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Abstract: Two guidance laws are discussed in this paper. The first one is the Vector guidance law. 

This guidance law when equipped with the appropriate gains has the capability to hit a target at the 

desired impact angle. A parametric method to find the optimal gains of this guidance law which will 

maximize the impact velocity and keep the miss distance and impact angle errors within bounds is 

developed in this research. Further, it is seen that the separation in the upper and lower bounds 

increases with increase in one of the gain values. Also, it is found that, only one of the gain values is 

independent and that the other dependent gain value is related through a simple straight-line 

expression. Next guidance law to be discussed is the Diveline guidance law. This law uses multiple 

divelines to hit a target at the desired impact angle. In the present research, the capability of this 

Diveline guidance law using a single diveline is analyzed. A method to derive the Diveline guidance 

law from the Vector guidance law is given in this study. The miss distance and impact angle errors 

evolving because of reducing the maximum acceleration limit is studied using simulations. Finally, 

three methods to increase the capture region (i.e. bounds on the set of initial states to achieve zero 

errors) of a guidance law is discussed. 

Key Words: Diveline guidance, Explicit Guidance, Impact angle constrained Guidance, Reentry 

guidance 

NOMENCLATURE 

𝑋, 𝑌, 𝑍 = Position of the vehicle from the origin  𝑉𝑚 = Vehicle velocity magnitude 

�̈�, �̈�, 𝑍 ̈  = Acceleration of the reentry vehicle  𝑈𝐿𝑥
, 𝑈𝐿𝑦

, 𝑈𝐿𝑧
 = Unit lift vector 

components of the guidance command 

𝐶𝐿 = Lift coefficient  𝛽𝑚  = Ballistic coefficient 

𝐶𝐷 = Drag coefficient   𝐶𝐷0
 = Zero-lift drag coefficient 

𝐶𝐿
∗ = Critical lift coefficient    

𝜌        = Atmospheric density   
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1. INTRODUCTION 

Explicit guidance laws are used on-board re-entry vehicles to determine the re-entry path. 

These laws do not require stored trajectories. Vector guidance law is a type of explicit 

guidance law which uses vector cross product and dot product to generate the guidance 

commands. The path that has to be flown is decided on-board based on the current vehicle 

range to the target, current velocity of the vehicle, and velocity and range vector orientation 

relative to the desired impact angle orientation. Proportional navigation and pursuit guidance 

are also types of explicit guidance laws used against maneuvering targets. These laws do not 

shape trajectory nor control impact angle. In this paper, the vector guidance law is analyzed 

in the context of diveline guidance. The effect of various gain values on the shape of the 

trajectory, the miss distance and impact angle error is studied. This helps in choosing the 

value of the gains. Diveline guidance which is a modified vector guidance equation is also 

analyzed. The diveline guidance law is derived from the vector guidance equation. 

There are many guidance laws that deal with impact angle constraints. Guidance laws such 

as  proportional navigation (PN) [1], trajectory shaping guidance [2] (a form of augmented 

PN), diveline guidance [3], [4] (a form of vector guidance [5]), tangent cubic guidance [6] (a 

form of characteristic curve guidance [7]), orientation guidance, composite guidance 

(modification of PN), state-dependent Riccati equation-based guidance law, adaptive PN [8], 

[9] (adaptive gains for PN), and optimal guidance [10], [11], [12], [13], [14], [15], [16] using 

linear quadratic regulator are some of the guidance laws that are found in the literature which 

satisfy the impact angle requirements. 

Impact angle constrained guidance for re-entry vehicles requires attention because of the 

complexity in maneuvering the vehicle to achieve required terminal constraints. 

Maneuvering at hypersonic speeds requires intricate control system design. Trajectory design 

is the first step to mitigate the errors in meeting these terminal conditions. Due to increased 

accuracy requirements and the need for evasion, maneuverable re-entry vehicle technology 

requires immediate attention. This paper deals with the onboard trajectory design for re-entry 

vehicles using vector guidance law. The guidance law is three-dimensional cross-product 

steering law which can be customized for both space shuttle re-entry and re-entry missiles. 

Desired azimuthal impact angle and elevation impact angle can be accomplished using this 

guidance law. 

2. MATHEMATICAL MODEL OF THE VEHICLE USED 

For a non-rotating flat earth, the equations of motion of a lifting reentry vehicle in inertial 

frame is given by [4] 

�̈� =
𝐷𝑥 + 𝐿𝑥

𝑚
 (1) 

�̈� =
𝐷𝑦 + 𝐿𝑦

𝑚
 (2) 

�̈� =
𝐷𝑧 + 𝐿𝑧

𝑚
−  𝑔 (3) 

The drag components in (1)-(3) are given by  
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And the lift components are given by 

[

𝐿𝑥

𝐿𝑦

𝐿𝑧

] = (
𝜌

2𝛽𝑚

) (
𝐶𝐿

𝐶𝐷

) [1 + (
𝐶𝐿

𝐶𝐿
∗)

2

] 𝑉𝑚
2 [

𝑈𝐿𝑥

𝑈𝐿𝑦

𝑈𝐿𝑧

] (5) 

3. VECTOR GUIDANCE LAW 

The present paper discusses a strategy to determine closed loop gains for an explicit vector 

guidance law which results in near optimal trajectory. The objective of the parameters in any 

guidance law depends basically on the mission. The objective of the mission being discussed 

is to hit the target at a particular azimuth angle and elevation angle. The vehicle is fed with 

the target coordinates and the desired impact angle. There is no onboard scanning for the 

target because the target is assumed to be stationary. Only the navigation instruments are 

required to provide the instantaneous position and velocity used by the guidance law to 

determine lift. Hence the vector guidance law uses the range and velocity information 

provided by the navigation instruments and gives the lift acceleration required in all the three 

directions. This is transformed into coordinates along and normal to the velocity vector so 

that the command can be issued to the vehicle autopilot. 

In Fig. 1, an ENU frame is chosen with the origin of the frame at the surface of the 

earth. The range vector �⃗�   is the line-of-sight vector to the target from the vehicle. When the 

vehicle velocity vector �⃗�   is aligned with the line of sight (LOS) vector, and is maintained to 

be so, the vehicle would hit the target. But to hit the target at a particular impact angle, also 

called the diveline angle (�⃗⃗� ), the angle between the velocity vector and the diveline vector 

should also go to zero. Hence three error angles, 𝜃1, 𝜃2, 𝜃3 as shown in Fig. 1, which are the 

angles between 𝑉  and �⃗� , �⃗�   and �⃗⃗� , �⃗�   and �⃗⃗�  respectively, have to go to zero so that all the 

three vectors are collinear at the terminal condition. 

 

Figure 1: Engagement geometry 
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The objective is to make 𝜃1 = 𝜃2 = 𝜃3 = 0 at 𝑡 = 𝑡𝑓. The cross product of the terms 

�⃗� × �⃗�  , �⃗� × �⃗⃗� , �⃗� × �⃗⃗� , should go to zero and the dot, product of the terms will result in 

||𝑉||. ||𝑅||, ||𝑅||. ||𝐷||, ||𝑉||. ||𝐷||. So the commanded acceleration has to be to zero at the 

terminal condition. But as long as there is an error angle, the acceleration should not be zero. 

So the law can be formulated as a simple proportional gain as 𝐺( �⃗� × �⃗� ) + 𝐻(�⃗� × �⃗⃗� ) +

𝐼(�⃗� × �⃗⃗� ) where G, H, I are the guidance gains. 

If �⃗� , �⃗� , �⃗⃗�  are coplanar, then from Fig. 1, we get 

𝜃1 + 𝜃3 + (1800 − 𝜃2) = 1800  (6) 

𝜃2 = 𝜃1 + 𝜃3 (7) 

Hence, if any two angles go to zero, the third angle also goes to zero and so we can omit 

any one component. If we omit the third component, the resulting equation for lift 

acceleration can be written as 

𝑎 𝐿 =  𝐺( �⃗� × �⃗� ) + 𝐻(�⃗� × �⃗⃗� ) (8) 

Consider a plane containing �⃗�  and �⃗� . The two cross products in the above equation will 

result in a direction which is out of the plane containing the error angles and will not help in 

rendering the error angles to be zero. The direction of the lift has to be such that the angular 

acceleration caused by lift, will mitigate the errors in the plane containing the lift vector. 

This lift direction should also be orthogonal to the velocity vector. To achieve this, the cross 

product of the terms with the velocity vector is necessary. This will result in an in-plane 

vector orthogonal to velocity vector. 

𝑎 𝐿 =  𝐺. �⃗� × ( �⃗� × �⃗� ) + 𝐻. �⃗� × (�⃗� × �⃗⃗� ) (9) 

The units are inconsistent on the two sides of the equation, and by choosing the proper 

values of G and H, the terminal constraints can be achieved. The gains should be non-

dimensionalised such that the units are consistent. When we chose 𝐺 =
{𝐴}

{|𝑅|2}
 and 𝐻 =

{𝐴−𝐵}

{|𝑅||𝐷|}
 in [9], the units are consistent and the, vectors in the inner cross product can be 

normalized and the time-to-go (𝑡{𝑔𝑜}) parameter appears [17]. 

𝑎 𝐿 = �⃗� × [ 
𝐴

||𝑅2||
. ( �⃗� × �⃗� ) +

𝐴 − 𝐵

||𝑅||||𝐷||
. (�⃗� × �⃗⃗� )] (10) 

The unit lift vector required by the vehicle model in Eqn. 5 is obtained by �⃗⃗� 𝐿 =
�⃗� 

||�⃗� ||
. 

4. PARAMETRIC STUDY OF THE EFFECT OF GAINS ON THE MISS 

DISTANCE AND IMPACT ANGLE ERRORS 

Table 1: Parameter values 

Parameter Description Value 

𝐶𝐷0
 Zero lift drag coefficient 0.1 

(
𝐿

𝐷
)
𝑚𝑎𝑥

 
Maximum lift to drag ratio 2.5 
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𝑙 Reference length 0.4 m 

𝑚 Mass 140 kg 

𝛽 Ballistic coefficient 1.1141e4 kg/m^2 

𝑔 Gravitational acceleration 9.7803 m/s^2 

𝐺 Diveline gain 0.5 

𝛾0 Initial flight path angle 300 

𝜓0 Initial heading angle 450 

𝑉0 Velocity 5 km/s 

[𝑋0, 𝑌0, 𝑍0] Initial position [0,0,25] km 

[𝑋𝑓 , 𝑌𝑓 , 𝑍𝑓] Target position [3e3,3e3,0] km 

The value of the gains A and B decide the shape of the trajectory as well as the miss 

distance and impact angle errors. Also, the guidance law has an inaccessible area of 

operation where it cannot hit, irrespective of the gain values. A guidance law has a particular 

region of operation, called capture region. In vector guidance law the capture region is a 

function of the maximum initial differences between 𝜃1, 𝜃2, 𝜃3. 

To study the effects of the guidance parameters a re-entry vehicle with the following 

parameters are chosen [4]. Here 𝛾 = 𝑠𝑖𝑛−1 (−
||𝑉𝑧||

||𝑉||
) and 𝜓 = 𝑡𝑎𝑛−1 (

||𝑉𝑥||

||𝑉𝑦||
). 

||𝑉𝑥||, ||𝑉𝑦|| , ||𝑉𝑧|| are the velocity magnitudes in 𝑋, 𝑌, 𝑍 directions respectively.||𝑉||is the 

resultant velocity magnitude. 

It is assumed that the commanded acceleration is equal to achieved acceleration. 

Exponential atmospheric approximation is used to find the density. The idea is to first find 

the range of combinations of A and B which will result in minimum miss distance and 

impact angle error. Then using that particular range of gains the capture region in terms of 

maximum angle between the three vectors is found. This is a brute force method of finding 

the capture region of a guidance law. 

 

Figure 2: Trajectories for various values of Gain A 
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Figure 3: Trajectories for various values of Gain B 

To see the effect of individual terms in the vector guidance law, the gains were selected 

such that only the range goes to zero. 

When the gain B is equal to A, the term containing the final diveline becomes zero. Fig. 

1 shows trajectories for various values of gain A and the consequent impact angle errors. In 

Fig. 2, the gains were chosen such that the final impact angle is achieved. So gain A was set 

to zero and B was varied. 

This resulted in miss distances, but the terminal impact angle was satisfied. Now to see 

the overall effect of varying both the gains, simulations were run, resulting in 400 

trajectories. 

From these trajectories, the combinations of gains A and B, for which the miss distance 

and impact angle errors are minima was selected. 

 
Figure 4: Cubic spline interpolation of impact angle errors of Vector guidance 
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Figure 5 : Cubic spline interpolation of miss distance of Vector guidance 

 

Figure 6: Region of minimum miss distance and Impact angle error 

Fig. 4 and Fig. 5 shows the cubic spline interpolated results of the absolute value of 

impact angle errors and a log of miss distance. There turned out to be a pattern in which both 

the gains affect these parameters. From Fig. 6, it can be observed that there is a region of 

overlap and not overlap. The triangular region in Fig. 6 whose boundary is given by the 

triangular mark, is the overlapping region where both the errors are at their minimal. Both 

the errors form a ridge of space between two mountains at which the errors are minimum. 

From these figures, the combinations of A and B for which minimum errors would occur can 

be found. The analytical investigations are not possible because of the dependency of the 

error on the vehicle model. Hence every vehicle model has to be flown in-order to find the 

combinations of gains A and B. 

Now the value of gains been found, the vehicle cannot hit the target beyond a particular 

range. The method of using the constant gain values of A and B limits the capture region. 
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Hence the gains have to be adapted according to the scenarios which will be discussed later. 

In the minimal error combinations of A and B, there exist one or more values of B for single 

value of A for which minimal error occurs and the range of B increases with A. An 

approximate polynomial equation relating A and B can be fitted as 𝐵 =  1.6𝐴 − 0.8137 

which will result in a value of B which is the midpoint, i.e. there are particular set of values 

above and below this value for which the minimal error occurs.  

As said earlier the shape of the trajectory depends on the gains. Given this gain limits, 

we can change the shape by changing the gains within these gain bounds. The figure shows a 

6th order polynomial fit which passes through the middle of the upper and lower bounds of 

the gain B. The analysis done so far ensures that the value of the gains A and B decides the 

terminal accuracy. The gains can be used as weights to a trade-off between allowable miss 

distance and impact angle error depending on the scenario. In the case of evasive 

maneuvering, the bounds on these gains help in determining the possible trajectory shapes 

with minimum terminal errors. The results show that there are well defined lower and upper 

bounds on the gains that result in a near optimal terminal guidance solution. 

 

Figure 7: Polynomial fit for choosing gains A and B 

5. DIVELINE GUIDANCE LAW 

The diveline guidance may also be called as a three-dimensional waypoint guidance since, 

instead of points, directions are used. In a three-dimensional space, a diveline is represented 

by five parameters. 

 the point from which it originates (X, Y, Z), and 

 the azimuth angle (D1) and the elevation angle(D2) of the line as shown in Fig.1. 

A single line with its origin at the target is the simplest case. But this does not provide 

flexibility regarding trajectory shaping. In the case of off-line trajectory shaping, many 

divelines are used with the final diveline emanating from the target in the desired direction. 

Optimal selection of divelines is required for each application if multiple divelines are 

considered. The vehicle's velocity vector is steered toward the divelines by a cross-product 

guidance law. A simple two-dimensional cross-product guidance law drives the error angle 

between the vehicle's velocity vector and the range vector to the target to zero as fast as 

possible. But in the case of diveline guidance, the three-dimensional cross-product steering 

law, henceforth called diveline guidance law, sets a direction of the lift vector such that the 

velocity vector of the vehicle is commanded along the diveline. It then reduces the angle 
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between the range vector to the origin of the diveline and the diveline direction. To 

accomplish this, the vehicle may take a considerable amount of time depending on the L/D 

ratio of the vehicle used. 

A sensible selection of the divelines is required for the vehicle to achieve all intended 

waypoints. The successful accomplishment of the waypoint depends on the current vehicle 

velocity, attitude, range vector to the waypoint, and the angles D1, D2 of the approaching 

diveline. The time required for the vehicle to arrive at the waypoints is important in the case 

of missile re-entry, of lesser importance in the case of manned reentry. 

In manned re-entry applications, multiple trajectories are generated offline and are 

stored in the onboard computer and the optimal of the trajectories is used as the primary 

trajectory. But as the vehicle re-enters the atmosphere, depending on the measured 

dispersion from the nominal trajectory, a decision is taken whether the guidance law can 

make the vehicle steer to the primary trajectory. If not then another trajectory is chosen from 

the multiple trajectories stored in onboard computer. The diveline guidance algorithm can 

also be derived from the vector guidance equations. From the vector guidance laws let us 

take 𝐺 = �⃗� . �⃗⃗�  and 𝐻 = −||𝑅||
2
. Substitute the values in eqn. (9) 

𝑎 𝐿 = (�⃗� × ( �⃗� × �⃗� )) �⃗� . �⃗⃗� − (�⃗� × (�⃗� × �⃗⃗� )) ||𝑅||
2

 (11) 

This can be written as 

𝑎 𝐿 = �⃗� × [(�⃗� × �⃗� )(�⃗� . �⃗⃗� ) − (�⃗� × �⃗⃗� )(�⃗� . �⃗� )]  (12) 

Simplifying this equation we get 

𝑎 𝐿 = �⃗� × [�⃗� × [�⃗� × (�⃗� × �⃗⃗� )]] (13) 

𝑎 𝐿 = �⃗� × [�⃗� × �⃗� ] (14) 

where �⃗� = �⃗� × (�⃗� × �⃗⃗� ). This can be normalized and written as 

�⃗⃗� 𝐿 = �⃗⃗� 𝑉 × [�⃗⃗� 𝑉 × �⃗� ] (15) 

And the �⃗�  becomes �⃗⃗� 𝑅 × (�⃗⃗� 𝑅 × �⃗⃗� 𝐷). When the weights are given to the components of �⃗�  
we get 

�⃗� = 𝐹. �⃗⃗� 𝑅(�⃗⃗� 𝑅 . �⃗⃗� 𝐷) − 𝐺. �⃗⃗� 𝐷(�⃗⃗� 𝑅 . �⃗⃗� 𝑅) (16) 

Let �⃗⃗⃗�  be a vector achieved by substituting F=1 in �⃗�  

�⃗⃗⃗� = �⃗⃗� 𝑅(�⃗⃗� 𝑅 . �⃗⃗� 𝐷) − 𝐺�⃗⃗� 𝐷 (17) 

= �⃗⃗� 𝑅𝑐𝑜𝑠𝜃3 − 𝐺�⃗⃗� 𝐷 (18) 

The �⃗�  in (17) can be replaced by �⃗⃗⃗�  can be written as 

𝑈𝐿 = �⃗⃗� 𝑉 × (�⃗⃗� 𝑉 × �⃗⃗⃗� ) (19) 

This is the general form of Diveline guidance law [4]. A successful diveline guidance 

maneuver will result in  

�⃗⃗� 𝑉 = �⃗⃗� 𝐷 (20) 
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Substituting in (21) we get 

�⃗⃗� 𝐿 = �⃗⃗� 𝐷(�⃗⃗� 𝐷 . �⃗⃗⃗� ) − �⃗⃗⃗�  (21) 

Substitute (19) in (23) we get 

�⃗⃗� 𝐿 = �⃗⃗� 𝐷[�⃗⃗� 𝐷{�⃗⃗� 𝑅(�⃗⃗� 𝑅 . �⃗⃗� 𝐷) − 𝐺(�⃗⃗� 𝐷 . �⃗⃗� 𝐷)}] − �⃗⃗� 𝑅(�⃗⃗� 𝑅 . �⃗⃗� 𝐷) + 𝐺. �⃗⃗� 𝐷 (22) 

When the diveline is accomplished successfully, the distance between the vehicle and the 

diveline i.e. �⃗⃗� 𝑅 = 0 . Hence substituting in the previous equation we get 

�⃗⃗� 𝐿 = �⃗⃗� 𝐷[−𝐺] +  𝐺[�⃗⃗� 𝐷] (23) 

�⃗⃗� 𝐿 = 0 (24) 

Thus theoretically the diveline guidance command goes to zero at 𝑡 = 𝑡𝑓. This behaviour is 

seen notably in optimal guidance laws [3]. 

 
Figure 8: Trajectories for maximum acceleration limit of 100 g and 110 g 

 
Figure 9: Angle between the vectors �⃗� , �⃗� , �⃗⃗�  
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In Fig. 9, the guidance law tries to nullify 𝜃3 followed by 𝜃2 and 𝜃1. This sequence 

results in a miss if the maximum permissible limit is set to 100 g as seen in Fig. 8. When the 

limit is increased to 110 g there is zero miss. In reality, increasing the maximum acceleration 

limit is infeasible. This problem in terminal accuracy can be mitigated by using moving aim-

point technique. This technique can also be used for trajectory shaping.  

5.1 Multiple aim-point techniques 

The terminal accuracy can be improved by using multiple aim-points. These aim-points are 

placed at different altitudes in a plane which is orthogonal to the XY plane and contains the 

final diveline. Initially, the guidance law attempts to steer the reentry vehicle toward these 

apparent aim-points and finally reaches the target. Every guidance law has a region beyond 

which it cannot hit. The capture region of any guidance law can be improved by this 

technique. The moving aim-point technique may be said as a trajectory following guidance 

with fewer points compared to the nominal trajectory tracking guidance which requires the 

nominal states at coarse intervals. Aim-points are usually selected at the boundaries of the 

capture region. So the boundaries of the capture region are extended in a cascade fashion.  

Suppose the angle constraint in the intermediate aim-points is violated, then the 

subsequent aim-points are also missed. This can be avoided by using a switching algorithm 

which switches the current aim-point to the subsequent when the vehicle goes out of the 

capture region [17]. Every aim-point has a capture region. i.e. only at particular initial 

velocity, flight path angle can the aim-point be achieved. To efficiently use the multiple aim-

point techniques, the capture region of the guidance law being used needs to be known. The 

number of aim-points required and the location of the aim-points are preloaded in the on-

board computer. The previous problem of increasing the maximum permissible side 

acceleration can be solved using this technique without increasing the upper bound. 

Placing an intermediate aim-point at an altitude of 20 km helps the vehicle to achieve 

the target without increasing the upper bound on the maximum permissible acceleration 

limit. The location of the aim-point was found by trial and error. Since the analytical 

framework for the capture region of diveline guidance law is not yet developed, it is difficult 

to locate the aim-points manually. 

 
Figure 10: Multiple aim-point technique 
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Some cases might require more than one aim-point and locating them is a tough task until we 

know the capture region. Thus the multiple aim-point technique helps in achieving the 

terminal accuracy. 

Simulation results show that they can be used for trajectory shaping as well. The simulation 

result is shown in Fig. 10 has a maximum acceleration limit of 100 g and can achieve the 

impact angle constraints whereas in Fig. 8, the value of the limit is increased to 110 g which 

is beyond the allowable force limit of the reentry vehicle. Thus the moving aim-point 

technique has the potential to reduce structural costs. 

5.2 Adaptive gain updation 

Adaptive update of the gains is a widely used technique and is successfully implemented in 

proportional navigation. The base guidance law with no adaptive update of its gains 

generally gives zero miss distance but the terminal impact angle constraints are not satisfied. 

Hence the guidance parameters are updated based on some closed loop non-linear adaptation 

laws [8]. 

Using these gains, the guidance law is able to steer the vehicle successfully to the target. 

From Fig. 6, the boundaries for the values of gains A and B within which the gains can be 

adapted are found. 

5.3 Null Angle method 

We propose a novel method to achieve the terminal conditions. The vector guidance law 

brings the angle between �⃗�  and �⃗⃗�  (𝜃3) to zero first, then exerts a pull up maneuver to bring 

the angle between �⃗�  and �⃗⃗�  (𝜃2) to zero. Finally the angle between �⃗�  and �⃗�  (𝜃1) is brought to 

zero. This can be seen in Fig. 9 where the angles are given for both 100g and 110g. 

The problem with the current method is that the angle goes to zero first and they skip back 

and finally at the end point they all go to zero at the same time. This might result in 

undesired commands. This skip occurs because the guidance law first tries to nullify 𝜃3. But 

this is achieved by changing the velocity direction. 

Hence 𝜃1, 𝜃2 also changes. Once 𝜃3 reaches zero, the guidance law tries to nullify 𝜃2. But 

the inertia and the maximum acceleration limits of the vehicle doesn't allow the vehicle to 

turn instantaneously. 

This makes 𝜃3 to vary from its zero position. The same happens for 𝜃1 also. This skip can be 

avoided by adapting the gains such that there is no skip and all the three angles go to zero 

simultaneously. This method will result in increased time spending of the vehicle in the 

diveline which increases the impact velocity. 

6. CONCLUSIONS 

The present study describes a strategy to arrive at near optimal closed loop guidance gains 

for meeting the terminal constraints of impact angle and miss distance, for the Vector 

guidance and Diveline guidance technique. A parametric study was set up to obtain the 

applicable gain ranges, from which the upper and lower bounds on gains are determined that 

provide least impact angle error and the least miss distance. The determination of these gain 

bounds is the first step towards determining the capturability region analytically, for the 

vector guidance law considered in this study. The study also establishes a formal basis for 

using multiple divelines in reducing the `g' loads on the re-entry vehicle, in addition to 

achieving the terminal accuracy. 
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