Disturbance observer based sliding mode control for
unmanned helicopter hovering operations in presence of
external disturbances

Ihsan ULLAH?3 Hai-Long PEI*123

*Corresponding author
'Key Lab of Autonomous Systems and Networked Control, Ministry of Education,
Guangzhou Guangdong 510640, China,
2School of Automation, South China University of Technology,
Guangzhou Guangdong 510640, China,
3Unmanned System Engineering Center of Guangdong Province,
a_ihsanullah@yahoo.com, auhlpei@scut.edu.cn*

DOI: 10.13111/2066-8201.2018.10.3.9

Received: 01 July 2018/ Accepted: 20 July 2018/ Published: September 2018
Copyright © 2018. Published by INCAS. This is an “open access” article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Abstract: Numerous control techniques are developed for miniature unmanned helicopters to do
hover operation with each method having its own advantages and limitations. During the hover
operation helicopters suffer from unknown external disturbances such as wind and ground effect. For
a stable operation, these disturbances must be compensated accurately. This paper presents a
disturbance observer based sliding mode control technique for small-scale unmanned helicopters to
do hover operation in presence of external disturbances. To counteract both matched and mismatched
uncertainties a new sliding surface is designed based on the disturbances estimations. The controller
design is based on the linearized state-space model of the helicopter which effectively describes
helicopter dynamics during the hover operations. The model mismatch and external disturbances are
estimated as lumped disturbances and are compensated in the controller design. The proposed
controller reduces chattering and is capable of handling matched and mismatched uncertainties. The
control performance is successfully tested in Simulink.

Key Words: Unmanned helicopter, External Disturbances, Sliding mode control, Disturbance
Observer, Chatter reduction, Mismatched uncertainty

I. INTRODUCTION

Miniature helicopters are highly unstable, agile, nonlinear under-actuated system with
significant inter-axis dynamic coupling. They are considered to be much more unstable than
fixed-wing unmanned air vehicles, and constant control action is required at all times.
However, helicopters are highly flexible aircraft, having the ability to hover, maneuvers
accurately and carry heavy loads relative to their own weight [1]. Fixed wing aircraft are
used for application in favorable non-hostile conditions but in adverse conditions, agile
miniature helicopters become a necessity. The conditions where a helicopter can perform
better than fixed-wing UAVs include military investigation, bad weather, firefighting, search
and rescue, accessing remote locations and ship operations. In such conditions, helicopters
are subjected to unknown external disturbances such as wind and ground effect. These
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external disturbances have a significant opposing effect on helicopter stability and can have
disastrous results in extreme cases. So it is essential to design a controller for the helicopter
which can effectively reject the effect of these unknown external disturbances.

In last two decades, there is substantial research about helicopter control problem. Early
results showed that classical control methods using Single-Input Single-Output feedback
loops for each input exhibit moderate performance since they are unable to coup with the
highly coupled multivariable dynamics of the helicopter [2]. Control schemes typically used
to maintain stable control of helicopters include PID [3], Linear Quadratic Regulator (LQR)
and Linear Quadratic Gaussian (LQG) [4], H2 [5], H. [6-7]. The majority of linear
controllers designed for unmanned helicopter are based on the Hoo method. In [8] an H.
static output feedback control design method was proposed for the stabilization of a
miniature unmanned helicopter at hover. An interesting comparative study between several
control methods is given in [9], [10]. Disturbance Observer-based control techniques are
used in [11], [12], [13], [14]. In [14] a direct feed-through simultaneous state and disturbance
observer is used where the control and observer gains are obtained using Hoo Synthesis but in
presence of external disturbances, there is steady state error in helicopter translational
dynamics. In [15], [16] back-stepping control design techniques are used for linear tracking
control of miniature helicopter without considering external disturbances, the control design
is based on the linearized model of helicopter and shows good results in X-plane flight
simulator. In [17] sliding mode control via disturbance observer is used for controlling
magnetic levitation suspension system. The experimental results showed that the proposed
method have excellent robustness in presence of both matched and mismatched
uncertainties. In this paper, a disturbance observer based sliding mode control design method
(DOB-SMC) is proposed for small-scale unmanned helicopters to do hover operation in
presence of external disturbances via a disturbance observer (DOB). The controller design is
based on the linearized state-space model of the helicopter. As in [15], [16], [18], [19] the
linearized model of the helicopter can be divided into two subsystems, such as the
longitudinal-lateral subsystem and the heading-heave subsystem. As there is no strong
coupling between the two subsystems at hover and limited by the scope of the paper, for
hovering only the longitudinal-lateral dynamics are considered for designing the control law.
To counteract both matched and mismatched uncertainties a new sliding surface is designed
based on the disturbance estimation. The model mismatch and external distances are
estimated as lumped disturbances and are compensated in the controller design. In [17] the
proposed method was applied to SISO MAGLEV system but in this paper, its applied to a
multivariable under-actuated unmanned helicopter. The rotor flapping dynamics are
approximated by the steady-state dynamics of the main rotor which help reducing controller
order. The proposed control methods have three attractive features. First, it’s insensitive to
mismatched uncertainties. Second, the chattering problem is substantially reduced as the
switching gain is only required to be greater than the bound on the disturbance estimation
error of observer instead of lumped disturbance. Third, the proposed controller has better
performance than a traditional SMC in the absence of external disturbances. Simulink
simulation has demonstrated successful performance of the proposed controller.

The rest of the paper is organized as follows: A complete nonlinear model of the helicopter
and the linearized model at hover condition is presented in section 2. DOB to approximate
lumped disturbances during hover is presented in section 3. The proposed controller is
derived in details in section 4. Simulation results are given in section 5 and finally
concluding remarks are given in section 6.
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2. HELICOPTER MODEL
a) Nonlinear Dynamics of Helicopter
The general 11 state nonlinear model [20] of the miniature unmanned helicopter is given as
u= vr—wq-—gsind + X,/ m+d,,
v =wp —ur + gsinPcosO + Y. /m + d,,»
W = uq —vp + gcos®cosl + Z,,,/m+ d, 3
@ = p + (sin@tand)q + (cos@tand)r
6 = (cos@)q — (sin®)r
@ = sin®/cosO + cos®/cosb 1)
p= qr(lyy =L )/ Lx + Liny/ Lx + dwa
= prly; — Iy )/Iyy + M/ Iy + dws
7 = Nyv + Npp + Nyw + Nyt + Npeg- Upea + Neor-Ucor + dmm + due
a=—-q— 1/tr.a+ Ap.b + Ajon-Uion + Ajar- Uiar
b= —p — 1/t;.b + Bg.a + Bion-Uion + Biat-Wiar

where x=[uvw® 6 ¢ p qr a b]" is the vector of state variable all available for
measurement except a and b; u, v and w represents linear velocities in longitudinal, lateral
and vertical direction respectively; m is mass of helicopter, g represents acceleration due to
gravity; p, q and r represents angular velocities in roll, pitch and yaw axis respectively; @, 6
and ¢ are Euler angles of roll, pitch and yaw axes; u.(t) = [Yion Wiat Ucol Uped]” is
the control input vector; d,,; Vi =1,2,---6 are unknown external wind disturbances
effecting linear as well as rotational dynamics of helicopter; I, 1, and I,, are the rolling
moment of inertia, pitching moment of inertia and yawing moment of inertia respectively; a
and b are flapping angles of tip-path-plane(TPP) in longitudinal and lateral direction
respectively X,,,,, Y., and Z,,,- are the force components of main rotor trust along x, y and z
axis; Ly, and M,,, are roll and pitch moments generated by main rotor. And 7 represents
linearized yaw dynamics at hover so d,,,,, is added for the unknown model mismatch at non
hover flights; N,, Ny, N,, and N,. are helicopter stability derivatives and Np.q and N, are
input derivatives of yaw dynamics identified as in [16]; t; is flapping time constant;
By, Biq and By, are lateral flapping derivatives; Ay, A;,, and A, are longitudinal
flapping derivatives. A diagram showing the directions of the helicopter body fixed
coordinate system is given in fig. 1.

Figure 1. Helicopter body-fixed coordinate system [15]
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The force components generated by the main rotor trust in x, y and z direction are given as

Xmr = — Tsina
Yinr = Tsinb 2
Zmr = — Tcosa cosb

where T is the total trust generated by the main rotor. The moments generated by the main
rotor along the x and y direction are calculated as
Ly = (kg + T. hypy)sinb
My = (k/; +T. hmr)sina
where kg is the torsional stiffness of the main rotor hub; h,,, main rotor hub height above
the center of gravity of helicopter.

Trust of the main rotor is calculated by iteratively solving the equations of trust and the
induced inflow velocity [21].

3)

POAR?C™ by Com
4

72\ T \* 2
v‘?:\/<7> +(2an2) 2 (4)

72 =u?+ v+ ww —2v)

T=wp,—7v;)

2
Wp =W + §QRkakcolucol

where v; is the induced inflow velocity; Q is rotational speed of the main rotors; p is air
density; Ris main rotor radius; b,, is the number of main rotor blades; c,, is the chord length
of the main rotor; C/y is coefficient of lift curve slope of the main rotor; k, is Control gain
of the servo actuator; k.,; is linkage gain from collective actuator to the main blade.

b) Linearized State Space Model at Hover

To derive the control law, the nonlinear model (1) of the helicopter is linearized at hover
condition as
x=Ax+ Bu.+ Ed
B c t (5)
y=Cx

At hover condition, the longitudinal-lateral and heading-heave dynamics of the helicopter are
weakly coupled with each other and are expressed as two separate sub-systems [14], [16].

Xy = Ay1X1 + AzaXy + Baaugy + Eppdy,

(6)
y1 = C1xq
X1 = A11%1 + Byquey + Ej1dyy )
Y2 = (x
where (6) represents longitudinal-lateral subsystem and (7) represents the heading-heave
subsystem, x;=[uve@oqgpabl, Ue; = [Yion  Wiat]T, d, =

[dtl dtZ dt3 dt4- dt5 dt6 0 O]T, E11 iS 8% 8 |dent|ty matl’iX, X = [(p T W]T,
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Uy = [Upea Ucol]T, dy, =[dy; dig dio]T, Eqq is 3 X 3 identity matrix, Matrices

Aq1,A41,455,B11, By, Cq, C,, are given as

X, 0 —g 0 0 0 0 0
O Y, 0 g 0 0 O 0 [ 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 8
Ay=|My My 0 0 0 0 M, 0 |, Bu=| g
L, L, 0 0 0 O 0 L, :
_ 1
0 0 0 0 -1 0 fe, A .
o o o0 o o -1 B, -1 Bion
| a /tf_
_1 O_T
0 1
8 g 00 000 0 O O 0
C1=0 0 ,A; =10 N, 0 0 O N, O Of, A4,,=10
0 o 00 000 0 Z, Z 0
0 0
L0 O
0 0 1 01"
By, = Nped Neor ,C, =10 0
0 Zey 0 1

S O O OO

For hover operation, the DOB-SMC control law is only derived for the longitudinal-lateral
subsystem and heading-heave dynamics are regulated at hover condition using PID

controllers. The subsystem (6) is expanded as
u=X,u—g0 +dy
v=Y, v+ g0 +d
0=q+ds
0= P+ de
q=Mu+M,v+ Mza+ds
p=L,u+L,v+Lyb+dy
a=—-q—1/tr.a+ Ap.b + Ajon-Uion + Ajgr- Uiar
b= —p — 1/tf .b+ B,.a+ Bjon-Uipn + Biat- Uiar

y1 = [uv]”

where X,,Y,, M, M,,M,,L,, L, and L, are helicopter stability derivatives,

(8)

(9)

1,2,--- 6 is the total disturbance including both model mismatch and external disturbances

acting at channel 1.
¢) Reduced Order Linearized Model

The flapping angles a and b of the main rotor can be approximated by the steady state

dynamics of the main rotor as in [22]
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a=—trq + tf(Ab- b + Ajon-Uion + Alar- Uiar (10)

b= —trp + tf(Ba- a + Bion-Wion + Bias-Uiar) (11)
Solving (10) and (11) for a and b and then substituting a and b in (8) gives
u= Xu—go+dy
v=Y,v+g0+d;
0=q+ds
O=p+dea
q=Mu+ M,v-— Mpp - qu + Mion-Uion + Mig-Uigr + ds
p=Lyu+L,v— Lpp - qu + Lion-Won + Ligt-Wiar + dis
where Mg =t;Mg, My, = Mgtf. Ay, Moy = Mg ty(tpApBion + Aion):  Mige =
Moty (trApBiar + Aiar), Ly = trLy, Lq = th}g-Bav Lion = Lpts(trBaAion + Bion),
Ligt = thf(thaAlat + Biat)-

(12)

The reduced order linearized model (12) is written in state space form as follows

X, = A.x, + Boug + E dy, (13)
Yr = X, (14)
where x=uvéedqgpl, Uer = [Yon  Uiae]”, dy =

[di1 dez diz dys des dt6]T, E, is 6 x 6 identity matrix; y, is output vector;
Matrices A,., B, and C,. are given as

X, 0 —-g 0 0 0 0 0 rl o]T
0 Y, 0 g 0 0 [ 0 0 ] 0 1
0o 0 0 0 1 0 0 0 |o 0|
A4=lo 0o o0 0o 0 1 'Br=| o o 'y ol
M, M, 0 0 —M, —M, (M, M| |[o oJ|
_Lu Lv 0 0 —Lq —Lp_ lLlon LlatJ 00

Assumption 1. The matrix pair A,- and B,. is controllable.

Assumption 2. The input derivatives M., , M4, Lion, @nd L;,: are nonzero.

Assumption 3. The stability derivatives g; M, and L, are nonzero.

Assumptions 1, 2 and 3 reflect the fact that the reduced order linearized model (13) is
physically meaningful.

Assumption 4. The disturbance d, Vv i=12,...,6 acting at system (13) is continuous and
satisfies

ldeil < (15)

where y; is positive bounded constant.

Assumption 5. The disturbance d;; Vi = 1,2,---,6 belongs to a class of slow varying
disturbances having constant value in steady state such that its derivative is bounded and
satisfies lim dy = 0.
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Lemma 1: [23]. A nonlinear system x = f(x(t),w(t)) is input to state stable (ISS). If it
satisfies the condition when the input of the system goes to zero (tlim w(t) = 0) then the

states must go to zero (tlim x(t) = 0).

3. DISTURBANCE OBSERVER DESIGN

It is difficult to measure directly the disturbances of the longitudinal-lateral subsystem (13),
a linear disturbance observer is used to estimate the unknown total disturbance vector d;,.
The DOB is designed as

P= —LE.(P + Lx;) — L(Arx; + Brucq) (16)
d, =P+Lx, (17)
where di = [d;; dyp, dps dps des  de)” s the disturbance estimation vector, P is a
6x 1 auxiliary vector and L = diag(ly,l,,13,14,1s,1lg) is Observer gain.

Theorem 1. Suppose system (13) satisfies Assumptions 4 and 5. The disturbance estimation
vector d,, of DOB can asymptotically track the total lumped disturbance vector d,, if the
observer gain matrix L is chosen such that — L is Hurwitz.

Proof. The estimation error of the DOB is defined as

€q = atr —dyy (18)
eq = [eat1 €arz €ar3 €dta Cats €ate]’ (19)
Differentiating (17) gives
d, =P +Lx, (20)
atr = _Led (21)
dyr = —[Lieqr Lreqy Lsegs]” (22)

where ey, = [€at1  €arz]T, eyp = [€ats  €ata]T, eqq = [€ats  €ats]T, Ly = diag(ly, 1),
LZ = diag(l3, l4) and L3 = diag(ls, l6)
Differentiating (18) and substituting (21) gives

éq=—Leq—dy (23)
The error system (23) is asymptotically stable since —L is Hurwitz and d,, satisfies
Assumption 5. This proves that the disturbance estimation vector d,, tracks the total
disturbance d,, of system (13) asymptotically. Considering Lemma 1 it is also verified that
the error system (23) is ISS.
Assumption 6. The estimation error of DOB is bounded such that

ear; = Maxleqy| Vi=12,,6 (24)
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4. DOB-SMC at hover
(a) Input-output feedback linearization

To derive the proposed control law for hover operation, first the helicopter reduced dynamics
(13) is input-output feedback linearized. The system output (14) is simplified as

u
, = [y) 25)
Differentiating y,- gives
. u 0
yr=K [v] + K; [(Z)] +dirq (26)
where K; = diag(X,,Y,), K, = diag(—g,g) and d;q = [de1 di2]T.
Differentiating (26) and taking d.; = 0 (assumption 5) gives
.. u 0 q
Vr = K? [v] + K1K; [(25] + K, [p] + Kidir1 + Kadyry (27)
where d,,, = [dy3  de4]T. Differentiating (27) and taking d,,; and d,,, as zero results
w3 fU 2 0 q Uion T
yr = K3 ]+ K21 K | o] + KiKa [p] + Koks | o | +KoKow v @ ] 8)
+ Kidyq + KKy dyp + Kodiys

where

K. = Mion Mlat] K =[Mu M, —M, _Mp] do.. = dts]
3 Llon Llat o Lu Lv _Lp _Lq P s dt6
(b) Controller design

In this section, DOB-SMC method is used to derive control law to stabilize helicopter at
hover condition in presence of external disturbances. The sliding surface augmented with the
estimated disturbances is designed as follows

S = Clyr+C23;r +5\.’r (29)

where S = [s1 S2]T, C; = diag(cy,¢3), C, = diag(cs,c,). C; and C, are designed such
that § = 0 is Hurwitz. y, and y,. are expressed as follows

-

yr=K [1;] + K3 [g] +dgy (30)

yr = K¢ [:ﬁ] + K1 K; [g] + K; [Z] + Kydpry + Kodirs (31)

where dypq = [dyy  dpp)" and diry = [dys dia]”
The proposed DOB-SMC for the helicopter hover operation is designed as follows
U = (—K2K3)_1(h + Cidyy + G, (Klatrl + Kzatrz) + KZd + K1 Kodery

+ Kydyps + Bsgn(S) + ¥S) (32)

WAhere E = diag(By, B); v = diag(y1,v2); sgn(S) = [sgn(s;) sgn(sz)]" and atr3 =
[des dyel”, and
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= (i 1]+ i [3]) (2 [ ka2 1) 2

v
g]+ KKJu v q p]’

+ K2K, [g] + KoKy | (33)

(c) Stability Analysis

Theorem 2. Suppose system (13) satisfy assumptions 5 and 6 then system (13) under the
proposed control law (32) is asymptotically stable if the high frequency switching gain in the
control law is designed such that following two conditions hold

p1>1([1 0]M™)] (34)
and

Bz > [([0 1]M7)] (35)
where M* = —[C; + K? + C,K; + (C, + Ky L1]el; — [C2Ky + K1 K, + KoLy lel, —

Kreys, egr = leqn  eaea]” eqr = ears edral” and ez = [eqs  eqrs]”
Proof. Differentiating the sliding surface (29) gives

§ = h+K,Kzug + Crdeyy + Co(Kidery + Kpdyyp + d1) + Kidyy + K Kpdyy

e EY 36
+ Kydyz + Kydyry + Kpdyr (36)
Substituting the control law (32) in (36) gives
S=—(C,+K+ CoK1)eqs — (C2K; + KiKz)eq, — Kreqz + (G2 + K1)der (37)
+ Kydyr, — Bsgn(S) —vS
Substituting am and am from (22) in (37) gives
S =—[C; + K} + C:K; + (C + Ky L1leqs — [CK, + KK, + KyLoleq, — Koegs 38
— Bsgn(S) —vS (38)
$=M—Bsgn(S) —yS (39)
where M is bounded by M*.
Now defining the candidate Lyapunov function as
1
V= ESTS (40)
Differentiating (40) and substituting (39) gives
V=(1 0IM)s; + ([0 1]1M)s, — Bilsi] = Bzlsz] — vist — v2s3 (41)
Using the conditions (34) and (35) it is concluded that
V<0 VS+0 (42)

So it is proved that the system states will reach the defined sliding surface S$ = 0 in finite
time. At condition S = 0, (29) becomes
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y’.\r = —Cyr — Czi;r (43)
Substituting (30) and (31) in (43) gives
y=—[Cy+Cy+ (K +Ceq: + Kreqy] (44)

Combining (44) with DOB error dynamics (23) yields
y=—[Cy+ Gy + (K + Cr)eq + Keqy]

éd = —Led - dtr (45)
Let
e=[& & & & &l=[y ¥y eq eq egs)
then (45) is written as
&= A&+ Bedy, (46)
where A, and B, are given as
0 1 : 0 0 0
Ag — _Cl —Cz —(K]_ + Cz) —Kz 0 ’ Bg — (}4X4:|
e e e e e 6x6
0 0 : —L

So it is verified that the matrix A, is Hurwitz as —L and sliding surface S are Hurwitz,
which means the system ¢ = A.¢ is exponentially stable and the proposed control law (32)
guarantees that the states of the system (13) during sliding phase will move to equilibrium
point asymptotically. Considering Assumption 5 and Lemma 1 it is verified that system (46)
is ISS.

5. SIMULATION RESULTS

In this section evaluation of the proposed controller (32) is presented. Performance of (32) is
compared with a traditional sliding mode control (SMC) to get a clear idea of its efficiency.
The sliding surface of the traditional SMC method is designed as

o =CYy,+CQ,—d)+y,— Kd, — K,d, (47)

Substituting y,- and ¥,. in (47) the disturbance terms d; and K;d, + K,d, get cancelled. So
it’s a typical sliding surface designed to control the linearized model (13) without
considering the disturbance vector d,,..
Then the traditional SMC is designed as

u = (—K,K3) ' (h + Bsgn(a)) (48)

Using DOB there is initial peaking at time t, in disturbance approximation which causes
higher control gain and even can takes the control input to saturation.

This initial peaking in disturbance approximation is directly proportional to the observer gain
L. Hence to avoid the initial peaking phenomena the observer gain L is designed as follows

sin(mt/2) QI, 0<t<1

“:L:{ oI, t>1

(49)
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113 Disturbance observer based sliding mode control for unmanned helicopter hovering operations

where Q is any positive number and I 6 x 6 identity matrix. So L is zero at t, and positive
elsewhere it satisfies the condition that - L Hurwitz.

Raptor 90 SE radio controlled helicopter is used in these simulations.

The Simulink model is established using the nonlinear model of helicopter defined in (1) and
then the proposed DOB-SMC (32) and the traditional SMC (48) based on the linearized
model (13) are applied on it to check the hovering performance of helicopter in presence of
wind disturbance.

Parameters of the nonlinear model of the helicopter are given in table 1 and parameters of
the reduced order linearized model (13) are given in Table 2.

Table 1. Parameters of Raptor 90SE RC helicopter [24] Table 2. Parameters of the linearized model [15]

Nonlinear model parameters A, Matrix

m=7.495 kg (O =172.788rad/s X, = —0.03996 Y, = —0.05989

R =0.785m N, = 2.982 M, = 0.2542 M, = —0.06013

b, =2 N,=0 L, = —0.0244 L, =-0.1173

¢ = 0.060 m N,, = —0.7076 M, = 10.0153 M, = 0.2515

p = 1.290 kg/m3 N, = -10.71 L, =0.7667 L, =38.1792

g =9.81m/s? Npeq = 26.90 B, Matrix

Clk =4.0734 N.oi = 3.749 M, = 40.6609 | M, = 0.8662

k, = 9.4248 tr = 0.03256 sec Lion = 2.7238 Lig: = 155.9401

koo = 0.3813 A, = 0.7713

kg = 167.6592 N.m/rad | B, = 0.6168

hpr = 0275 m Ajon = 4.059

I, = 0.1895kgm? A = —0.01610

l,, = 04515kg m? Bon = —0.01017

l,, = 0.3408 kg m? By, = 4.085

Table 3. Controller parameters

Controller Parameters
SMC C1=10,C2=10,63=25,C4=25
ﬂl = 10,B2 = 10

DOB-SMC | ¢; = 10, ¢, = 10, c3 = 25, ¢, = 25
By =108, =10 Q =10

a) Case: 1. Performance Comparison

First performance of the two controllers DOB-SMC and SMC is done in absence of external
disturbance.

The initial states of helicopter system (1) are set as u = 1 and v = —1 the rest of the states
are zero initially.

The controller parameters are given in table Ill. It is observed from Fig. 2 that DOB-SMC
has better settling time compared to the traditional SMC.

In Fig. 3 it is showed that DOB-SMC has higher initial control gain which is the reason for
quick settling time while in steady-state chatter in control input is same in both controllers.
Fig. 4 shows that the approximated mismatched disturbances (d;q, d¢2, d¢3, dis) QO€S to zero
as soon as all the states of the system reach zero as there was no external disturbance applied
on the system.

INCAS BULLETIN, Volume 10, Issue 3/ 2018



Ihsan ULLAH, Hai-Long PEI 114

There is small scale matched disturbances (d;s,d:s) in steady state due to the model
mismatch caused by order reduction.

1.5 05
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E \\ RN E ! |
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Figure 2. State variable in casel. Red line shows DOB-SMC, Blue line shows Traditional SMC
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Figure 3. Control input in casel. Redline shows DOB-SMC, blue line shows Traditional SMC
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Figure 4. Disturbances approximated by DOB in case 1
b) Case: 2. Handling Mismatch Uncertainties
In second case to compare the mismatched uncertainty handling capacity of both controllers,
external wind disturbances d,,,; and d,,, are applied on the helicopter system (1) defined as
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0, 0<t<1
dn=dwe=dy={] 2] (50)

Control parameters are same as defined in table Il except §; and B, which are increased to
30 in both controllers. All initial state are zero. In Fig. 5 it is observed that DOB-SMC
suppress the external wind disturbances and bring back u and v to zero but traditional SMC
failed to bring back the states w and v to desired equilibrium and there is a large constant
steady state error. This confirm that traditional SMC is sensitive to mismatched
uncertainties. Fig. 7 shows that external wind disturbances are perfectly approximated by
DOB and d;; and d, goes to d,, in short time.
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Figure 5. State variable in case2. Red line shows DOB-SMC, Blue line shows Traditional SMC
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Figure 6. Control input in case2. Redline shows DOB-SMC, blue line shows Traditional SMC
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Figure 7. Disturbances approximated by DOB in case 2
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c) Case: 3. Chatter Reduction

In third case we reduce B, and 8, back to 10 and all control parameters are same as defined
in table I11. Disturbances (50) are applied in the same way as in case 2. Fig. 8. Shows that
DOB-SMC still suppressed mismatch disturbances and brought back u and v to zero with a
slight increase in settling time but traditional SMC failed to keep the state of the system
bounded. In this case the high frequency switching gain is decreased three times and as
shown in Fig. 9 the control input chatter is much smaller than that in case two(Fig. 6). Fig.
10 shows that the mismatched disturbances approximated by DOB and are same as in case 2.
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Figure 8. State variable in case3. Red line shows DOB-SMC, Blue line shows Traditional SMC

0.1 o1
005 0.05
s I|||| I|| I| I . "
s 0 \ I ‘ £ 0 N O ORI
Ll ||” A = p
-0.05 0.05
01 0.1
o 2z 4 6 8 o 2 4 6 8
Time (s) Time (s)
0.1 0.1
0.05 0.05
5 A . 1 |
= 0 T T S0 -
-0.05 -0.05
0.1 0.1
0 2 4 6 8 0 2 4 6 8
Time (s) Time (s)

Figure 9. Control input in case3. Redline shows DOB-SMC, blue line shows Traditional SMC
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Figure 10. Disturbances approximated by DOB in case 3
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6. CONCLUSIONS

This paper presents DOB-SMC design based on the linearized model of the helicopter at
hover condition. The designed controller is applied to a complete nonlinear model of the
helicopter (Raptor 90 SE). Simulation results showed that DOB accurately estimates the
model mismatch and external disturbances and the proposed DOB-SMC method is capable
of stabilizing the helicopter during hover operations in presence of external disturbances.
Comparison of DOB-SMC with traditional SMC showed superior performance.
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