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Abstract 
Continuing recent works of the authors, the paper shows the developing and the application of a 
neuro-fuzzy control law to the positioning outer loop of a hydrostatic type servoactuator. 
Experimental results are presented concerning dynamical behavior of the system by using this 
“intelligent” controller. Finally, arguments about the advantages of the new designed controller are 
summarized. 
 
 
1. Introduction 
Basically, there are two types of electrohydraulic actuators (EHAs), widely used in 
various actuationl systems: valve controlled actuators [1] and pump controlled actuators 
(so called hydrostatic actuators) [2]-[5]). Each type of such actuators has its own 
specificity, advantages and drawbacks. The advantage of traditional, valve controlled, 
electrohydraulic actuation, versus the pump controlled one, concerns mainly a faster 
dynamic response. Inversely, the pump controlled system keeps the advantages of a better 
linearity, stability and efficiency due to the eliminating of throttle losses at the valve. And, 
first of all, the pump controlled system avoids the requirement of a large central system 
with a reservoir. Thus, the pump controlled actuation is in fact a cost and weight effective 
actuation.  

The paper shortly describes the developing and the application of a neuro-fuzzy 
control law to the positioning control of the hydrostatic servoactuator. The organization of 
the work is as follow. In Section 2, the EHA physical and mathematical models and the 
control synthesis are described. Section 3 retains some numerical simulations. The Section 
4 presents experimental results on the system, underlining its dynamical performance 
essentially represented by the time constant. Section 5 is devoted to summarize some 
conclusions concerning the advantages of the intelligent controllers versus classical ones. 
 
 
2. Mathematical modeling and neuro-fuzzy control synthesis 
Consider the architecture of a pump controlled EHA physical model given in Fig. 1. The 
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primary component of the EHA is a double cylinder with simple action supplied with 
hydraulic oil by a fixed displacement, bidirectional gear pump. The transmission of the 
fluid power is obtained by very stiffly coupling the pump to the hydraulic cylinder, thus 
the electrohydraulic servovalve is not required. The pump is driven by an AC electric 
motor. The system is of closed type, so there is no direct contact between the oil and air. 
The electric motor has as analog input a speed reference signal from the range of ± 5 
Volts. The rod position is controlled by varying the speed of the electric motor. The 
mathematical model of the EHA system is the following [3]-[6] (see the Notations) 
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Fig. 1. Architecture of the pump controlled EHA physical model 
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The system includes a LuGre model of dry friction  [6]. fF

* 
*    * 

Artificial intelligence based approach in the treatment of control problems concerns 
in principle an input-output behavioral philosophy of solution. In fact, herein the 
mathematical model (1) will serve only as illustration of applying this strategy. In the on 
line process variant, the mathematical model is naturally substituted by the physical 
system. 

The neuro-fuzzy control strategy adopted for the outer loop position control of the 
system is composed of two components: a neuro-control and a fuzzy logic control 

INCAS BULLETIN No. 2/ 2009

137



supervising the neuro-control to counteract the saturation. 
As neuro-control, a unilayered perceptron is used (Fig. 2) 

1 1 2 2 1 2: : (nu u y y r z z)ν ν ν ν= = + = − + &  (2)

where  – reference input (command). From the system behavior view point, the input 
is  and the output is

( )tr

nu ( )21, yy=y . From neuro-control training viewpoint, the system 
performance is assessed by the cost function, a criterion supposing a trade-off between the 
first input − tracking error −, the second input component  and the control u 1y 2y
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The weighting vector T
1 2[ ]ν ν  ν=  is updated online by the gradient descent learning 

method to reduce the cost J. Consequently, the update is given by the expression 
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Fig. 2. Percepton type neurocompensator

 
 
 
 
 
 
 
 
 
 
                                                
 
 
 
 
 
 
 
 
 
 
 
 
\where the matrix ),( 21 δδdiag  introduces the learning scale vector, )(nνΔ  is the weight 
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Fig. 4. Membership functions for: a)  scaled input variables y1, y2 and b) l2(y1) 
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vector update and N marks a back memory (of N time steps). The derivatives in (4) require 
only input-output information about the system. )(/)( iui ∂∂y

) ( 1))i u i

 is online approximated by the 
relationship  

( ( ) ( 1)) /( (i i u− −y y − −  (5) 

To counteract the risk of neuro-control saturation and achieve the goal of 
reinforcement learning system, a Fuzzy Supervised Neuro-control (FSNC) was proposed 
in [7]. FSNC switches to a Mamdani type fuzzy logic control when the just described 
neuro-control saturated. 

Further on, the three standard components of the fuzzy control: fuzzyfier, fuzzy 
reasoning, and defuzzyfier, will be succinctly exemplified. The used fuzzyfier component 
converts the crisp input signals  

( ) ...,,: 1k

k

2kj

2
j112 = ∑

−=
yyyl k  (6) ,,, 21kk2 =y

into their relevant fuzzy variables (or, equivalently, membership functions) using the 
following set of linguistic terms: zero (ZE), positive or negative small (PS, NS), positive 
or negative medium (PM, NM), positive or negative big (PB, NB) (for the sake of 
simplicity, triangular and singleton type membership functions are chosen, see Figs. 3, 4). 
l2 is a norm which computes, over a sliding window with a length of 3 samples, the 
maximum variation of the tracking error. The insertion of this crisp signal in the fuzzyfier 
will result in a reduction of fuzzy control switches due to the effects of spurious noise 
signals.  

The strategy of fuzzy reasoning construction embodies herein the idea of a (direct) 
proportion between the error signal y1 and the required fuzzy control uf. Thus, the fuzzy 
reasoning engine totals a number of n = 4×7×7 IF..., THEN... rules, that is the number of the 
elements of the Cartesian product A×B×C, A := {ZE; PS; PM; PB}, B = C := {NB; NM; NS; 
ZE; PS; PM; PB}. These sets are associated with the sets of linguistic terms chosen to define 
the membership functions for the fuzzy variables ( )12 yl , y1 and, respectively, . 
Consequently, the succession of the n rules is the following 

2y

1) IF l2 (y1) is ZE and y2 is PB and y1 is PB, THEN uf is PB  
2) IF l2 (y1) is ZE and y2 is PB and y1 is PM, THEN uf is PM  
M  
7) IF l2 (y1) is ZE and y2 is PB and y1 is NB, THEN uf is NB  
8) IF l2 (y1) is ZE and y2 is PM and y1 is PB, THEN uf is PB  
M  
196) IF l2 (y1) is PB and y2 is NB and y1 is NB, THEN uf is NB 

Let  be the discrete sampling time. Consider the three scaled input crisp variables          
l2 (y1k),  y1k and y2k, at each time step 

T
kt kT=  (k = 1, 2,...). Taking into account the two 

ordinates corresponding in Figs. 3, 4 to each of the three crisp variables, a number of  M 
23 combinations of three ordinates must be investigated. Having in mind these 

combinations, a number of M IF..., THEN... rules will operate in the form  
≤
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IF is and is and ( ) is , THEN is , 1,2,...,21 2 1y B y C l y A u D ii i i ik k k fk = M

=

 (7) 

(Ai,Bi, Ci, Di are linguistic terms belonging to the sets A, B, C, D and D = B = C, see Figs. 
3, 4). The defuzzyfier concerns just the transforming of these rules into a mathematical 
formula giving the output control variable uf. In terms of fuzzy logic, each rule of (10) 
defines a fuzzy set Ai×Bi×Ci×Di in the input-output Cartesian product space R+×R3, whose 
membership function can be defined in the manner 

min[ ( ), ( ), ( ( )), ( )], 1, ... , , ( 1, 2, ...)21 2 1y y l y u i M ku B DC Ak k ki i ii i
μ μ μ μ μ  = =  (8) 

For simplicity, the singleton-type membership function μD(u) of control variable has been 
preferred; in this case, μ Di

u( )  will be replaced by u , the singleton abscissa. Therefore, 
using 1) the singleton fuzzyfier for uf, 2) the center-average type defuzzyfier, and 3) the 
min inference, the M  IF..., THEN… rules can be transformed, at each time step kτ, into a 
formula giving the crisp control [8] 
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The FSNC operates as fuzzy logic control  in the case when neuro-control saturated, 
or so called l2 - norm of tracking error  increased. In the case of fuzzy control operating, 
the fuzzy neuro-control  is concomitantly updated in the context of the real acting 
fuzzy control . To obtain the rigor and accuracy of regulated process tracking, fuzzy 
logic control switches on neuro-control whenever readjusted neuro-control is not 
saturated and scaled norm l2(y1) is smaller than a chosen value l2,min. At time , when the 
switching from fuzzy logic control to neuro-control occurs, the readjusted weighting 
vector νr will be derived by considering a scale factor 

fu nu

st

1y

nu

fu

nu

nf uu [6] 

( ) ( )1r f 2 2 f n 1 2r 2 f n,u y u u y uν ν  ν ν= − = u  (10)

 
 
3. Numerical simulations 
The aforementioned control was firstly brought to the proof in numerical simulations, 
having partially as reference the data given in [3] and also the data concerning the CESAR 
FP6 Project [9] and CNMP SAHA Project [10]. 

In the Figs. 5-6, representative time responses to step and sinusoidal references are 
shown. In accordance with simulation studies, in [5] it is proved that: a) the 
nonconventional neurofuzzy control, as compared with a proportional – P – control, 
improves the transients of EHA dynamics, mainly in the case of sinusoidal references: 
thus, a better tracking, meaning smaller attenuation and dephasage, are achieved; b) 
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worthy noting, the neurofuzzy control is proved to ensure a more robust  controlled EHA 
than classical P controlled system.  
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Fig. 5. Numerical simulation, neuro-fuzzy control, 2.2 mm step reference. 

The result: actual servoactuator time constant sτ ≅ 0.023 s [5] 
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Fig. 6. Numerical simulation, neuro-fuzzy control: sinusoidal reference. 

The result: 0.4dB attenuation, 0.015 s delay [5] 
 

 
4. Experimental results 
To test the proposed neuro-fuzzy control strategy and study fundamental problems 
associated with the control of hydrostatic EHA systems, the cylinder doublet – each part 
having simple action – is supplied with hydraulic oil by a fixed displacement, bidirectional 
Haldex Hydraulics HX G2204C1A300N00 gear pump. The transmission of the fluid 
power is obtained by very stiffly coupling the pump to the hydraulic cylinder. The pump is 
driven by an AC Anaheim BLW235S-36V-4000 electric motor. A planetary gearbox 
with 3:1 gear ratio is a part of electric motor. The main data of the pump: pump 
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displacement – 1.07 cm3/rot; nominal pressure – 207 bar; pump (and motor shaft) 
maximal speed (rad/s) – 3600 RPM; maximal flow – 3.86 l/min. The main data of the 
electric motor: peak torque – 1.3 Nm; rated power – 180 W; rated speed 4000 RPM; mass 
– 1.4 Kg; peak current – 22.5 A; rated voltage – 36 V; control maximal voltage – ± 5 V. A 
view of the motor-pump-hydraulic cylinder components of the system on the test rig is 
shown in Fig. 7.  
 

 
 

Fig. 7. View of the test rig for the hydrostatic actuator  
 

The experimental set up is presented in Fig. 8. The switches labeled L1 and L2 are 
used to stop the electrical motor at a stroke about than half of maximum stroke of the 
piston, as a measure of safety. The switch with positions labeled LIM (limited) and FREE 
is used to enable this protection on the LIM position. The other switch is used to select the 
motor command, MAN (manually) or AUT (automatically).  

Some conclusive experimental recordings are shown in Figs. 9-12, which collect 
time responses to step and sinusoidal references. Implementation of neuro-fuzzy algorithm 
was performed using LabView programming language. The initial values of weighting 
vector  (noted on figures ) has a certain importance, but not decisive for the algorithm 
working; compare Figs. 9-11 with Fig. 12. As it can be seen from Fig. 10, a value of the 
actual servoactuator time constant 

ν w

0.0824 ssτ  =  is obtained. This value is confirmed by a 
theoretical evaluation. Indeed, let us consider the paradigmatic structure of control 
(compare with (2)) 
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Fig. 8. Electrical connection diagram 

INCAS BULLETIN No. 2/ 2009

143



( )u K r z= −   (11) 

A reduced mathematical model derived from (1) is 
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b) Time histories for weighting vector, noted ν in the relation (2) 

Fig. 9. Experimental recording, neuro-fuzzy control, sinusoidal signals combination reference 
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b) Time histories for weighting vector noted ν in the relation (2) 
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Fig. 10. Experimental recording: neuro-fuzzy control, step reference signal. 
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The result: actual servoactuator time constant sτ = .0824 s (delay ignored!) 
From (11)-(12), the transfer function zr →  can be written as 

( )
2

3 2 2 221 p m p mSBD k K SBD k KS Bs ms fs k s z r
V V V

τ
⎧ ⎫⎡ ⎤⎛ ⎞⎪ ⎪+ + + + + =⎢ ⎥⎜ ⎟⎨ ⎬⎜ ⎟⎢ ⎥⎝ ⎠⎪ ⎪⎣ ⎦⎩ ⎭

 (13) 
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Fig. 11. Experimental recording: neuro-fuzzy control, sinusoidal reference 
 
The system can be expressed as an order one system in the manner 
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( ) rbzasa 010 =+  (14) 
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Fig. 12. Experimental recording:  neuro-fuzzy control, step reference 
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or, taking into account the value 0≅k in experiment, 
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s
p m

S
D k K

τ ≅   (15′) 

To determine motor speed-control voltage gain , the measurement shown in Fig. 13 
was performed, with 1V control voltage in loaded regime; the found time constant is 

. Based on equation 

mk

0.265sτ =  6 6 mx x k uτ + =& , we have 

( )1 0
0

300 00.265 , 0.265 0 , 85.12 rad/ sV
0.0978m m mk k k

t
θ θ

θ      
Δ
− −

+ = + = =    

but a speed reduction factor 1/  from motor to pump is involved, thus 3

( ) ( )85.12 / 3 rad/ sV 28.37 rad/ sVmk   = =  
  

Substituting in (15′) the cylinder-pump-motor main data and the optimized by an trial and 
error procedure controller gain  K

4 22 10 mS −= × , , 7 31.7 10 m / radpD −= × ( )28.37 rad/ sVmk =  , V450
m

K =   
 

(little piston’s surfaces are suplied) gives  

0.09 ssτ ≅    

that is a value close to the experimental value 0.0824 ssτ  ≅ . The size of controller gain 
 is in fact provided as the value of K 1ν  weight in Figs. 9-11, where  is relatively 

negligible. 
2ν
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Fig. 13. Measuring motor time constant τ  and angular speed-control voltage gain  in 
loaded regime, 1 V control input 
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Worthy noting, the value sτ ≅ 0.023s testified in Fig. 5 is associated with different 

values of the physical parameter   and with different , see [6]. 7 31.6925 10 m / rad−= ×pD K
 
5. Conclusions 
The studies and experimental results in the literature show that the neuro-fuzzy control not 
only extends the system bandwidth, but also provides excellent control performance on 
contrast with various classical control strategies in hydraulic servo position systems [11], 
[12]. 

Considering previous researches of the authors [1], [5]-[7], the main conclusion of 
the paper concerns the remarkable fact that neuro-fuzzy control algorithm ensured well 
dynamical behavior of the hydrostatic servoactuator. Let note the most meaningful feature 
of this proposed controller: because is in fact a free model strategy, this methodology 
ensures a reduced design complexity and provides antisaturating and antichattering 
properties of the controlling system [13], thus favourising its robustness. 

 
 
Notations and values of the parameters 

Variables 
zx ≡1 – load displacement [m];  –  load velocity [m/s]; 2x 3x − state value concerning 

internal friction [m]; 4x −  pressure in cylinder chamber one [Pa]; 5x −  pressure in 
cylinder chamber two [Pa]; 6: xω = − pump and motor shaft speed [rad/s]; – internal 
friction force due the tight sealing [N]; 

fF

r  –  reference input (command) [m]; u [V] − 
control variable 
Parameters 

20Kgm = – total mass of the piston and the load referred to piston;  – load 
viscous damping coefficient; 

410 Ns/mf =

1190000N/mk =  – load spring gradient;  – 
piston area;  

4 2m 2 10S −= ×
0.1ml  =

a
a

 – half of piston stroke;  – dead 

volumes of the hydraulic lines;  – pump displacement; 

– bulk modulus of the oil; p  – nominal pressure; 
– minimal pressure of the hydraulic system; 

7 33.95 10 m−= ×

(

1 2D DV V V= =
7 310 m /rad−

5207 10 Paa = ×

1.6925pD = ×
86 10B  = ×
55 10rp = ×

P
P )28mk .37 rad/ sV=  − motor 

gain; motor time constant [s]; τ − sτ − servoactuator time constant [s]; K  controller 
gain [ ]; 

−

V/m ( )13 31.9 10 m / Pa×s−= ×ecC  – external leakage coefficient; 

( )s130− 3m / Pa ×2 1ipC = ×  – internal leakage coefficient; 42 10 N/m0σ  −= ×

/m

stiffness 

coefficient ; damping coefficient; 2
1 3 10σ = × Ns/m − 60Nsvf  −= viscous friction 

coefficient; 0.1msv /s −= Stribeck velocity; 100NcF  −= Coulomb friction; 
static friction. 120NsF =  −
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