN THE ONE-
DIMENSIONAL CASE

Let x be a solution to f(x) = 0 and x,, a point close to x. Let us rewrite the previous Taylor
series (5) in compact form:

%=+ ) a(f) - f) ™
i=1
d'g
a; = dfl f(xn)

i!

The terms a; are the derivatives of the inverse function of the i*" order, which can all be
evaluated to dependent only on the variable x using the procedure described in the previous
chapter.

Since we deal with a truncated version of the above series, we will write for x,,,, the
first k terms of the summation:

k
Xner = %+ ) (f) = ()’ ®)
i=1

If we subtract (8) from (7), we have:

X = Xny1 = Gepr (F(X) — f(xn))k+1 4.

We divide and multiply by (¥ — x,,)* to obtain:
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211 Constructing numerical iterative schemes for solving nonlinear systems of equations

f®) = f(xn)

X — Xp

k+1
) (% — )+ 9)

X = Xp41 = Qg1 <

Since the point x,, is close to x, the term in parenthesis can be further simplified:

f(f) _ f(x ) f(f) - (f(f) + %L (xn — f) + 0((xn _ f)2)>
o %= (10
d
= éLz +0((x — xp))

We define the error § as being the difference between the solution i and the current
point of evaluation x:

Sp=%X—2x,
On+1 =X — Xny1
Substituting the expressions above in (9) and (10), we have:

On+1 = Qg1 (a + 0(5n)> ST+ = agy (a i
X X

After dropping the higher order terms, it can be clearly seen from (11),/ that a scheme,
that uses k terms, has an order of convergence of k + 1:

df k+1
N ) (1)
dx
The conditions for k + 1 order of convergence are the following:
- Yl 2oforally,i=T1n
dxly;
- @gq1ly, is continuous for all x;, i = 1,n
- x; is sufficiently close to the root x
The first condition allows for the construction of the iterative formulas, because we need
to divide by the first derivative to obtain the terms a;, see (2) and (3).

The second condition ensures that the terms af|x- for j = 1,k are computable and

k+1
) o+ o(sk?)

bounded for each iteration at every point x; for i = 1,n. The last condition ensures k + 1
order of convergence, because, for this to be possible, the Taylor series approximation (11)
has to be valid, which involves higher order terms to be negligible.

4. ITERATIVE METHODS CONCERNING THE MULTIDIMENSIONAL
CASE

In order to construct iteration schemes in the case of systems of nonlinear equations we have
to define the notion of the inverse of a multivariate function. Since the purpose of an inverse
function, when applied to the function itself, is to output the independent variable, the logical
extension to multivariate functions is to have as many inverse functions as there are
independent variables. Before providing the technique for the general case, we shall first
start with a smaller example of a system of nonlinear equations in two variables x, and x;:
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fo(x0,x1) =0
f1(x0,%1) =0

Since we have two variables, we now need two inverse functions g, and g,, with the
following properties:

(12)

go(fo(xo'x1)'f1(x0:x1)) = Xp
91(f0(x0'x1)'f1(x0:x1)) =X1

We follow the same procedure as before and write the Taylor series of the two inverse
functions g, and g, around a point (xg, x;1):

9o(fo (o, %), f1 (%0, %7))

dg o
= go(foCxo, x1), f1(x0, x1)) + F (foGo, %) = fo(xo, x1))
p 07 o (x0,%1),f1 (x0.%1)
g _
t o5 (.0, %) — fi(x0,21))
17 fo (xo,%1),f1 (x0,%¢1) )
6290 (f()(x_()lx_l) _fO(XOJxl))
2
a];ﬂ fo(x0,x1),f1(x0,x1) 2
0°g _ _
af, 6; (fo(XOx x1) — fo(xo, x1))(f1(xo, X)) — fi (xo,x1))
0% £ (xg,x1). 11 (0. %1) )
9%g, (f1 (%o, %1) — f1(x0, x1))
afz 2 + see
1 g Geo ) fi (roxy)
91(fo(x0, %), fr (%o, %7))
091 .
= g1(fo(xo,x1);f1 (%o, xl)) + F (fo (X0, %1) — fO(xO’xl))
3 0% £ (x0.1).f1 (x0.%1)
g _
+ O—f1| (fl (X0, %1) — f1(xo,x1))
17 fo (x0.x1),f1 (x0,%1) "
0%9, (fo(%; X)) — fo(xo,x1))
2
aéo fo(xo,x1),f1(x0,%1) 2
a°g _ _
+ E)7 6} (fo(xo, x1) — fo(xo, x1))(f1 (X0, %1) — f1(xq, x1))
0PI £ (xg. 1), £1 (0. %1) )
6291 (f1(x_o:x_1)_f1(xo;x1)) .
off 2

fo(xo,x1),f1(x0,%1)

The next step is the computation of the derivatives of g, and g, as functions of x, and x;.
As an example, we will carry out the computations only for the first and second derivatives:

9 dfo 39 df, 0g
stz on) = S50 ot

0 0 2S00 fo(xg,x1).f1 (x0,x1) 0 BJ11 £ (x0,20), f1 (x0,%1)
9 9f0 090 df1 090
s (90 foCro ) fiGr ) = G258 o0

Jo(x0,x1),f1(x0,x1) fo(xo,x1),f1(x0,%x1)
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6 0fo 091 0f1 04,
91(fo(x0, x1), f1 (0, %1)
( 1(fo(xo, %1), f1(x0, %1 )) 0xy 0fp foCo ) fu (Xorxs) dxo 0f; FoCox ) fu (roxs)
? 9f0 091 0f1 agl
7, (9 (oGom) Ao x)) = 525 toxof,
! 1 5J07 o (eo,x0) f1 (0, %1) 1YY f (x0,% 1), f1 (X 0,%1)

a
(90(foxo. 200, fio. 1)) = 5= Gro) = 1
(90 (oo, 1), fo (60, 01)) ) = —(xo) =0
(gl(fO(XOJxl)!fl(xo'xl))) = —(Xl) =0

(xl) =1

Q Q Q
Rof|of|oF|e
< [ =)

(91 (fo (%0, %1), f1(x0, Xl))

Written as a matrix equation, we have:

990 290\ [ 0f
afy 0fy dxo 0xq =(1 0)
091 091 fy 9fq 0 1
fy 0f) \9x, 0x;

Therefore, the resulting derivatives are:

990 990 9fo 9fo
fo 0fr | _ 41 | oxp 0xy
R I BT A
dfo 0fi Oxo  0xy

The matrix J is the Jacobian of the system. In order to compute the second derivatives,
we must employ a compact system of notation that uses the Einstein summation convention.
We shall use the symbol *, which signifies that the whole range of possible variables are
taken into account. It basically shortens the following expressions:

Xy = xo,xl,xz,X3,X4_,
fo = fo fufor f3 far o

The nonlinear system of equations (12), rewritten in the new system of notation, is:

filx,) =0

Furthermore, the previous computation of the first derivative becomes:

gi(f (x*)) =X
0/ 99:

(gl(f (x*))) a af ('g‘(f (x*))) ax] afk

fi(x)

d
a—%(gi(ﬂ(x*))) =5 D=8,
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fy 0gl|
9x; 0fy

=5y

fe(x)
99, N ARG A
37 =\ 3. 5ij— 3) =
Fiel g, Xj xi

The term &;; is the Kroneker delta symbol and Ji;* is the inverse of the Jacobian matrix.
We can now compute the second derivative:

0 agl
6xp afk

>: afri<% ): of, 0%g;
rey) 0 0fr\Ofily () 0%y 0fiOfr

d (dg 9
F) <a l| ):a_(]’“'l)
%p \Ofrclf, () Xp
af, 0%g; _ i(]—'l)
0xp 0fi0fr, () 0%y ki

afr) ( 1 a]kl
= Jk i ) ]r
£.Ge) < 0xp * ’

0xp

fi(xs)

0 Zgi
0fx0fr

The Taylor series around the point (xI') evaluated at the solution (x,), before
substitution is:

gi(f.(x.)) = gi(fi(x)) +

1 d%g;
Zaf]c’)fk

(& - fG)
fi(xs)
(@) = HGD) (fl®) = file) + -
fi(xs)

af;

After substitution, and change of dummy indices, the previous Taylor series becomes
the following iteration scheme:

A = x4 g (—f,-(xl‘))+ SJiep a’” (=£GM) (= fule) + - (13)

If we truncate (13) to just the first two terms, we obtain the second order Newton-
Raphson scheme for systems of nonlinear equations:
= = TG (14)

Truncating to the first three terms, we obtain the equivalent of Schroder’s third order
method for multivariate systems:

X

]]1

f] () fie (x) (15)

xn+1_x _jjzlf)(xll)‘l' ]k_p

Further truncating the series to more terms, we obtain even higher orders of
convergence.
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215 Constructing numerical iterative schemes for solving nonlinear systems of equations

5. CALCULATING THE ORDER OF CONVERGENCE CONCERNING THE
MULTIDIMENSIONAL CASE

Let the Taylor series be rewritten in compact form as:
%, = '+ ag, (£, 8 = i, D) + iy, (6,68 = £, M) (i, ) = £, )
+ gy (Fo®) = f,01) (£, @) = £,61) () = £,61)

+ e
. 14
x, = Xln + Z Rijoj1ip (flk (x.) — fjk (xf)) (19
= k=0
m p
X = xit + 2 Qijo ju-wp l_[ (flk(f*) - f]k(xf)) 7
= k=0

We define the error §, as being the difference between the solution x, and the current
point of evaluation x, as:
5 = % — ]

6n+1 n+1

(18)
=X, — X|

Let x™ and x*** be two points close to the solution x,. Multiplying and dividing the
term in parenthesis in (16) and (17) by x, — x*, we have:

=x'+ Z Qi jo jy e 1_[( ! X — ;} > X, — x]k (19)
Tl+ fk(x*) fk(x
1_X +2al]0]1 Jpl_[<1 Wk JJ )( ]k ]k (20)

The term in parenthe3|s from (19) and (20) can be rewritten as:

Ofjs

fir (%) = f]k(x*)-l_a N )(]k x]k)+0(( Xj sz)

£ () — f]k(x")

21
X = Xf X = X, (21)
af.
~ Tl o(( - )
ik fe(xy)

Substituting the expression for the term in parenthesis (21) in (19) and (20), we have:

[oe]

v =4 affk
=X Qijojs .. ]p

p=0 MGl x.)

Tk_xjrllc)
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xMl=x"+ ) q 6ka
ijoj1- ]p

We arrive at the following expression for the difference between the solution X, and the
next point of iteration x™*1:

m+1

of;
= n+1 _ Jk (— n
Xy — X anh Jm+1 1_[ Jk xjk) + - (22)

Neglecting higher order terms and substituting the expressions for the errors (18) in
(22), we have:

m+1 af
n+l _ Jk on
6i = Qijoj1tmer Ax;: 61'1(, (23)
— Tk
k=0

Expression (23) clearly states that the order of convergence of the iteration scheme
truncated to m + 2 terms is m + 2, since k ranges from 0 to m + 1.
The conditions for m + 2 order of convergence are the following:
- det(/)lxlp #0forallx’,p=Tn

- ; P
aifoh---fmﬂlxg’ is continuous for all x, p = T,n

- x! is sufficiently close to the root
As for the one-dimensional case, the first condition allows for the construction of the
iterative formulas, because we need to invert the Jacobian of the system to obtain the terms

Qijojy..jm» S€€ (13). The second condition ensures that the terms a; ;. .. Jal forg =1, mare

computable and bounded for each iteration at every point x!’ forp = 1,n.

The last condition ensures m + 2 order of convergence, because, for this to be possible,
the Taylor series approximation (23) has to be valid, which involves higher order terms to be
negligible.

6. TEST CASE

The Newton-Raphson second order iterative scheme (14), the third order Halley’s method

(15), and the fourth and fifth order methods, are tested in a computer algebra system called

Maxima. The Newton-Raphson method is used as a comparison, while the third order

extension of Halley’s method [3] to systems of nonlinear equations is tested. For simplicity a

two by two nonlinear system is chosen, since the actual number of variables is not important.
The system of nonlinear equations is:

{ f1(x1,x2) = x1 — %,
fo(x1,%5) = x1% + x5 — 2

This system has the solutions (1,1) and (—1, —1).
The numerical schemes used for solving the above nonlinear system of equations are:
e 2order:

X =1l = Jihi fi, (1)
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e 3Yorder:

o 4Morder:

0r,i
X = xl = T fi, () + ]k3k2 9, :
n+1l _ _ ( n)+ ]kll
X" =« lklsz1 X ]k3k2 9%,
]klli

d
]k5k4 %, ]k3k2 %,

e 5"order:

Xt = —]klszl(xf) + ]k3

Each of the following tables shows, for each iteration of its formula, the solution to 50
significant digits and the difference between successive solutions.

Iteration
number

O©CoOoO~NOOUID WN O

[l el
wWN RO

]kll

ks 9%, fk1 (xil)fk3 (x)

1
]kli

fkl( ) fies ()

fk1 (xf)fk3 ()

>fk1 (xf)fk3 (xf)fks(xf)

]k5k4 e (]k3k2 %, >fk1(xf)fk3(xf)fk5(xf)

G %
]k7k6 e ]k5k4 o, (]k3k2 %, =

) fiey ) freg (1) fies, () fie, (3

Table 1 — Newton Raphson second order multivariate method

Solution (x; = x3)

4e0

2.125e0
1.29779411764705882352941176470588235294117€0
1.03416618063656057323779370104982502916180e0
1.00056438119963058597486609415384203374824€0
1.00000015917323486698635849032681600137216€0
1.00000000000001266805733259473578107074834€0
1.00000000000000000000000000008023983829095€0
1.00000000000000000000000000000000000000000€0
1.00000000000000000000000000000000000000000€0
1.00000000000000000000000000000000000000000€0
1.00000000000000000000000000000000000000000€0
1.00000000000000000000000000000000000000000€0
1.00000000000000000000000000000000000000000e0

Difference between

solutions (8 = xj,1 — x;)

1.875b0
8.272058823e-1
2.636279370e-1
3.360179943e-2
5.642220263e-4
1.591732221e-7
1.266805733e-14
8.023983829¢e-29
3.219215824e-57
5.181675262e-114
1.342487926e-227
9.011369159¢e-455
4.060238706e-909

Iteration
number

OOk, WNE O

Table 2 — Halley’s third order multivariate method

Solution (x; = x3)

4e0

1.685546875e0
1.05093669710446668578038273953086034451734€0
1.00005910371154170756114074221442391204039e0
1.00000000000010321825550347214780221994316€0
1.00000000000000000000000000000000000000054€0
1.00000000000000000000000000000000000000000e0

Difference between

solutions (8 = xj.q1 — X;)

2.314453125e0
6.346101778e-1
5.087759339¢-2
5.910371143e-5
1.032182555e-13
5.498440738e-40
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7 1.00000000000000000000000000000000000000000€0
8 1.00000000000000000000000000000000000000000€0

8.311676855e-119
2.871018262e-355

Table 3 — Fourth order multivariate method

Iteration Solution (x; = x5)

Difference between

number

4e0

1.47955322265625e0
1.00832805021999203253155486858343263965267€0
1.00000000291805361538124559234554057497560e0
1.00000000000000000000000000000000004531615€0
1.00000000000000000000000000000000000000000e0
1.00000000000000000000000000000000000000000e0
1.00000000000000000000000000000000000000000e0

~NOoO ok wWwN O

solutions (8 = x;,; — X;)

2.520446777e0
4.712251724e-1
8.328047301e-3
2.918053615e-9
4.531615792e-35
2.635677954e-138
3.016125394e-551

Table 4 — Fifth order multivariate method

Iteration  Solution (x; = x3)

number

Difference between
solutions (8 = Xj+1 — x,-)

4e0

1.358853816986083984375e0
1.00116069568552031665772086358127934091978€0
1.00000000000000183265685289786233037850973¢0
1.00000000000000000000000000000000004531615€0
1.00000000000000000000000000000000000000000€0
1.00000000000000000000000000000000000000000€0

o wWwNE O

2.641146183e0
3.576931213e-1
1.160695685e-3
1.832656852e-15
1.808896959%¢-74
1.694639002e-369

From Table 1 and Table 2 it can be concluded that the number of correct digits between
iterations, when the point is close to the solution, doubles, while from Table 3 and 4, the

number of exact digits triples with each iteration, and so on.

This confirms that the iteration formulas built are of second, third, fourth and fifth order
of convergence in the multivariable case and that formula (23) from chapter 5, which

provides the order of convergence, is indeed correct.
The code used for this test case is listed below:

kill(all)$s
numer:false$

/* DEFINITIONS*/

1
2
3
4 £

5 x[1]+2*x[2]+x[3],

6 2*x[1]1-x[2]-x[3],

7 x[1]"2+x[2]"2+x[3]"2-3

8 18

9 n:length(f)s$

10 j:zeromatrix (n,n)$

11  for p0:1 thru n do

12 for pl:1 thru n do

13 J[p0,pl]:diff (£[pl],x[p0])$
14 j:97~"-1$

15 id:ident (n)$

16 /* TERMS*/
17 nb term:0$
18

19 /*2nd order*/
20 nb _term:nb term+l1$
21 for i:1 thru n do

22 t[nb_term,i] :sum(sum/(
23 jlpl,p0l*id[i,p0]* (-£[pl])
24 ,pl,1,n),p0,1,n)$
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219 Constructing numerical iterative schemes for solving nonlinear systems of equations

25

26 /*3rd order*/

27 nb _term:nb term+1$
28 for i:1 thru n do

29 t[nb term,i]:sum(sum(sum(sum(j[p3,p2]*diff(jlpl,p0]*id[i,p0]
30 yx[p2])*(-flpl]) *(-£[p31)/2,p3,1,n),p2,1,n),pl,1,n),p0,1,n)$
31

32 /*4th order*/
33 nb_term:nb term+l$
34 for i:1 thru n do

35 t[nb term,i]:sum(sum(sum(sum(sum(sum(j[p5,p4]*diff (j[p3,p2]*
36 diff (j[pl,p0]*id[i,p0],x[p2]),x[pd])*(-£[pl])*(-£[p3])* (-f[p
37 51)/3!,p5,1,n),p4,1,n),p3,1,n),p2,1,n),p1,1,n),p0,1,n)$

38

39 /*5th order*/
40 nb term:nb term+l$
41 for i:1 thru n do

42 t[nb term,i]:sum(sum(sum(sum(sum(sum(sum(sum(j[p7,p6]*diff (j
43 [p5,p4]*diff (j[p3,p2]*diff (j[pl,p0]*id[i,p0],x[p2]),x[pd]), x
44 [p6])* (-f[pl])*(-f[p3]) *(-f[p5])*(-f[p7])/4!,p7,1,n),p6,1,n)
45 ,p5,1,n),p4,1,n),p3,1,n),p2,1,n),pl,1,n),p0,1,n)$

46

47 /* ITERATE*/

48 numer:true$
49  fpprec:1000$
50 nb iter:10$
51 for i:1 thru n do(

52 x0[1]:0,
53 x1[1i]:0,
54 x2[1]:0
55 ) $

56 x[1]1:2.18

57 x[2]:2.2%

58 x[3]:-1$%

59 listarray(x);

60 for p0:1 thru nb_iter do(

6l for 1i:1 thru n do(

62 x _temp[i]:bfloat(x[1]),

63 for pl:1 thru nb term do

64 x temp[i]:bfloat(x temp[i]+ev(t[pl,i]))
65 )

66 for i:1 thru n do x[i]:bfloat(x temp[i]),
67 disp(""),

68 display (p0),

69 for i:1 thru n do(

70 x0[1]:x1[i],

71 x1[i]:x2[1i],

72 x2[1]:x[1i],

73 dl:bfloat (abs(x1[1]1-x0[1])),

74 d2:bfloat (abs (x2[1]-x1[1i])),

75 display(x[1i]),

76 disp(d2)

77 )

78 )S

INCAS BULLETIN, Volume 10, Issue 2/ 2018



Stefan HOTHAZIE, Camelia MUNTEANU, Mihaela NASTASE 220

7. A BRIEF EXPLORATION OF THE STATE OF ART

In the one-dimensional case, there are extensive studies, including methods of various orders
and proofs of their order convergence. Among these methods there are the second order
Newton-Raphson method, the third order Halley’s method, [4] and [6], the extensive work
done by Schroder, [2] and [3], to encapsulate the various methods in two families of iterative
schemes, Householder’s method [1], and many others, [8],[5] and [7]. Regarding the
multidimensional case, the most common method is the Newton-Raphson method, and other
of its higher order variations. It is known that the order of convergence can be proved by
considering the inverse function. To the best of our knowledge, we have not yet found papers
where the idea of using multiple inverse functions, to derive and prove iterative schemes of
order higher than two for systems of nonlinear equations, has been explicitly stated.

8. CONCLUSIONS

The detailed derivation of the iteration schemes for systems of nonlinear equations provides
a simple way of quickly constructing such schemes when a higher order of convergence is
needed. The idea of using multiple inverse functions explains some of the general structure
of iterative numerical schemes, and also lends more insight to the user over their properties.
The generalised proof, presented in chapters three and five, offers a quick way to check the
order of convergence of any iterative numerical scheme used for solving nonlinear systems
of equations.
The original contributions of the author are:
- A quick methodology to construct iterative numerical schemes of any order for
solving nonlinear systems of equations.
- Formulas for calculating the order of convergence of the iterative numerical schemes
constructed using the methodology presented in this paper.
- Insights regarding the form and application of the iterative schemes.
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