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Abstract: The orbital docking represents a problem of great importance in aerospace engineering. 

The paper aims to perform an analysis of docking maneuvers between a chaser vehicle and a target 

vehicle in permanent LEO (low earth orbit). The work begins with a study of the attitude dynamics 

modeling intended to define the strategy that facilitates the chaser movement toward a docking part of 

the target. An LQR (linear quadratic regulator) approach presents an optimal control design that 

provides linearized closed-loop error dynamics for tracking a desired quaternion. The control law 

formulation is combined with the control architecture based on SDRE (State Dependent Riccati 

equation) technique for rotational maneuvers, including the Earth oblateness perturbation. The 

chaser body-fixed frame must coincide with the target body-fixed frame at the docking moment. Then 

the implementation of the control architecture based on LQR technique using the computational tool 

MATLAB is carried out. In simulation of the docking strategy V-R bar operations are analyzed and 

the minimum accelerations needs the control of chaser vehicle. The simulation analysis of those 

maneuvers considered for a chaser vehicle and a target vehicle in LEO orbit is validated in a case 

study. 

Key Words: LEO, orbital rendezvous and docking, attitude dynamics, LQR, SDRE 

ABBREVIATIONS 

LEO – Low Earth Orbit 

SDRE – State Dependent Riccati Equation 

LVLH – Local vertical Local Horizontal frame 

SDC – State Dependent Coefficient factorization 

GNC – Guidance, Navigation and Control 

LQR – Linear Quadratic Regulator 

ARE – Algebraic Riccati Equation 

ADV – Active Docking Vehicle 

CW – Clohessy Wiltshire equations 
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J2 – Earth Oblateness perturbation 

ISS – International Space State 

R&D – Rendezvous and Docking 

RPOP – Rendezvous and Proximity Operations Program 

TDV – Target Docking Vehicle 

SYMBOLS AND VARIABLES 

  – Earth’s gravitational constant (m
3
/sec

2
) 

1 2 3 4, , ,q q q q  – attitude quaternions 

0  – mean motion (1/sec) 

, ,x y z    – relative angular velocities (1/sec) 

, ,c c cx y z  – thrusters torque arms (m) 

, ,x y zI I I  – moment of inertia (kgm
2
) 

, ,x y zu u u  – forces exerted by the chaser thrusters (N) 

cm  – mass of the chaser (kg) 

2Ja  – relative effect of the Earth oblateness (m/sec
2
) 

, ,x y z  – coordinates of the chaser (m) 

, ,x y zF F F  – forces exerted by the chaser (N) 

1. INTRODUCTION 

Over the years on-orbit manoeuvres of the spacecraft became priority problems of the space 

vehicle community. Due to the cost and time disadvantage of manual control an autonomous 

mission on orbit appears to be favourable. An autonomous chaser vehicle had to be capable 

of rendezvous and docking manoeuvres and requires a significant development in the various 

technologies. Rendezvous and docking operations of unmanned vehicles e.g. presently the 

European ATV, the Japanese HTV and Progress within the International Space Station are 

automatic but not fully autonomous. The proximity operations and the docking are extremely 

delicate and precise translational and of course, rotational manoeuvres. 

In addition, precise relative position and velocity state estimates are required. The 

Attitude Control System is a system in charge of maintaining the space orientation of the 

vehicle. It can do so by means of the passive or active methods. The passive and active 

methods can sometimes be combined. The active methods use actuators to adjust the satellite 

attitude in an automated manner, for which they usually need the knowledge of the current 

attitude. There exist several different actuators for the control of the satellite attitude. 

However, the attitude control through the thrusters receives increasing attention for some 

space vehicles. Thrusters require fuel reservoirs which take up a lot of space and have a 

limited operational time. Various three-axis attitude control approaches are used on the space 

vehicles with actuators, and more are being researched. Depending on the space vehicles 

mission and requirements some control strategies perform better than others. The approach 

strategy used by the generic model of attitude to the docking port located the along the V-bar 

direction is selected to evaluate the LQR regulator proposed in this work. Autonomous 
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proximity operations are characterized by controlling a chaser vehicle about predetermined 

reference trajectory toward the docking part of the target. The system comprises an 

independent guidance function (CW) and controls function. The last is to provide the control 

forces that will be executed by the thrusters of the chaser vehicle in order to track the 

reference trajectory. The attitude manoeuvre is determined through the integration of the 

state-dependent Riccati equations (SDRE) control formulated using the nonlinear relative 

dynamics with the weight matrices adjusted at the steady state condition. We intend to 

maximize the efficiency of the spacecraft which leads to minimizing the error introduced by 

J2 contribution in the wrong direction. A simplified CW linear model and a non-linear 

dynamic model including the effects due to the non-spherical nature of the Earth (J2 effects) 

will be developed to be used in designing of the control law. The goal of this paper is to 

examine the J2 effects to assess the capability of thrusters as a mean of control. The approach 

strategy used by the ATV generic model of translating to the docking port located along the 

V-bar direction is selected to evaluate the LQR regulator proposed in this paper. The efforts 

to settle some experimental facilities to support the autonomous rendezvous and docking 

demonstration and testing [1], [2], [3], [4] are well-known. This paper describes a part of 

R&D algorithm (orbit position) under Matlab/Simulink environment providing all features 

for analysis and simulations. This paper proposes an autonomous algorithm for the docking 

of a chaser with a target. The approach strategy is composed of some “V-bar or R-bar 

approaches” and a circumnavigation maneuver in the closing transfer phase, some periods of 

station keeping and a “straight line V-bar” approach to the docking port (figure 1). 

The guidance and control functions are independently designed and are then integrated 

in the form of LQR-type control. The ranges of the proximity operations, the closed transfer 

proposed are extracted from [5, 6, 7, 8] and showed in fig. 1. This paper considers the 

scenario beginning at S2 and ending at S3 (see fig. 1). 

 
Fig. 1 Proximity operations strategies 

(The approach strategy used by the ATV of translating to the docking part located along the V – bar) 
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2. ATTITUDE DYNAMICS MODELING 

A nonlinear spacecraft dynamic model including J2 perturbation is presented to describe the 

translational motion. The coordinate systems applied here are: local orbital frame centered 

on the target and chaser and an Earth – Centered Inertial frame [5]. These are shown in fig. 2 

below with axes having the following guidance in orbital frame: 

 
Fig. 2 Chaser and target vehicles orbit. Reference system centred on the target vehicle 

x  – axis in the same direction and orientation as  the orbital velocity vector (V-bar), 

y  – axis normal to the orbit, with opposite direction of the orbital angular momentum vector 

(H-bar), 

z  – axis completes the system, oriented in the radial direction, perpendicular to the plane of 

horizon, nadir direction (R-bar). 

Initially the attitude dynamic model is a 7 – dimensional system whose state is made of 

an attitude quaternion q  and an angular velocity vector  . Here the attitude is expressed 

with respect to t  local orbital reference frame, i.e., the quaternion 1 2 3 4[ ]Tq q q q q  

represents the rotation from orbital frame to the body fixed frame. The relative angular 

velocity between the body fixed frame and the orbital reference frame is expressed in body 

coordinates. 

Attitude representation 

The quaternions were introduced by Hamilton in 1843 being the most common attitude 

parameterization used in space vehicle attitude determination system due to their inherent 

non – singularity for any rotation. There are multiple ways to represent a rotation between 

the frames. A number of different representations with less elements have been defined, like 

Euler parameters and Euler angles. 

Another representation, unit quaternions (also called Euler symmetric parameters) are 

quite popular, for they avoid singularities, require only four parameters and the conversion 

between them and Direction Cosine Matrix can be done without trigonometric operations. 

The unit quaternion is defined in four dimensional vector space, 
4q R , and will be 

denoted as: 1 2 3 4[ ]Tq q q q q . 

Nevertheless, one should keep in mind that, under the quaternion representation, four 

parameters 1q , 2q  3q  and 4q  are required for representing a three dimensional attitude 

vector. The connection of the unit quaternion parameters with the rotation vector and amount 

of rotation around it is given as 

X 

xc 

Y 

Z 
Target 

Chaser 

yc zc 

zt 

xt 

yt 

rt 

rc 

Orbital plane 



89 Attitude Dynamics and Tracking Control of Spacecraft in the Presence of Gravity Oblateness Perturbations 
 

INCAS BULLETIN, Volume 8, Issue 1/ 2016 

 

1 1

2 2

3 3

4

sin
2

sin
2

sin
2

cos
2

q e

q e

q e

q

















 (1) 

The values 1e , 2e  and 3e  define the unit vector of rotation, and   is the angle of 

rotation. Also the relation 
2 2 2 2

1 2 3 4 1q q q q     always holds. 

An important operation with the unit quaternions is the relative orientation between two 

of them. With this operation the error between the desired and the current attitude can be 

calculated. 

Kinematics 

The differential equation of attitude kinematics with quaternion parameters is given by: 

1
( )

2
q q   (2) 

where the   matrix is defined as: 

0

0
( )

0

0

z y x

z x y

y x z

x y z

  

  


  

  




 



  

 (3) 

Rotational motion dynamics 

The rotational motion of the chaser is expressed in the body-fixed frame using the well-

known Euler’s equations of motion. Like the perturbing accelerations in relative translational 

dynamics, rotational dynamics also experience disturbing torques such as the torque due to 

gravity-gradient torque. 

The effects of the gravitational field are not uniform over an arbitrarily shaped body in 

space, creating a gravitational torque about the body center of mass. The nonlinear attitude 

model proposed for simulations has the body axes located along the principal axes of inertia, 

considering the rotaty frame fixed to the body. In addition the kinematic equations will be 

desribed by means of quaternions. 

The chaser body will be considered rigid (fig. 3), thus the Euler moment Equation in 

body fixed coordinates will be used: 

1 1( )c gI I I M M         (4) 

where gM  is the gravity gradient torque and uM  is the control moment given by: 
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x c y c

c y c z c

z c x c

u y u z

M u z u x

u x u y



 



 (5) 

with , ,x y zu u u  - that forces exerted by the chaser thrusters. For a chaser with diagonal 

inertia matrix: 

0 0

0 0

0 0

x

y

z

I

I I

I

  (6) 

the gravity gradient contribution is given by: 

2 2 2 2

2 3 1 4 1 2 3 4

2 2 2 2 2

0 1 3 2 4 1 2 3 4

2 3 1 4 1 3 2 4

( ) ( ) ( )

6 ( ) ( ) ( )

( ) ( ) ( )

z y

g x z

y x

I I q q q q q q q q

M I I q q q q q q q q

I I q q q q q q q q



       

        

    

 (7) 

 
Fig. 3 Generic model proposed for attitude dynamics with controls 

3. LINEARIZED ATTITUDE DYNAMICS MODELING 

In order to apply the LQR / SDRE method to a chaser attitude control, its model needs to 

linearize. Linearization of the attitude dynamic equation will be done by approximation of 

rotations with small angles around an imposed attitude (the body – fixed frame coincides 

with local orbital frame). These hypotheses lead to: 

1

2

0

3

4

0

0

0

1

q

q
q

q

q

   (8) 
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and 

1

2

0 2

( )

6 ( )

0

z y

g x z

I I q

M I I q

 

     (9) 

For small perturbation the state vector can be reduced to six variables by dropping the 

kinematic equation 4q  and substituting it with the unit norm constraint. This is convenient to 

write the state variables as: 

1 2 3

T

x y zx q q q        (10) 

The linearized attitude dynamics model looks like: 

1 2 3

T

x y zx q q q        (11) 

where: 

2

0 0

2

0
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2

0

8 1
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2 1

0 0 0 1 0 0

0 0 0 0 1 0
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I
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
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
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





 
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 
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 

    (12) 

and 

0 0 0

0 0 0

0 0 0

0

0

0

c c

x x

c c

y y

c c

z z

y z

I IB

z x

I I

y x

I I
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

 (13) 
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4. SDRE FORMULATION FOR ATTITUDE RELATIVE DYNAMICS 

The SDRE strategies provide an effective and systematic algorithm to synthesize nonlinear 

feedback control by allowing nonlinearities in the system state [6, 7]. It is a simple extension 

of the constant valued ARE used to find the optimal feedback control in the Linear Quadratic 

Regulator problem (LQR). 

The procedure of generating the SDRE controller was presented for the first time for the 

nonlinear optimal regulator problem by Banks and Mhana. Shama and Cloutier [8] studied 

the nonuniquess of the state-dependent representation. 

Consider the deterministic, infinity-horizon nonlinear optimal regulation problem, where 

the system in full-state observable, autonomous, nonlinear in state and affine in the input, 

represented in the form [7]: 

( ) ( ) ( ) ( )x t f x B x u t   (14) 

where 
nx R  is the state vector and 

mu R  is the input vector. 

Through the state-dependent coefficient (SDC) factorization, system designers can 

represent the nonlinear equations of motion as linear structures with state-dependent 

coefficients. 

Then, the LQR technique can be applied to the state-dependent state-space equations. 

Thus, the following procedure is similar to the LQR method except that all matrices may 

depend on the state. 

Based on this concept the state-space equations for nonlinear system described in (14) 

can be expressed as a linear state-space equation using direct SDC factorization as: 

( ) ( ) ( )x t A x x B x u     (15) 

where the factorization for ( ) ( )f x A x x   with ( ) n nA x R   is possible if and only if 

(0) 0f   and ( )f x  is continuously differentiable. 

The state-dependent dynamic matrix ( )A x  is non-unique where 1x   [2]. The optimal 

control problem mentioned above is to find a state-feedback control law ( )u x  which 

minimizes the cost functional as: 

 
0

1
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

2

T T T T T

r rJ x t x t Q x x t x t u x R x u x dt



           (16) 

where ( )rx t  is the reference or desired state vector provided by the guidance scheme based 

on CW state transition matrix (9) and the approach strategy and ( ) n nQ x R   is the state 

weighting matrix satisfying ( ) ( ) 0TQ x Q x  , ( ) m mR x R   is the input weighting matrix 

satisfying ( ) ( ) 0TR x R x  . 

It should be noted that ( )Q x  and ( )R x  are not only allowed to be constant, but can also 

be varied as function of states. 

Also, is it assumed that (0) 0f   and ( ) 0B x  . For a valid solution to the SDRE, the 

pair { ( ), ( )A x B x } must be point wise stabilizable in the linear sense for all x in the domain 

of interests. This SDRE approach for obtaining a suboptimal solution to the nonlinear 

problem can be summarized with the following steps: 
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- bring the nonlinear equation into SDC form in equation (15), 

- solve the SDRE 

1( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 0T TP x A X A x P x P x BR x B x P x Q     (17) 

- the nonlinear feedback controller law becomes: 

 1( ) ( ) ( ) ( ) ( )T

ru x R x B P x x t x t    (18) 

- the resulting SDRE controlled trajectory becomes the solution of the quasi – linear  

   ( ) ( ) ( ) ( ) ( )rx t f x t BK x x t x t     

- closed loop dynamics: 

where the state feedback gain for minimizing equation (15) is: 

1( ) ( ) ( )TK x R x B P x  (19) 

Through the SDC parameterization the nonlinear equation (13) is transformed to the 

linear – like state – space from equation (14). 

The system matrix ( )A x  is then: 

11 12

21 22

( ) ( )
( )

( ) ( , )

A A q
A x

A q A q




  (20) 

where: 

11 12 4

0 1 0 0
1 1

( ) 0 , ( ) 0 1 0
2 2

0 0 0 1

z y

z x

y x

A A q q

 

  

 

  



 

2 4

2 1

21 0 1 2 3

4 3

2 0 2

( ) ( ) ( 2) ( 2) ( 2)

2 2 0

q q

A q I skew s I q r q r q r

q q

      



 

4 2

2 1

0 3 4

2

1 4 1

2( ) 0 2( )

3 2( ) 2( ) 0

0 4( ) 4( )

y z y z

z x z x

x y x y

I I q I I q

I I I q I I q

I I q q I I q

 

   

  

  

 

2

4

1

1
r

q



 

1 1 1

22 0 0 0( , ) ( ) ( ) ( ) ( )A q skew s I skew p I I skew t I skew s I          

(21) 

3 3

1 1

2 2

1 , ,

2 2

x x

y y

z z

q q I

s p t I

q q I







  
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 (22) 
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with: 

1 3 2

2 3 1

3 2 1

0

, ( ) 0

0

a a a

a a skew a a a

a a a



  



  

The control matrix B  is the same as in linearized dynamics. The input controls are 

independent of the system state, though they still depend on the Earth gravitational field. 

The state weight matrix for the performance index in equation (16) is given by: 

10 (6 6)pQ I    (23) 

and the control weight matrix is given by: 

10 (3 3)qR I    (24) 

The properly chosen initial matrices without causing the thruster saturation are required. 

If larger Q  and smaller R  weight matrices are chosen at the initial time, the controller may 

become saturated resulting in control commands that cannot be executed by the thruster. 

When the weight matrices are adjusted at steady state, the control forces are modified and 

tracking is then reduced to the desired value without thruster saturation. This adjustment of 

the weight matrices is very important in order to generate suitable control forces [9]. The 

implementation of the closed – loop control as the block diagram of the SDRE control is 

depicted in figure 4. 

 

Fig. 4 Block diagram of the SDRE Control 

SDRE method for the infinite time nonlinear regulator problem is locally asymptotically 

stable and locally asymptotically optimal [8]. 

5. SIMULATION RESULTS 

To validate the controller the numerical tests have been applied for a rendezvous maneuver 

with the target vehicle along the V-bar. The initial values for the chaser are: mc=6000 kg, 

t=2700 sec, x0=-3250 m, y0=0 m, z0=0 m, ht=400 km. The maximum value of every thruster 

was estimated at approx. 400 N along the longitudinal axes. 
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This work analyzed the controllers developed here in a proximity operation in which S2 

– S3, S3 – S31, S31 – S32 and S32 – S33, were studied. 

Using the CW guidance scheme the reference trajectory is autonomously commanded to 

the controllers. 

     

   

Fig. 5 SDRE Control – Target and Chaser Quaternion Histories 

Additional consideration must be given to the attitude kinematic equation because a 

quaternion must always have a unit norm. 

A constraint violation can be eluded by using the Euler – Rodriguez parameters angle 

(fig. 7). 

  
Fig. 6 Control force history 
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Fig. 7 SDRE control attitude rates error 

Figure 7 shows the attitude rates error during the entire simulation. The approach 

trajectory using SDRE control scheme shows a constant straight line trajectory where the 

error is less than a prescribed value on the R-bar axes. SDRE controller performs slightly 

worse for longer time (fig. 5) [9, 10]. 

The control forces histories produced by the controller are shown in figure 6. The figure 

also shows that the additional control forces that resulted from the adjustment of weight 

matrices in SDRE controls increased impulsively before the final straight line approach. 

6. CONCLUSIONS 

The work proposed a control code to be used in docking of spacecraft. This algorithm is 

composed of an independent guidance function, a control function and a navigation function 

for the control of the position and attitude control in autonomous missions. 

The guidance, navigation and control functions are independently designed and are then 

integrated in the form of linear LQR-type control and LQG -type controls. 

SDRE controller uses the nonlinear model, which is an improvement over LQR when 

the state is far from the goal state. SDRE is able to quickly reach the region near the desired 

attitude. However, SDRE showed somewhat worse performance for a close tracking of the 

reference point. A problem related to the controllability of the LQR has also arisen for the 

SDRE as well [9]. The attitude manoeuvres are determined through the integration of the 
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state-dependent Riccati equation control formulated using the nonlinear relative motion 

dynamics with the weight matrices adjusted at the steady state condition. 

The results from simulations are presented to show the impact of J2 perturbation on the 

flight path. 

The results of this analysis indicate that a coupled orbital and attitude control system 

using an existing orbital control law and a further attitude control law for the use in 

spacecraft flying mission ground-based simulation are needed. 
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