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Abstract 

 
The paper highlights the main steps of adaptive output feedback control for non-affine uncertain systems – both in 
parameters and dynamics – having a known relative degree. Given a reference model, the objective is to design a 
controller that forces the measured system output to track the reference model output with bounded errors. A single hidden 
layer neural network is used to counteract feedback linearization error. A dynamic observer of tracking error is added. 
The treatment of control saturation is also sketched. The mathematical model for the longitudinal dynamics of an 
experimental helicopter is used as framework.  
 
1. Introduction 
 
One of the most important problems in control 
theory is that of controlling an uncertain system in 
order to have its output tracking a given reference 
signal. A way in treating such a problem is the 
adaptive control. Research in adaptive output 
feedback control of uncertain nonlinear systems is 
of particular importance, taking into account the 
emerging applications in various fields such as 
modern fighter and civilian aircrafts, unmanned 
aerial vehicles (UAV), flexible structures, robotics, 
flow physics, combustion processes and so on. 
Modelling for all these applications suffers of 
uncertainty, both in parameters and dynamics.  

To highlight the framework of the paper, let 
the dynamics of an observable nonlinear single-
input-single-output (SISO) non affine system be 
given by the equations  

( ) (xgyuxfx == ,,& )   (1)

where nx D∈ ⊂ R  is the state vector, ,u y ∈ R  (for 
sake of simplicity) are input signal (control), 
respectively, output signal (measurement), and f , g 
are unknown functions, sufficiently smooth; 
moreover,  need not be necessary prescribed! For 
this real or virtual system, for example an airplane 
or its mathematical model, various problems are 
stated in control theory. Let consider such a 
problem: design (more specific, synthesize) a 
control law , which uses the available 
measurement , so that the output y follow 
asymptotically a prescribed reference signal 

n

( )yu
y

,r( )cy t C r∈ n< . This is the problem of 
trajectory tracking for an airplane or rocket. In 

addition, the control law u is subjected to saturating 
restrictions, Muu < .     

A premise of solving the problem is the 
ability of the artificial intelligence techniques – of 
neural networks (NNs), for example – in 
compensating the lack of system knowledge, in 
other works, in compensating the uncertainties in its 
modeling. For the system (1), the hypothesis of 
feedback linearization conditions [1] with relative 
degree r is introduced, which means that by 
successively differentiation of  by virtue of the 
system (so called Lie derivatives), the control 
appears in the order r derivative  

( )xg

( ) ( )uxgy r
r ,=   ( 2)

Here : r
r

rg d g dt= , such that 0ig u ∂ ∂ =    for 
0 i r≤ <  and 0rg u ∂ ∂ ≠ . This hypothesis is also 
not restrictive, because in any system the output 
depends finally on input. Feedback linearization is 
carrying out by a transformation of variable  

( )ˆ ,rv g y u= , ( )1ˆ ,ru g y v−=   (3 )

where v is the pseudo control and ( )ˆ ,rg y u  

represents any available approximation of ( ),rg x u  
that is invertible with respect to its second 
argument. Thus, the uncertain system (1) will be 
represented by a linear dynamics of  integrators r

( )

( )( ) ( )( )1 1ˆ ˆ ˆ: , , , ,

r

r r r r

y v

g x g y v g y g y v− −

= + Δ

Δ = −
  (4 )

where Δ  is the inversion error, which acts as a 
disturbance signal on system. Performing ( )1−n  
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times Lie derivatives of the function g yields  

( ) ( ) ( ) ( )1 1, , , n n
f fy g x y L g x y L g x− −= = =& K  (5) 

Observability hypothesis in (1) ensures that the right 
side of system (5) has a full rank and, taking into 
account (3) and the condition of relative degree ,  
the following implicit dependence can be stated 

r

( ) ( )( )1 1, , , , , , ,n nx F y y y v v v−= & &K K r− −   ( 6)

A similar expression is obtained for the error  

( ) ( ) ( )( )1 1, , , , , , , ,…,n nx y v G y y y v v v−Δ = & &K
r− −   ( 7)

A theorem of Kolmogorov-Sprecher type (see [2]), 

ensures the existence of a NN so that Δ  may be 
approximated with good accuracy when the network 
is operating only on the input-output data (with d a 
sample time) 

( ) ( ) ( )( ) ( )
( ) ( )( )

1

1 1

, , , 1 ,

., 1 , , 0

y t y t d y t n d v t ,

v t - d ,… v t n r d N n d

− − −

− − − ≥ >

K
  ( 8)

 
 
2. Controller design 
 
To demonstrate that the developed approach in the 
paper is adaptive to both parametric uncertainty and 
unmodeled dynamics (including time delay), we 
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Fig. 1. Implementation block diagram with pseudo control hedging and reference model 
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illustrate a step by step controller design using a 
simplified model for the pitch channel six order 
dynamics of an R-50 experimental helicopter [3] 
with a time delay  0.03secdT =  

( ) ( ) ( )Dc TtBtAxtx −δ+=&  ( 9)
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with measured output 

           ⎥
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 (10 ) 

θ=:y  - controlled output; u  – forward velocity;  
– vertical velocity;  – pitch rate;  – pitch angle;  

& w
q θ

β  – control rotor longitudinal tilt angle; δ  – 
actuator state;  – longitudinal cyclic input. c uδ ≡

Worthy noting, the system (9)-(9′) is only a 
pretext in view of controller validating by 
numerical simulations. 

Control objectives are regulation and 
tracking of commanded pitch attitude . Main 
sources of unmodeled dynamics are the control rotor 
dynamics and time delay. As main assumption on 
system, the relative degree was assumed: one can 
see that the controlled output  has relative degree 
3. The controller design will be illustrated step by 
step with reference to Fig. 1. 

θ

θ

Assuming that the system output  is 
required to track a known bounded input , the 
pseudo control in (3) is chosen to have the form  

y

cy

addcmr vvvv −+=  (11)

see [4]-[6]. Therefore, the pseudo control has three 
components:  – the output of a reference model, 

– the output of a stabilizing linear dynamic 
compensator for the linearized dynamics in (4) with 

rmv

dcv

0Δ =  and  – the adaptive control signal 
designed to approximately cancel Δ . 

adv

Now, to better assimilate the ideas, let refer to 
control system architecture as shown in Fig. 2. Our 
system is known only as having a relative degree 3 
with respect to controlled output , fact transcribed 
algebraically in the last block of main direct loop 

y

( ) ( )Δ+= vsGy d  

( ) 0
1: r r

r

b

1 0
dG s

s a s −
−

=
a+ + +K

 (12)

where the coefficients  are available to design. 
Aiming to correlate the blocks in view of 
simplifying, the block in upper loop is conceived as 

ia

 ( ) mr
d

mr y
sG

v 1
=  (13)

and substituting (12) in (11) 

( ) ( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Δ+−+= addcmr

d
d vvy

sG
sGy 1  (14)

one gets successively  

dc
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byy
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 (15)

( )∑
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r

i
dc
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0 0 , ,  yye mr −=: 1ra = (16)

 
Fig. 3. Single hidden layer neural network 

 
Therefore – a first step of design concerns the 
necessity of introducing a dynamic stabilizing 
compensator, in principle of dimension at least 1−r   
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( ) T1, :

c c

r
dc c c

A b e

v c d e e e e e −

η = η +

⎡ ⎤= η+  = ⎣ ⎦

&

& K
 (17)

 
The second step of design is performed by 

building an observer for the error dynamics 
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This observer for the tracking error dynamics may 
be designed of minimal dimension 1−r , but herein 
a full order observer of dimension  is preferred 2 1r −

( )ˆ ˆ ˆ

0ˆ ˆ , : , :
0

E AE K z z

c e
Z CE C E

I

= + −

⎡ ⎤ ⎡
=  =  =⎢ ⎥ ⎢η⎣ ⎦ ⎣

&

⎤
⎥
⎦

 
(19) 

K  is a gain matrix, and should be chosen such that 
A KC−  is asymptotically stable. Equation (19) 
provides estimates only for the states that are 
feedback linearizable, and not for the states that are 
associated with the internal dynamics [1], [4].  

Summarizing until this point, we have to run 
on computer the system with the input  adv − Δ

( )

( )
0

ˆˆ ˆ ˆ ˆ,
ˆ

adE AE bb v
e

E A KC E KCE Z CE

= + − Δ

⎡ ⎤
= − +  = = ⎢ ⎥η⎣ ⎦

&

&  

[ ]edCv ccdc ˆ001ˆ K+η=  

 

(20) 

and giving the output . dcv
 
The third step of design concerns the getting 

of adaptive control . As mentioned in the last 
phrase of Introduction, the dynamic inversion error 
described in (2)-(4) will be counteracted using the 

property of  universal approximator of a NN. 

adv

Given , a three layer-layer NN (with a 
single hidden layer) has an output given by 

1nRx ∈

2

, ,
1

1

, ,
1

, 1, ,

, 1, ,

n

ad w w k j k jk
j

n

j v v j i j i
i

b w k

b v x j

=

=

ν = θ + σ  =

⎛ ⎞
σ = σ θ +  =⎜ ⎟⎜ ⎟

⎝ ⎠

∑

∑

K

K

3

2

n

n

 (21)

( )σ ⋅  is so called activation function, jkv  are the 
first-to-second layer interconnection weights, 

are the second to third layer interconnection 
weights,

jiw

v jθ  and wjθ  are bias terms (see Fig. 3). In 
fact, a linearly parameterized NN 

( )Tv W x= σ  (22)

is a universal approximator, if vector function ( )σ ⋅  
can be selected as a basis over the domain of 
approximation, and accordingly, a general function 

( ) ,ky x C x D R∈  ∈ ⊂ n  can be written as 

( ) ( ) ( )Ty x W x x= σ + ε  (23)

where ( )xε  is the functional reconstruction error. 
Various publications show that the NN type 
function (22) is dense for different activation 
functions ( )σ ⋅  [7]. The essential results are 
expressed as theorem, hereby:  

Given , there exists a set of bounded ideal 
weights W, such that 

0>ε∗

Δ  (7), associated with the 
system (1)-(4), can be approximated over a compact 
domain RD ×Ω⊂  by a linearly parameterized NN  

( ) ( )T ,W ∗Δ = σ μ + ε μ ε < ε  (24)

using the input vector derived from (8) 

( ) ( ) ( )
TT T1 d dt v t y t⎡ ⎤μ = ⎣ ⎦  (25)

provided there exists a suitable basis of activation 
functions ( )σ ⋅  on the compact domain D. 

Thus, the output of the adaptive clement in 
Fig. 1 will be designed as [3] 

( ) ( )T T T T
adv W V W V∗ ∗− Δ ≅ σ μ − σ μ   (26)

with the following weight adaptation laws  
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( )[ ]0
ˆ VVkWbPEV TT

v −+σ′μΓ−=&  

( ) ( )[ ]0
ˆ WWkbPEVW TT

w −+μσ′−σΓ−=&  

QAPPAT −=+  

 (27)

( ) ( 0 0, , ,V W V W∗ ∗  

0Q >

)

0

 are initial guess of NN weights, 

 is a suitable matrix,  is a constant 
adaptation gain, and . The other 
notations stand for 

0k >
,V w Γ >Γ  

( ) aze
z −+

=σ
1

1  

( ) ( ): : diaT i

i

dV z
z

⎛ ⎞σ′σ = σ μ σ = ⎜ ⎟∂⎝ ⎠
g  

(28) 

where  is a sigmoidal function and  is an 
activation potential. 

σ a

Remark that in (4)  depends on  through 
 and  has to be designed to cancel 

Δ adv
v adv Δ . To 
guarantee existence and uniqueness of a solution for 

, the contraction hypothesis over the entire 
domain of interest  

adv

1
adv

∂Δ <∂  (29) 

is introduced concerning map   adv → Δ
 
The fourth step of design. Usually, the 

reference signals are filtered. For example, as shown 
in Fig. 4, in the case of R-50 experimental  
 

 

helicopter dynamics, the commanded pitch attitude  
will be processed through a linear 3rd order reference 
model  

( )( ) cmr y
syss

y
22
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22
2

ω+ω+ω+

ω
=   (30)

 
The fifth step of design provides an 

approximate inversion law. Let exemplify with 
system (9′) having relative degree 3 with respect to 
output y = θ  

,
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&&
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where we are considering only  and q θ  leaving 
other states as unmodeled dynamics. Thus, choosing  

0
3 2

0

( )d
bG s

s b s
=

+
 (32)

and taking into account (12), we have 

2
0 0 0 q c
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&&& && q  (33)
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ˆ ˆ: ˆc q q
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u b v M M
M
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0b q⎡ ⎤= δ = − +⎣ ⎦  (34)

where ,qM M δ 
) )
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parametric uncertainty in ,qM M δ 
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Fig 4. Third order reference model with pseudo control hedging signal 
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The sixth step of design, and the last, concerns the 
hedging of pseudo control to prevent the adaptation 
law from shortcomings such as actuator position and 

rate limits. When saturations are ignored, the 
phenomenon referred to as reset windup can 
produce the worst undesirable transients. An 
antiwindup compensator is proposed in [8]. In the 
present paper, the empiric procedure proposed in the 
works of E. N. Johnson of coworkers [9] is adopted. 
The idea is simple: an estimate of actuator position 
is firstly obtained, and then this estimate is used to 
compute the difference between commanded pseudo 
control  and the estimated achievable pseudo 
control (see Fig. 5) 

v

 
 
 

( ) ( ) (
0

ˆˆ ˆ, ,h
Mv h h b

δ= ξ δ − ξ δ = δ − δτ
) )c c  (35)

 
 

3. Conclusion 
 
The paper presents as a state-of-art the adaptive 
output feedback control of uncertain systems in 
which both the dynamics and the dimension of the 
regulated plant may be unknown, but knowledge of 
relative degree is required. More specifically, given 
smooth references, the problem is to design 
controllers that force the system measurements to 
track them with bounded errors. The involved 
solution includes a linear observer for the output 
tracking error, a neural network to cancel the 
modeling error and a pseudo control hedging signal 
to counteracting actuators limits. 

A Part II of the paper will validate the 
controller by numerical simulations of mathematical 
model (9)-(10).  
 
 
 
 
 

REFERENCES 
 
[1] A. ISIDORI, Nonlinear Control Systems, London, UK: 

Springer-Verlag, 3rd ed., 1995. 
[2] I. URSU, F. URSU, Active and semiactive control, 

Romanian Academy Publishing House, 2002 (in 
Romanian). 

[3] N. KIM, A. CALISE, N. HOVAKIMYAN, J. PRASAD, and E. 
CORBAN, Adaptive output feedback for high 
bandwidth flight control, Journal of Guidance, 
Control and Dynamics, 25, 6, 2002, pp. 993–1002 

[4] N. HOVAKIMYAN, A. J. CALISE, and N. KIM, Adaptive 
output feedback control of uncertain nonlinear 
systems using single-hidden-layer neural networks, 
IEEE Transactions on Neural Networks, 13, Nov. 
2002, pp. 1420–1431. 

[5] N. KIM, Improved methods in neural network-based 
adaptive output feedback control, with applications to 
flight control, PhD Thesis, School of Aerospace 
Engineering, Georgia Institute of Technology, 
November 2003. 

[6] Y. SHIN, Neural network based adaptive control for 
nonlinear dynamic regimes, PD Thesis, School of 
Mechanical Engineering, Georgia Institute of 
Technology, December 2005 

[7] G. CYBENKO, Approximation by superpositions of 
sigmoidal functions, Mathematics of control, signals, 
and systems, 2, 4, 1989, pp. 303-314.  

[8] I. URSU, G. TECUCEANU, F.  URSU, M. VLADIMIRESCU, 
T. SIRETEANU, From robust control to antiwindup 
compensation of electrohydraulic servo actuators, 
Aircraft Engineering and Aerospace Technology,  
70, 4, 1998, pp. 259-264. 

[9] E. N. JOHNSON, Limited Authority Adaptive Flight 
Control, PhD thesis, School of Aerospace Engineering, 
Georgia Institute of Technology, December 2000. 

- 

v

hv  
DsTe−  τ

1
 

rĥ  
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