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Abstract: Boundary layer transition is usually associated with the amplification and breakdown of 
three-dimensional waves (3D waves). However, the details of the development of 3D waves in different 
transition regimes are not well resolved. The present study attempts to examine the transition process 
at early nonlinear stages of K-, N-, and O-regimes by the solution of nonlinear parabolized stability 
equations (NPSE). The spatial and temporal variations of streamwise velocity are compared at the one-
spike stage. Timelines and material surfaces are presented using Lagrangian tracking method. The 
development of 3D waves are observed to contribute to the upward lift and downward sweep of flow 
behaviors, causing inflectional regions in the boundary layer. The evolution of material surfaces reveals 
that the nonlinear 3D wave manifests as a warped wave front in the near-wall region and as a soliton-
like structure at the upper region of the boundary layer. The 3D wave structure is hypothesized as a 
soliton-like coherent structure. Markedly similar flow behaviors are observed between the regimes, 
which indicates a similar underlying physical mechanism. 
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1. INTRODUCTION 
Understanding the transition process of wall-bounded shear flow is essential in the control of 
turbulent production and aerodynamic design. In general, the process of transition can be 
ideally divided into five stages, i.e. receptivity, linear growth, nonlinear saturation, secondary 
instability, and breakdown [1]. When free stream turbulence (FST) is low (turbulent intensity less 
than 1%), a small disturbance will be linearly amplified as Tollmien-Schlichting waves (TS-
waves). This process is known as receptivity, which denotes by which a particular disturbances 
(free-stream disturbances or wall-induced disturbances) will be amplified within the boundary 
layer [2]. In some circumstances with high FST, TS-waves may be “bypassed”. But generally a 
TS-wave will grow to a point where a nonlinear interaction develops, accompanied by the 
resonant amplification of three-dimensional waves. This results in inclined high-shear layers 
forming within the boundary layer in the shape of characteristic Λ-structures (in an aligned or 
staggered order), which will subsequently break down into turbulence. 
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 So, the linear amplified two-dimensional TS-wave is often the first step towards transition. 
The TS-wave was first predicted by linear stability analysis, and then was experimentally 
verified by the pioneering works of [3] in National Bureau of Standards. It was not until the 
landmark work of [4] that the three-dimensional nature of boundary-layer instability became 
apparent. They determined that a two-dimensional TS-wave will interact with mean flow, and 
then rapidly develop into a three-dimensional wave, which finally breaks down to turbulence 
(named K-regime transition). In the 1960s, detailed transition processes like three-dimensional 
behavior, mean flow modification, and nonlinear breakdown were also investigated by [5,6] via 
hot-wire measurements, but it was still far from a unified view of the transition process. Hama 
and his colleagues employed hydrogen bubble visualization to complement the hot-wire results, 
and they observed Λ-structures in a transitional boundary layer [7]. They also found that the 
TS-wave warps three dimensionally during amplification, acquiring a longitudinal vorticity 
component along its swept-back front. The kinked high-shear layer, which appears as an 
inflection in vertical hydrogen bubble time-lines (a “kink”), subsequently develops into a 
hairpin-shaped, discrete vortex. A localized and intensified “warped wave front” (WWF) was 
considered as the source of the “kink” that appears prior to the formation of a hairpin-shaped 
vortex. However, the relation between the WWF and the kinked profiles has not been clearly 
understood. This emphasizes the need to examine the details of the warping process and the 
development of a WWF prior to the emergence of Λ-vortices. 
 A number of investigations have shown that hot-wire signals within the kinked region of 
the high-shear layer record negative spike (mostly in K-regime transition), termed velocity 
“spikes” [4,5,7,8], which doubled, tripled, etc. downstream. 

The multiple spikes appear to be correlated with ring-like vortices at late stage of 
transition [9]. But in the initial nonlinear stage, there is only one spike in the streamwise 
velocity trace [10]. 

Different hypotheses have been made regarding the mechanism responsible for the 
generation of the kinked structure and the corresponding velocity spikes. The prevailing 
explanation is the development of a local high-frequency secondary instability of the primary 
wave [11]. Some argue that the spike is the result of the development of a hairpin vortex or 
other discrete vortex filament [4,12]. 

Others state that the shear turbulence originates from non-hairpin framework, e.g. 
vorticity wave packet or twisted contact structures [13-15], soliton-like coherent structure [16, 
17], spatio-temporal wave front [18]. The soliton-like coherent structure (SCS) was proposed 
to explain the velocity profile “kink” and the one-spike structure, which is a three-dimensional 
wavelike structure within the whole boundary layer, covering the near-wall region to the outer 
edge [19, 20]. 

This 3D structure was later verified by direct numerical simulation [21] and tomographic 
particle image velocimetry [22]. However, the role of this 3D wave amplification in early stage 
boundary layer transition has not previously been examined in detail especially for different 
transition regimes. 
 In the present study, three transition regimes are considered: (1) K-regime transition 
with fundamental resonance of five-wave interaction (namely (ω, 0), (ω, ±β), and (0, ±β)) [4,8]; (2) 
N-regime transition with subharmonic resonance between modes (2ω, 0) and (ω, ±β) [23, 24]. (3) 
O-regime transition with oblique breakdown induced by the interaction of a pair of oblique waves 
(ω, ±β) [25, 26]. The objective of this numerical study is to examine the detail of the warping 
process during the transition of one-spike stage and to acquire insight into the role of a 3D 
wave structure in the transition from a structure-based view by Lagrangian particle tracking 
method. 



79 Numerical simulation of K-, N- and O-regime boundary-layer transition at early nonlinear stage 
 

INCAS BULLETIN, Volume 11, Issue 3/ 2019 

2. NUMERICAL METHOD 
Parabolized stability equation (PSE) are useful in the analysis of the streamwise growth of 
linear and nonlinear disturbances in boundary layer. The use of the PSE approach for transition 
analysis is one of its most important application. The nonlinear PSE (NPSE) is described in 
detail in [27], here only a brief introduction is given. The NPSE formulation follows 

𝛹𝛹(𝑥𝑥, 𝑦𝑦, 𝜙𝜙, 𝑡𝑡) = 𝛹𝛹�(𝑥𝑥, 𝑦𝑦) +�𝛹𝛹�𝑚𝑚𝑚𝑚(𝑥𝑥, 𝑦𝑦)exp (𝑖𝑖
𝑚𝑚,𝑛𝑛

� 𝛼𝛼𝑚𝑚𝑚𝑚d𝑥𝑥
𝑥𝑥

0
− 𝑖𝑖𝜔𝜔𝑚𝑚𝑡𝑡 + 𝑖𝑖𝑖𝑖𝑖𝑖), (1) 

where Ψ ≡ (𝑢𝑢, 𝑣𝑣, 𝑤𝑤, 𝑝𝑝); 𝛹𝛹�  denotes the basic stage and 𝛹𝛹�𝑚𝑚𝑚𝑚 indicates the shape function for 
the Fourier mode (m, n), the 𝛼𝛼𝑚𝑚𝑚𝑚 and 𝜔𝜔𝑚𝑚 are streamwise wavenumber and frequency. The 

coordinate was normalized using the fixed characteristic thickness δ0 = �𝜈𝜈𝑥𝑥�0
𝑈𝑈∞
�
1
2, where 𝑥𝑥� is 

the location where disturbances were introduced. The equation (1) was substituted into the 
Navier-Stokes equation to yield the governing equation for the shape functions of each mode 
(m, n) as 

(ℒ0 + ℒ1)𝛹𝛹�𝑚𝑚𝑚𝑚 +
ℒ2𝜕𝜕𝛹𝛹�𝑚𝑚𝑚𝑚

𝜕𝜕𝜕𝜕
+

d𝛼𝛼𝑚𝑚𝑚𝑚

d𝑥𝑥
+

d𝛼𝛼𝑚𝑚𝑚𝑚

d𝑥𝑥
 ℒ3Ψ�𝑚𝑚𝑚𝑚 = ℱ𝑚𝑚𝑚𝑚, (2) 

where ℒ0 contains the linear –parallel terms, ℒ1 contains the non-parallel mean-flow terms, 
ℒ2 and ℒ3 arise from the non-parallel disturbance terms, and ℒmn is the nonlinear forcing 
term. The PSE solution employed no-slip wall condition and vanishing velocity disturbance 
far-field condition as 

𝑢𝑢�𝑚𝑚𝑚𝑚, 𝑣𝑣�𝑚𝑚𝑚𝑚,𝑤𝑤�𝑚𝑚𝑚𝑚 = 0 at 𝑦𝑦 = 0 and ∞, (3) 
and the initial condition are provided by the results of the linear stability theory [28]. Equation 
(2) was marched forward using the Euler backward scheme. 
 Table 1 gives the parameters of the introduced disturbances for the three transition regimes. 
The frequency (F) of the 2D TS-wave for K- and N-regimes is 106 × 10−6, with the amplitude 
(A) setting as 0.4% of the freestream velocity (U∞). A pair of oblique waves with amplitude 
of 0.05%U∞ was also introduced at 𝑥𝑥0. The frequency is 106 × 10−6 and 53 × 10−6 for 
the K- and N-regime respectively. For O-regime transition, only a pair of oblique waves with 
the same streamwise frequency and spanwise wavenumber as the K-regime was introduced, 
but the amplitude of which was set as 0.4%U∞. 

Table 1 Numerical setting for the three transition regimes 

Transition regimes 2D TS-wave (ω, A) 3D waves (ω, A, β) 
K (106, 0.4%U∞) (106, 0.05%U∞, 0.05) 
N (106, 0.4%U∞) (53, 0.05%U∞, 0.05) 
O - (106, 0.4%U∞, 0.05) 

 In the following section, the primary TS-wave in K- and N-regime are represented by 
(1,0), the introduced oblique waves in K- and O-regime are named as (1,±1), and the 
introduced oblique waves in N-regime denotes (1/2,±1). 

3. RESULTS 
The contours of streamwise velocity in the x-z plane at y = 2.5 is shown in Figure 1(a-c) for 
the transition of the K-regime, O-regime and N-regime respectively. As shown in Figure 1(a), 
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the K-regime is characterized by aligned low-momentum zones (LMZs), which appear as the 
blue downstream regions (see color key). These regions have a spanwise spacing of λz0=125.6, 
which is the same as the spanwise wavelength of the corresponding oblique waves. However, 
for O-regime and N-region, the LMZs both appear as a staggered pattern. The staggered LMZs 
for the O-regime develop nonlinearly from a pair of oblique waves (1,±1), farther upstream 
than for the N-regime, with a spanwise wavelength of λz0=125.6. But the streaks shown in the 
O-regime is spaced by λz = 1/2 λz0. This implies the appearance of streak mode (0,2). In both 
the K-regime and O-regime, the low-speed streak (LSS) consists of several LMZs. The LMZs 
at far downstream locations for all regimes are flanked by a pair of high-speed regions, which 
indicate the appearance of Λ-vortices. The LMZ is formed by the lift-up of a 3D wave at the 
early stage, which appears prior than Λ-vortex, as indicated by the position of LMZs in the 
figures. It may speculate that Λ-vortex is produced by the nonlinear 3D wave. 

 
Figure 1. Contour of streamwise velocity U at 𝑦𝑦 = 2.5 and 𝑡𝑡 = 0.8 T. (a) K-regime transition; (b) O-regime 

transition; (c) N-regime transition 

 The spanwise variations of streamwise velocity U at different wall-normal heights for the 
three cases are illustrated in Figure 2. The streamwise velocity is determined at x = 1296, 
spanning from z = 0 ∼ 250, which encompasses two spanwise 3D wavelength for the 
respective regimes. Figure 2 shows that the velocity patterns vary strongly with distance from 
the wall, with the most vigorous variations occurring near the central portion of the boundary 
layer. In Figure 2(a), a spike-like velocity profile (labelled P1 in the figure) is observed at the 
position of z = 125.6. Compared to Figure 1, this position is characterized as low-speed streaks 
(LSS) or LMZs. In Figure 2(b), a second spike labeled P2, is observed at two sides of the P1, 
representing a second LSS. The phenomenon of spikes in z-distribution of streamwise velocity 
becomes most apparent at upper portion of the boundary layer, with the amplitude of the 

LMZ 

LSS 

LMZ 

Λ 

Λ 

Λ 



81 Numerical simulation of K-, N- and O-regime boundary-layer transition at early nonlinear stage 
 

INCAS BULLETIN, Volume 11, Issue 3/ 2019 

second LSS being sometimes even greater than the primary LSS. Figure 2(c) shows the 
transverse variation of U for the N-regime. In contrast to the K- and O-regime, the amplitude 
variation is less, with no apparent spike-like LSS development during this weak nonlinear 
stage, which is consistent with Figure 1(c). For all the regimes, the velocity distribution 
appears differently at the upper portion and the near-wall portion of the boundary layer. 
 

 
Figure 2. Spanwise variation of streamwise velocity at x = 1296 and t = 0.78 T, with different y. (a) K-regime 

transition; (b) O-regime transition; (c) N-regime transition 

 Timeseries of the variations in streamwise velocity U at selected wall-normal positions 
are shown in Figure 3 for the three transition regimes. The timeseries clearly shows the one-
spike stage of transition, since multi-spikes in a period of streamwise velocity trace have not 
arisen yet for all regimes. Figure 3 shows that a phase shift (marked by dashed lines) develops 
with distance from the wall. The waveform of U in the central portion of boundary layer 
deforms from sinusoidal shape into an asymmetric one, appearing as bottle shape with a 
plateau (marked by arrows). This is most apparent for the O-regime transition, as shown in 
Figure 3(b). The plateau in the velocity timeseries may be due to the appearance of higher 
frequency modes nonlinearly developed from the interaction of the oblique waves. 

 
Figure 3. Time series of streamwise velocity at x = 1296, with different y. (a) K-regime transition; (b) O- regime 

transition; (c) N-regime transition 

 Several classical experimental and numerical visualization of marked particles provided 
time-line patterns of boundary layer transition, e.g. [7, 10, 29, 30]. A similar visualization of 
marked particles as [30, 31] is implemented by the integration of 

∂ξ
∂τ

= 𝑣𝑣(ξ1 − 𝑐𝑐𝑇𝑇𝑇𝑇𝜏𝜏, ξ2, ξ3; 𝑡𝑡)   (𝜉𝜉(0) = 𝜉𝜉0), (4) 

where ξ(0)  is the initial position of the marked particle at t =0, ξ(𝑡𝑡)  is the position of a 
particle in the rest frame, and 𝑣𝑣(𝑥𝑥, 𝑡𝑡) denotes the velocity field in the rest frame. Figure 4 



Xian-Yang JIANG, Cunbiao LEE 82 
 

INCAS BULLETIN, Volume 11, Issue 3/ 2019 

shows the timeline surface of the three transition regimes at t = 2.7T, initiated at x = 795, 
y=1.71. Here T indicates Tollmien-Schlichting period. The contour in the figure indicates the 
wall-normal distance. For K-regime transition, the 2D timelines progressively develop into 3D 
timelines with the wave front warped, as shown in Figure 4(a). We term the warped wave front 
as WWF, which is a manifestation of the developed three-dimensional wave structure in 
timeline sheet. At a downstream position, the WWF lifts up and develops into a Λ-vortex. The 
warping process of timelines sheet occurs similarly for the O- and N-regime transition, as 
shown in Figure 4(b) and (c). The spanwise stripe for N-regime transition have a slight 
waviness in the spanwise direction initially (WWF), and becomes a folded particle sheet 
downstream, which eventually becomes screw-like structure of the Λ-legs. But there is no 
spanwise WWF for the O-regime, where the WWF is staggered initially and develops into Λ-
vortex earlier than the other two regimes. When compared with the velocity contours shown 
in Figure 1, the pattern of the WWF looks markedly similar to the pattern of LMZ. Thus, it 
may further hypothesize that the low-speed streak consists of WWFs. 

 
Figure 4. Time-line surfaces for K-regime transition (a), O-regime transition (b) and N-regime transition (c) at t = 

2.7T, initiated at x = 795, y=1.71 

 Figure 5 shows the timelines starting from a wire in the middle plane (x-y plane in the 
dashed line of Figure 4) at t = 3.4T for the three transition regimes, simulating visualizations 
with a bubble wire normal to the wall at peak position. The K-regime transition shows that the 
inflectional region (labeled 1) progressively develops into warp wave front (labeled 2-4). The 
lift-up of a WWF induces an upward motion (labeled E) and downward motion (labeled S). 
The strongly distortion of the timelines indicates the position of high-shear layer. Similar 
patterns of timelines for O- and N-regimes are shown in Figure 5(b) and (c). The WWF appears 
at a higher position for O-regime than for N-regime, and the latter of which develops in near-
wall region initially. The roll-up behavior is not apparent at the time t =3.4T, indicating that a 
discrete vortex has not developed yet. The pattern shown in Figure 5 is markedly similar to 
the hydrogen bubble visualization of [7], who term the initial inflectional region as a “kink” 
structure. 

 
Figure 5. Side views of vertical time-lines at t = 3.4T, (a) K-regime; (b) O-regime; (c) N-regime. 

 Figure 6 shows the deformation of two material surfaces at selected wall-normal positions, 
i.e. y= 1.71 and 5.89, at t = 2T. The traced particles of which are initially in a flat surface. The 
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contour in the figure indicates the wall-normal position, see the color key on the right. For the 
K-regime transition, the surface in the near-wall region represents a similar warped structure 
of Figure 4. While the surface at the upper portion of the boundary layer shows the 
development of 2D wave into 3D wave with no apparent warping. The deformation of material 
surfaces for N-regime is quite similar to K-regime, but they undergoes a stronger warping 
process with higher amplitude of the 3D wave, as shown in Figure 6(c). For the O-regime 
transition, it clearly shows the appearance of 3D wave in the region of LSS at the upper surface. 
In Figure 6, the white lines in the middle of the surface indicate the profile of the deformed 
surface. The side view of these profiles at more selected wall-normal positions are shown in 
Figure 7 at the same time of Figure 6. 
-

 
Figure 6. Deformation of material surfaces at t = 2T, initiated at y = 1.71 and 5.89: (a) K-regime; (b) O-regime; 

(c) N-regime 

 Figure 7(a) clearly shows that the most vigorous warping process occurs in the near-wall 
region, and the warped wave front tends to roll up at a downstream position. But the surface 
profiles at the upper boundary layer undulate periodically, growing the amplitude of their 
waveform. For the O-regime, the warped wave front appears at higher positions (labeled 3 and 
4). The surface profiles at the near-wall region (e.g. 1 and 2) represent a spike-like pattern, 
indicated as A in Figure 7(b), which protrudes upward to lift the boundary layer away from the 
wall. This introduces a strong inflectional region of vertical timelines in Figure 5(b). In 
contrast, the surface profiles further from the wall (e.g. 6 to 11) indicate only minimal 
amplification, with an inclination away from the surface as they advent downstream. For the 
N-regime, the near-wall surface profiles are strongly warped, with their amplitude amplifying 
rapidly at the position of 𝑥𝑥 ≈ 1250. The wavelength of this amplified 3D wave is nearly twice 
that of the initial TS- wave. This strong amplification is hypothesized to be due to subharmonic 
resonance of N-regime transition. Note that prior to the amplification of a 3D wave, there 
appears to be a relatively quiet zone, labeled E in Figure 7(c), which is similar to the wave 
breakdown behavior within a compressible boundary layer (Li et al. 2010; Zhang et al. 2013). 
The presence of this quiet zone before the development of the amplified 3D wave is also 
reflected in the timeline patterns shown in Figure 5(c). The presence of this quiet zone is 
hypothesized to be the result of a nonlinear interaction between waves, i.e. the attenuation of 
the primary wave and the growth of a low-frequency disturbance. The mechanism of 
development of this quiet zone merits further study. An additional significant observation is 
that the surface profiles for all the regimes at the central portion of the boundary layer (e.g. 3 
and 4) display a significant secondary peak that is superposed on the primary wave, denoted 
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as C in the figure. This strong secondary peak appears to be correlated with the folding 
behavior of the particle surface. For all the transition regimes, the structures at the upper 
boundary layer are similar to solitary waves propagating downstream with little dissipation. 
However, both the soliton-like wave structures at the upper region or the warped wave front 
at the near-wall region are essentially caused by the same structure, which is hypothesized as 
a soliton-like coherent structure (SCS). 
 

 
Figure 7. Material lines corresponds to the profile at the middle plane of the deformed surface in Figure 6 at t = 
2T, (a) K-regime; (b) O-regime; (c) N-regime. The number labeled 1,2,...,11 correspond to wall-normal position 

y = 1.71, 2.35, 3.00, 3.83, 4.89, 5.89, 7.61, 8.68, 9.94,11.42, 13.17. 

4. SUMMARY AND CONCLUSIONS 
In this paper, nonlinear parabolized stability equation (NPSE) is solved numerically to 
simulate the transition of K-, O- and N-regimes at early nonlinear stage. The contours of 
instantaneous streamwise velocity for the three regimes are displayed in a x-z plane, which 
reveal the classical aligned or staggered pattern of low momentum zone (LMZ). The presence 
of the LMZ is due to the appearance of three-dimensional wave (3D wave) that is produced 
nonlinearly by the amplified disturbances. The low-speed streak (LSS) for K- and O- regime 
transition is observed to consist of several LMZs. The time series of streamwise velocity shows 
the one-spike stage of the regimes, which illustrates the phase shift and the deformation of 
waveform developing with distance from the wall. Numerical visualization is reconstructed 
based on the Lagrangian tracking of marked particles to compare with previous experimental 
results. The timelines sheet at the near-wall region for all transition regimes represents a 
warped wave front (WWF) which eventually develops into a Λ-vortex downstream. The 
timeline profiles in the vertical plane further provide the detail of warping process, which 
reveal the upward and downward motions caused by the lift-up of the WWF. The deformation 
of traced material surfaces for the three regimes display 3D wave structures at different wall-
normal positions, indicating that the WWF is caused by the amplification of the 3D wave. The 
warping and amplifying processes are finally shown by the surface profiles initiated at 
different wall-normal positions in the middle plane. The nonlinear 3D wave manifests as a 
warped wave front in the near-wall region and as a soliton-like wave structure at the upper 
region of the boundary layer. The 3D wave structure is further hypothesized as a soliton-like 
coherent structure. 
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