Verification of Checking of the Validity and Effectiveness of Damage

Dorin LOZICI-BRINZEI¹, Radu BISCA¹, Simion TATARU*^{,2}

*Corresponding author ¹INCAS – National Institute for Aerospace Research "Elie Carafoli", B-dul Iuliu Maniu 220, Bucharest 061126, Romania, lozici.dorin@incas.ro, bisca.radu@incas.ro *.²AEROSPACE Consulting, B-dul Iuliu Maniu 220, Bucharest 061126 Bucharest, Romania, tataru.simion@incas.ro

DOI: 10.13111/2066-8201.2017.9.2.12

Received: 17 March 2017/ Accepted: 21 April 2017/ Published: June 2017 Copyright©2017. Published by INCAS. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Abstract: This paper presents a methodology for identifying some stress concentrators based on the modal analysis performed using MSC Patran and MSC Nastran programs. The influence of a beam crack on its own frequency is practically insignificant. In order to emphasize this concentrator and its position, a modal shape processing method is used, by way of a program developed in EXCEL.

Key Works: stress analysis, finite element, numerical analysis

1. INTRODUCTION

To verify the validity and effectiveness of the damage algorithms introduced above, numerical modal analysis based on the finite element (FE) method was performed. Numerical analysis was carried out by using the commercial FE software MSC Nastran 2012.1. The geometrical configuration of the beams is shown in Fig. 1.

Fig. 1 Geometry and dimensions of the test beams containing mill-cut damage

The dimensions of *Beam 1* are as follows: length L= 1250 mm, width B = 50 mm, and thickness H = 5 mm. Mill-cut damage with a depth of 2 mm and size (width) of 50 mm is introduced at a distance of 750 mm from one edge of the beam. Experimentally determined material properties are: Young's modulus E = 69 GPa, Poission ratio v = 0.31 and mass density $\rho = 2708$ kg/m3. Finite element models for beams consist of two dimensional beam elements (MSC Patran 2012). Finite element length of 10 mm is considered: thus *Beam 1* is constructed by means of 125 equal length elements (i = 126 nodes) [1], [2], [3].

Fig. 2 FEM of the test healthy beams

For the healthy beam, a constant stiffness *EI* is assumed for all elements (see Figure 2), while the damaged beam is modeled by reducing the stiffness of the selected elements (see Figure 3).

Reduction of stiffness is achieved by decreasing the thickness of elements in the damaged region of the beam, which consequently reduces the moment of inertia I[4],[5],[6].

Fig. 3 FEM of the test beams containing mill-cut damage

Using the modal analysis, first three natural frequencies and corresponding flexural mode shapes were obtained for the intact beam (see Figure 4 through Figure 6).

Fig. 4 Flexural mode shapes were obtained for the intact beam

Fig. 5 Flexural mode shapes were obtained for the intact beam

Fig. 6 flexural mode shapes were obtained for the intact beam

2. MODE SHAPE CURVATURE (MSC) DAMAGE INDEX

In this algorithm the location of damage is assessed by the difference in the mode shape curvature between the healthy and the damaged case

$$\Delta v_i^{\prime\prime} = \left| v_i^{\prime\prime d} - v_i^{\prime\prime} \right|$$

where v_i^d and v_i are mode shapes of the damaged and the healthy state of a structure, respectively, and *i* denotes the node number or measured point.

The mode shape curvatures are computed from numerically calculated mode shapes using the central difference approximation.

$$v_i'' = \frac{v_{i+1} - 2 \cdot v_i + v_{i-1}}{h^2}$$

The sum of the damage indices from each mode is defined by

$$MSC = \frac{1}{N} \sum_{n=1}^{N} (\Delta v_i'')_n$$

Fig. 7 Flexural frequencies of the test beams containing mill-cut damage Mode 1

Fig. 8 Flexural frequencies of the test beams containing mill-cut damage Mode 2

Fig. 9 Flexural frequencies of the test beams containing mill-cut damage Mode 3

Fig. 10 Damage detection methods for beams with CL boundary conditions Mode 1

Fig. 11 Damage detection methods for beams with CL boundary conditions Mode 1

Damaged beam - Frequency 15.994 Hz

Fig. 13 Damage detection methods for beams with CL boundary conditions Mode 2

Fig. 14 Damaged beam - Frequency 43.516 Hz

Healthy beam - Frequency 89.691 Hz

Fig. 15 Damage detection methods for beams with CL boundary conditions Mode 3

Damaged beam - Frequency 89.014 Hz

The curvature difference between the damaged and the intact case are obtained by using a newly developed Excel code with modl data obtained from the finite element analysis using Patran/ Nastran as input. Table1 (below) shows the modal results (FEM Nastran) end curvature analysis (Excel).

Table 1. Flexura	l frequencies er	d Eigenvectors -	Beam with	clamped	boundary	conditions
------------------	------------------	------------------	-----------	---------	----------	------------

	Mode 1		Mo	de 2	Mode 3		
Node	Vi	V_i "	Vi	$\mathbf{V_i}^{"}$	Vi	V_i "	
2	0.045026	0.00087474	-0.132519	-0.00251874	-0.247336	-0.00459507	
3	0.177526	0.00084238	-0.516912	-0.00235348	-0.954179	-0.0041537	
4	0.394264	0.00081001	-1.136653	-0.00218827	-2.076392	-0.0037129	

5	0.692003	0.00077766	-1.975221	-0.00202325	-3.569895	-0.00327334
6	1.067508	0.00074531	-3.016114	-0.00185848	-5.390732	-0.00283593
7	1.517544	0.000713	-4.242855	-0.00169417	-7.495162	-0.00240168
8	2.03888	0.00068069	-5.639013	-0.00153045	-9.83976	-0.00197189
9	2.628285	0.00064845	-7.188216	-0.00136751	-12.381547	-0.0015479
10	3.282535	0.00061625	-8.87417	-0.00120561	-15.078124	-0.00113122
11	3.99841	0.0005841	-10.680685	-0.00104494	-17.887823	-0.00072339
12	4.772695	0.00055203	-12.591694	-0.00088577	-20.769861	-0.0003262
13	5.602183	0.00052006	-14.59128	-0.00072842	-23.684519	5.887E-05
14	6.483677	0.0004882	-16.663708	-0.00057306	-26.59329	0.00042987
15	7.413991	0.00045646	-18.793442	-0.00042011	-29.459074	0.00078528
16	8.389951	0.00042484	-20.965187	-0.00026976	-32.24633	0.00112329
17	9.408395	0.0003934	-23.163908	-0.00012239	-34.921257	0.00144234
18	10.466179	0.00036215	-25.374868	2.174E-05	-37.45195	0.00174084
19	11.560178	0.00033107	-27.583654	0.00016223	-39.808559	0.00201717
20	12.687284	0.00030024	-29.776217	0.00029895	-41.963451	0.00227016
21	13.844414	0.00026961	-31.938885	0.00043139	-43.891327	0.0024984
22	15.028505	0.0002393	-34.058414	0.00055938	-45.569363	0.00270081
23	16.236526	0.00020924	-36.122005	0.00068252	-46.977318	0.0028764
24	17.465471	0.00017948	-38.117344	0.0008006	-48.097633	0.00302421
25	18.712364	0.00015007	-40.032623	0.00091335	-48.915527	0.00314384
26	19.974264	0.00012102	-41.856567	0.00102039	-49.419037	0.0032346
27	21.248266	9.236E-05	-43.578472	0.00112164	-49.599087	0.00329625
28	22.531504	6.404E-05	-45.188213	0.00121662	-49.449512	0.00332869
29	23.821146	3.624E-05	-46.676292	0.00130538	-48.967068	0.00333203
30	25.114412	8.84E-06	-48.033833	0.00138746	-48.151421	0.00330655
31	26.408562	-1.809E-05	-49.252628	0.00146281	-47.005119	0.00325271
32	27.700903	-4.45E-05	-50.325142	0.00153126	-45.533546	0.00317111
33	28.988794	-7.035E-05	-51.24453	0.0015926	-43.744862	0.00306283
34	30.26965	-9.572E-05	-52.004658	0.00164669	-41.649895	0.00292866
35	31.540934	-0.00012047	-52.600117	0.0016935	-39.262062	0.00277008
36	32.800171	-0.00014459	-53.026226	0.00173294	-36.597221	0.00258834
37	34.044949	-0.0001682	-53.279041	0.00176483	-33.673546	0.00238497
38	35.272907	-0.00019099	-53.355373	0.00178924	-30.511374	0.00216189
39	36.481766	-0.00021329	-53.252781	0.00180619	-27.133013	0.00192078
40	37.669296	-0.00023475	-52.96957	0.00181564	-23.562574	0.00166371
41	38.833351	-0.00025555	-52.504795	0.00181755	-19.825764	0.00139277
42	39.971851	-0.00027568	-51.858265	0.00181214	-15.949677	0.00111013
43	41.082783	-0.00029492	-51.030521	0.00179942	-11.962577	0.00081812
44	42.164223	-0.00031346	-50.022835	0.00177949	-7.893665	0.00051906
45	43.214317	-0.00033122	-48.8372	0.00175258	-3.772847	0.00021536
46	44.231289	-0.00034806	-47.476307	0.00171868	0.369507	-9.059E-05
47	45.213455	-0.00036415	-45.943546	0.00167823	4.502802	-0.00039628
48	46.159206	-0.00037933	-44.242962	0.00163121	8.596469	-0.00069936
49	47.067024	-0.00039368	-42.379257	0.00157802	12.6202	-0.00099736
50	47.935474	-0.00040706	-40.35775	0.00151886	16.544195	-0.00128791
51	48.763218	-0.00041962	-38.184357	0.00145398	20.339399	-0.00156875
52	49.549	-0.00043118	-35.865566	0.00138374	23.977728	-0.00183762
53	50.291664	-0.00044181	-33.408401	0.00130845	27.432295	-0.00209233
54	50.990147	-0.00045152	-30.820391	0.0012285	30.677629	-0.0023309
55	51.643478	-0.00046023	-28.109531	0.00114417	33.689873	-0.00255145
56	52.250786	-0.00046792	-25.284254	0.00105585	36.446972	-0.00275211
57	52.811302	-0.00047473	-22.353392	0.00096406	38.92886	-0.00293137
58	53.324345	-0.00048043	-19.326124	0.00086906	41.117611	-0.00308761
59	53.789345	-0.00048515	-16.21195	0.00077134	42.997601	-0.00321973
60	54.20583	-0.00048886	-13.020642	0.00067135	44.555618	-0.00332648
61	54.573429	-0.00049148	-9.762199	0.00056954	45.780987	-0.00340703
62	54.89188	-0.00049316	-6.446802	0.00046634	46.665653	-0.00346057
63	55.161015	-0.00049375	-3.084771	0.00036224	47.204262	-0.00348672
64	55.380775	-0.00049323	0.313484	0.0002577	47.394199	-0.00348502
65	55.551212	-0.00049175	3.737509	0.00015321	47.235634	-0.00345536
66	55.672474	-0.0004892	7.176855	4.923E-05	46.731533	-0.00339802

67	55.744816	-0.0004855	10.621124	-5.37E-05	45.88763	-0.00331302
68	55.768608	-0.00048084	14.060023	-0.00015518	44.712425	-0.00320107
69	55.744316	-0.00047508	17.483404	-0.00025464	43.217113	-0.00306281
70	55.672516	-0.0004683	20.881321	-0.00035168	41.41552	-0.00289907
71	55.553886	-0.00046035	24.24407	-0.00044575	39.32402	-0.00271094
72	55.389221	-0.00045147	27.562244	-0.0005364	36.961426	-0.00249966
73	55,179409	-0.00044148	30.826778	-0.00062316	34 348866	-0.00226666
74	54 925449	-0.00043044	34 028996	-0.00070569	31 50964	-0.00201334
75	54 628445	-0.00041837	37 160645	-0.00078328	28 46908	-0.00174152
76	54 289604	-0.00113303	40 213966	-0.00244811	25.40700	-0.00392311
70	53 83746	-0.00113303	43.022476	-0.00/27639	23.254308	-0.005336/1
78	53 20/155	-0.00174423	45.022470	-0.00427037	17 506681	-0.00390986
70	52 306427	0.001674	47 326836	0.00485371	12 075031	0.00245477
80	51 421200	0.00160102	47.520850	-0.00485571	8 107004	-0.00243477
80	50 296069	-0.00100103	40.704934	-0.00311498	2 222020	-0.00097848
01	30.280008	-0.00093078	49.091374	-0.00322879	5.522929	0.00012873
82	49.05/159	-0.00031234	50.295315	-0.00120381	-1.5391/1	0.00043373
83	47.797016	-0.00029431	50.778675	-0.00124344	-6.35/896	0.000/5613
84	46.507442	-0.0002/534	51.13/691	-0.0012/593	-11.101008	0.0010/4//
85	45.190334	-0.00025547	51.369114	-0.00130128	-15.736643	0.00138689
86	43.847679	-0.0002348	51.470409	-0.00131927	-20.233589	0.00168975
87	42.481544	-0.00021327	51.439777	-0.00133018	-24.56156	0.00198068
88	41.094082	-0.00019086	51.276127	-0.0013337	-28.691463	0.00225712
89	39.687534	-0.00016784	50.979107	-0.00133007	-32.595654	0.00251676
90	38.264202	-0.00014385	50.54908	-0.00131931	-36.248169	0.00275711
91	36.826485	-0.00011933	49.987122	-0.00130128	-39.624973	0.00297614
92	35.376835	-9.399E-05	49.295036	-0.00127639	-42.704163	0.00317186
93	33.917786	-6.798E-05	48.475311	-0.00124447	-45.466167	0.00334242
94	32.451939	-4.136E-05	47.531139	-0.00120567	-47.893929	0.00348627
95	30.981956	-1.414E-05	46.4664	-0.00116032	-49.973064	0.00360179
96	29.510559	1.369E-05	45.285629	-0.00110832	-51.69202	0.00368797
97	28.040531	4.212E-05	43.994026	-0.00104992	-53.042179	0.00374375
98	26.574715	7.102E-05	42.597431	-0.00098545	-54.017963	0.00376819
99	25.116001	0.00010049	41.102291	-0.00091492	-54.616928	0.00376087
100	23.667336	0.00013036	39.515659	-0.00083854	-54.839806	0.0037214
101	22.231707	0.00016075	37.845173	-0.00075665	-54.690544	0.00364967
102	20.812153	0.00019152	36.099022	-0.00066948	-54.176315	0.00354564
103	19.411751	0.00022272	34.285923	-0.00057712	-53.307522	0.00340981
104	18.033621	0.00025425	32.415112	-0.00048005	-52.097748	0.00324249
105	16.680916	0.00028616	30.496296	-0.00037834	-50.563725	0.00304459
106	15.356827	0.00031837	28.539646	-0.00027233	-48.725243	0.00281681
107	14.064575	0.00035087	26.555763	-0.00016231	-46.60508	0.00256039
108	12.80741	0.00038364	24.555649	-4.862E-05	-44.228878	0.00227653
109	11.588609	0.00041666	22,550673	6.862E-05	-41.625023	0.00196663
110	10.411474	0.00044989	20.552559	0.000189	-38.824505	0.00163216
111	9.279328	0.00048334	18.573345	0.00031228	-35.860771	0.00127483
112	8,195516	0.00051693	16.625359	0.00043816	-32.769554	0.00089647
113	7,163397	0.0005507	14.721189	0.00056638	-29.58869	0.00049868
114	6,186348	0.00058461	12.873657	0.00069672	-26 357958	8 35E-05
115	5.26776	0.00061864	11.095797	0.00082881	-23.118876	-0.00034715
116	4,411036	0.00065274	9 400818	0.00096251	-19 914509	-0.00079151
117	3 619586	0.00068695	7 80200	0.00109753	-16 789203	-0.00124759
118	2 896831	0.00072123	6 313115	0.00123362	-13 788836	-0.00171352
110	2.070031	0.00075557	4 9/7502	0.00123502	-10 050721	-0.00218766
120	1 671124	0.00073037	3 718052	0.00150834	_8 3/0307	_0.00210700
120	1 1750/1	0.00078992	2 6/1022	0.00150654	-6.005874	-0.00200021
121	0.761201	0.00082433	1 778175	0.00104033	-3 077720	-0.00313373
122	0.701391	0.00083877	0.00363	0.00178510	-3.911129	-0.00304279
123	0.455018	0.000332	0.33505	0.001924	-1.063421	-0.00413424
124	0.195105	0.00092703	0.431463	0.002005	0.275694	0.00402703
123	0.049477	0.00090211	0.11504	0.00220205	-0.273084	-0.00312033

Figure 16 Excel tool plot

3. CONCLUSIONS

During the last decades vibration-based damage detection methods have been attracting most attention due to the simplicity of their implementation.

The modal frequencies and corresponding mode shapes for the first 15 flexural modes of both the healthy and the damaged beams were calculated.

It can be concluded that the clamped-clamped boundary conditions for the beam structure is recommended for the detection of the location and size of damage.

Damage in structure affects the stiffness matrix and not the inertia matrix.

Damage index methods were capable of indicating the location and size of the damage.

The absolute difference between the curvature mode shapes of the intact and the damaged beam increases with the severity of the damage.

The numerical results demonstrate the effectiveness of the method in locating single and multiple damage scenarios in beams.

NASTRAN input file created by the Patran 2012 64-Bit input file

\$ NASTRAN input file created by the Patran 2012 64-Bit input file
\$ translator on May 12, 2015 at 09:27:54.
\$ Direct Text Input for Nastran System Cell Section
\$ Direct Text Input for File Management Section
\$ Direct Text Input for Executive Control
\$ Normal Modes Analysis, Database
SOL 103
CEND
\$ Direct Text Input for Global Case Control Data
TITLE = MSC.Nastran job created on 12-May-15 at 09:02:32
ECHO = NONE
RESVEC = YES

SUBCASE 1 SUBTITLE=clamped METHOD = 1SPC = 2VECTOR(SORT1,REAL)=ALL SPCFORCES(SORT1,REAL)=ALL \$ Direct Text Input for this Subcase BEGIN BULK \$ Direct Text Input for Bulk Data PARAM POST -1 PARAM PRTMAXIM YES EIGRL 1 MASS 16 0 \$ Elements and Element Properties for region : beam PBARL 1 1 BAR 50. 5. \$ Pset: "beam" will be imported as: "pbarl.1" CBAR 1 1 1 2 0. 1. 0. CBAR 2 1 2 3 0. 1. 0. 3 CBAR 3 1 4 0. 1. 0. CBAR 4 1 4 5 0. 1. 0. CBAR 5 1 5 6 0. 1. 0. CBAR 6 7 6 1 0. 1. 0. CBAR 7 1 7 8 0. 1. 0. CBAR 8 1 8 9 0. 1. 0. CBAR 9 1 9 10 0. 1. 0. CBAR 10 1 10 11 0. 1. 0. CBAR 11 1 11 12 0. 1. 0. CBAR 12 1 12 13 0. 1. 0. CBAR 13 1 13 14 0. 1. 0. CBAR 14 1 14 15 0. 1. 0. CBAR 15 1 15 16 0. 1. 0. CBAR 16 1 16 17 0. 1. 0. CBAR 17 1 17 18 0. 1. 0. CBAR 18 18 19 0. 1. 0. 1 CBAR 19 19 20 0. 1. 0. 1 CBAR 20 1 20 21 0. 1. 0. CBAR 21 1 21 22 0. 1. 0. CBAR 22 1 22 23 0. 1. 0. CBAR 23 1 23 24 0. 1. 0. CBAR 24 1 24 25 0. 1. 0. CBAR 25 1 25 26 0. 1. 0. CBAR 26 1 26 27 0. 1. 0. CBAR 27 1 27 28 0. 1. 0. CBAR 28 28 29 0. 1 1. 0. CBAR 29 29 30 0. 0. 1 1. CBAR 30 1 30 31 0. 1. 0. CBAR 31 1 31 32 0. 1. 0. CBAR 32 1 32 33 0. 1. 0. CBAR 33 33 1 34 0. 1. 0. CBAR 34 1 34 35 0. 1. 0. CBAR 35 1 35 36 0. 1. 0. CBAR 36 1 36 37 0. 1. 0. CBAR 37 37 38 0. 0. 1 1. CBAR 38 1 38 39 0. 1. 0. CBAR 39 39 40 0. 1 1. 0. CBAR 40 40 41 0. 1. 0. 1 CBAR 41 1 41 42 0. 1. 0. CBAR 42 42 43 0. 1. 0. 1 CBAR 43 1 43 44 0. 1. 0. 44 45 CBAR 44 1 0. 1. 0. 46 45 45 0. CBAR 1 0. 1. CBAR 46 1 46 47 0. 1. 0. CBAR 47 1 47 48 0. 1. 0. CBAR 48 1 48 49 0. 1. 0. CBAR 49 1 49 50 0. 1. 0. 50 50 51 CBAR 1 0. 1. 0.

CBAR	51	1	51	52	0	1	0
CBAP	52	1	52	53	0.	1	0.
CDAR	52	1	52	55	0.	1.	0.
CDAR	55	1	55	54	0.	1.	0.
CDAK	54	1	54	55	0.	1.	0.
CBAR	22	1	22	56	0.	1.	0.
CBAR	56	1	56	5/	0.	1.	0.
CBAR	57	1	57	58	0.	1.	0.
CBAR	58	1	58	59	0.	1.	0.
CBAR	59	1	59	60	0.	1.	0.
CBAR	60	1	60	61	0.	1.	0.
CBAR	61	1	61	62	0.	1.	0.
CBAR	62	1	62	63	0.	1.	0.
CBAR	63	1	63	64	0.	1.	0.
CBAR	64	1	64	65	0.	1.	0.
CBAR	65	1	65	66	0	1	0
CBAR	66	1	66	67	0	1	0
CBAR	67	1	67	68	0	1	0
CDAR	69	1	69	60	0.	1.	0.
CDAR	60	1	60	70	0.	1.	0.
CDAR	70	1	70	70	0.	1.	0.
CBAK	70	1	70	/1	0.	1.	0.
CBAR	/1	1	/1	12	0.	1.	0.
CBAR	72	1	72	73	0.	1.	0.
CBAR	73	1	73	74	0.	1.	0.
CBAR	74	1	74	75	0.	1.	0.
CBAR	75	1	75	76	0.	1.	0.
CBAR	81	1	81	82	0.	1.	0.
CBAR	82	1	82	83	0.	1.	0.
CBAR	83	1	83	84	0.	1.	0.
CBAR	84	1	84	85	0.	1.	0.
CBAR	85	1	85	86	0	1	0
CBAR	86	1	86	87	0	1	0
CBAR	87	1	87	88	0	1	0
CBAR	88	1	88	80	0.	1.	0.
CDAR	80	1	80	00	0.	1.	0.
CDAR	09	1	09	90	0.	1.	0.
CBAK	90	1	90	91	0.	1.	0.
CBAK	91	1	91	92	0.	1.	0.
CBAR	92	1	92	93	0.	1.	0.
CBAR	93	1	93	94	0.	1.	0.
CBAR	94	1	94	95	0.	1.	0.
CBAR	95	1	95	96	0.	1.	0.
CBAR	96	1	96	97	0.	1.	0.
CBAR	97	1	97	98	0.	1.	0.
CBAR	98	1	98	99	0.	1.	0.
CBAR	99	1	99	100	0.	1.	0.
CBAR	100	1	100	101	0.	1.	0.
CBAR	101	1	101	102	0.	1.	0.
CBAR	102	1	102	103	0.	1.	0.
CBAR	103	1	103	104	0	1	0
CBAR	104	1	104	105	0	1	0
CBAR	105	1	105	105	0.	1	0.
CBAR	105	1	105	107	0.	1.	0.
CDAR	100	1	100	107	0.	1.	0.
CDAK	107	1	107	108	0.	1.	0.
CBAR	108	1	108	109	0.	1.	0.
CBAR	109	1	109	110	0.	1.	0.
CBAR	110	1	110	111	0.	1.	0.
CBAR	111	1	111	112	0.	1.	0.
CBAR	112	1	112	113	0.	1.	0.
CBAR	113	1	113	114	0.	1.	0.
CBAR	114	1	114	115	0.	1.	0.
CBAR	115	1	115	116	0.	1.	0.
CBAR	116	1	116	117	0.	1.	0.
CBAR	117	1	117	118	0.	1.	0.
CBAR	118	1	118	119	0.	1.	0.
CBAR	119	1	119	120	0	1.	0
CBAR	120	1	120	121	0	1	0
CDAD	121	1	121	122	0	1	0.

CBAR	122	1 1	22 1	23 0	. 1.	0.	
CBAR	123	1 1	23 1	24 0	. 1.	0.	
CBAR	124	1 1	24 1	25 0	1	0	
CBAR	125	1 1	25 1	26 0	. 1.	0.	
¢ Elom	ntc on	l Elomon	t Dron	20 0	r rogic	n · ho	amdam
DDADI		1		D	n regio		amuam
FDAKL	2	1	DA	.г.			
50							
\$ Pset:	beamd	am" will	be imp	ported a	is: "pb	arl.2"	
CBAR	76	2 76	5 77	7 0.	1.	0.	
CBAR	77	2 77	7 78	3 0.	1.	0.	
CBAR	78	2 78	3 79) 0.	1.	0.	
CBAR	79	2 79	9 80) 0.	1.	0.	
CBAR	80	2 80) 81	0.	1.	0.	
\$ Refer	enced M	Aaterial F	Record	s			
\$ Mater	ial Rec	ord · alu	n	5			
\$ Mater	intion (of Motori	$\frac{11}{1}$	to: 12 N	Acre 14		Time: 08:41:28
5 Desci				21	a 700) 0	Time: 08:41:28
MAII	1	69000. 2	26336.	.31	2.708-	9	
\$ Nodes	s of the	Entire M	lodel				
GRID	1	0.	0.	0.			
GRID	2	10.	0.	0.			
GRID	3	20.	0.	0.			
GRID	4	30.	0.	0.			
GRID	5	40.	0.	0.			
GRID	6	50	0	0			
CRID	7	50. 60	0.	0.			
CDID	/	70	0.	0.			
GRID	8	/0.	0.	0.			
GRID	9	80.	0.	0.			
GRID	10	90.	0.	0.			
GRID	11	100	. 0.	0.			
GRID	12	110	. 0.	0.			
GRID	13	120	. 0.	0.			
GRID	14	130	0	0			
GRID	15	140	0	0			
CRID	16	150	. 0.	0.			
CDID	10	150	. 0.	0.			
GRID	1/	160	. 0.	0.			
GRID	18	170	. 0.	0.			
GRID	19	180	. 0.	0.			
GRID	20	190	. 0.	0.			
GRID	21	200	. 0.	0.			
GRID	22	210	. 0.	0.			
GRID	23	220	. 0.	0.			
GRID	24	230	0	0			
CRID	24	240	. 0.	0.			
CRID	25	250	. 0.	0.			
CDID	20	250	. 0.	0.			
GRID	27	200	. 0.	0.			
GRID	28	270	. 0.	0.			
GRID	29	280	. 0.	0.			
GRID	30	290	. 0.	0.			
GRID	31	300	. 0.	0.			
GRID	32	310	. 0.	0.			
GRID	33	320	. 0.	0.			
GRID	34	330	0	0			
GRID	35	340	0	0.			
CDID	26	250	. 0.	0.			
GRID	30	350	. 0.	0.			
GRID	3/	360	. 0.	0.			
GRID	38	370	. 0.	0.			
GRID	39	380	. 0.	0.			
GRID	40	390	. 0.	0.			
GRID	41	400	. 0.	0.			
GRID	42	410	. 0.	0.			
GRID	43	420	0	0			
GRID	43	/20	. 0. 0	0.			
GDID	15	450	. U. A	0.			
CDID	45	440	. 0.	0.			
GKID	40	450	. 0.	0.			
GRID	47	460	. 0.	0.			
GRID	48	470	. 0.	0.			

GRID	49	480.	0.	0.
GRID	50	490	0	0
GRID	51	500	0	0
GRID	52	510	0.	0.
CRID	52	520	0.	0.
GRID	55	520.	0.	0.
GRID	54	530.	0.	0.
GRID	55	540.	0.	0.
GRID	56	550.	0.	0.
GRID	57	560.	0.	0.
GRID	58	570	0	0
GRID	50	580	0	0.
CDID	59	500.	0.	0.
GRID	60	590.	0.	0.
GRID	61	600.	0.	0.
GRID	62	610.	0.	0.
GRID	63	620.	0.	0.
GRID	64	630.	0.	0.
GRID	65	640	0	0
GPID	66	650	0	0
CRID	67	660	0.	0.
GRID	07	000.	0.	0.
GRID	68	670.	0.	0.
GRID	69	680.	0.	0.
GRID	70	690.	0.	0.
GRID	71	700.	0.	0.
GRID	72	710	0	0
CRID	73	720	0.	0
CDID	73	720.	0.	0.
GRID	74	/30.	0.	0.
GRID	75	740.	0.	0.
GRID	76	750.	0.	0.
GRID	77	760.	0.	0.
GRID	78	770.	0.	0.
GRID	79	780	0	0
GRID	80	700.	0	0
CDID	01	790.	0.	0.
GRID	81	800.	0.	0.
GRID	82	810.	0.	0.
GRID	83	820.	0.	0.
GRID	84	830.	0.	0.
GRID	85	840.	0.	0.
GRID	86	850	0	0
GRID	87	860	0	0
CRID	07	870	0.	0.
CDID	00	870.	0.	0.
GRID	89	880.	0.	0.
GRID	90	890.	0.	0.
GRID	91	900.	0.	0.
GRID	92	910.	0.	0.
GRID	93	920.	0.	0.
GRID	94	930	0	0.
GRID	95	940	0	0
CDID	06	050	0.	0.
CDID	90	930.	0.	0.
GRID	97	960.	0.	0.
GRID	98	970.	0.	0.
GRID	99	980.	0.	0.
GRID	100	990.	0.	0.
GRID	101	1000.	0.	0.
GRID	102	1010	0	0
GRID	102	1010.	0.	0.
CDID	103	1020.	0.	0.
GRID	104	1030.	0.	0.
GRID	105	1040.	0.	0.
GRID	106	1050.	0.	0.
GRID	107	1060.	0.	0.
GRID	108	1070.	0.	0.
GRID	109	1080	0	0
GRID	110	1000.	0.	0. 0
CDID	110	1100	0.	0.
GRID	111	1100.	0.	0.
GRID	112	1110.	0.	0.
GRID	113	1120.	0.	0.
GRID	114	1130.	0.	0.

1140. 0. 0. GRID 115 GRID 116 1150. 0. 0. GRID 117 1160. 0. 0. GRID 118 1170. 0. 0. GRID 119 1180. 0. 0. 1190. GRID 120 0. 0. 1200. 0. 0. GRID 121 GRID 122 1210. 0. 0. GRID 123 1220. 0. 0. GRID 124 1230. 0. 0. GRID 125 1240. 0. 0. GRID 126 1250. 0. 0. \$ Loads for Load Case : clamped SPCADD 2 1 \$ Displacement Constraints of Load Set : all0 SPC1 1 123456 1 126 \$ Referenced Coordinate Frames ENDDATA 4308d9eb

REFERENCES

- S. Tataru, D. Baran, D. Lozici-Branzei, Advanced techniques of stress analysis, *INCAS BULLETIN*, Volume 5, Issue 4, (online) ISSN 2247–4528, (print) ISSN 2066–8201, ISSN–L 2066–8201, DOI: 10.13111/2066-8201.2013.5.4.7, pp. 61-68, October-December 2013.
- [2] D. Lozici-Branzei, S. Tataru, D. Baran, R. Bisca, *Experimente fizice de oboseala a structurilor aeronautice*, Simpozion CCIZ, 2014.
- [3] D. Lozici-Brinzei, S. Tataru, R. Bisca, D. Baran, Comprehensive study of endurance for IAR-99 Hawk, *INCAS BULLETIN*, Volume 6, Issue 1, (online) ISSN 2247–4528, (print) ISSN 2066–8201, ISSN–L 2066–8201, DOI: 10.13111/2066-8201.2014.6.1.6, pp. 57 – 72, 2014.
- [4] D. Lozici-Brinzei, D. Baran, S. Tataru, Flutter analysis of the IAR 99 SOIM aircraft, *INCAS BULLETIN*, Volume 5, Issue 2, (online) ISSN 2247–4528, (print) ISSN 2066–8201, ISSN–L 2066–8201, DOI: 10.13111/2066-8201.2013.5.2.5, pp. 33-41, 2013.
- [5] D. Popescu, D. Baran, C. Pupaza, S. Tataru, D. Lozici, 3D Visual Environment for Aeronautical Structures Design and Analysis, The 20th International Daaam Symposium "Inteligent Manufacturing and Education, Viena, Austria", 25-28 November 2009.
- [6] D. Lozici-Brinzei, D., Baran, S. Tataru, *Fatigue Analysis Optimization*, "PDF OFF-PRINTS", 0655-0657, Annals of DAAAM for 2010 & Proceedings of the 21st International DAAAM Symposium, ISBN 978-3-901509-73-5, ISSN 1726-9679, pp 0328, Editor B. Katalinic, Published by DAAAM International, Vienna, Austria 2010 (www.daaam.com).