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Abstract: Flutter analysis is considered for the minimum altitude at which the minimum designed 

Mach number is achieved, for the maximum altitude at which the maximum designed dynamic 

pressure is obtained and for the minimum altitude at which transonic effects begin occurring. 

Moreover, analyzes is performed for any other altitudes considered necessary. Flutter analysis results 

is graphically presented in equivalent speed with the curves of structural damping coefficient g 

required for flutter according to the flutter speed. Flutter analysis aims to determine the speeds of IAR 

99 SOIM. 
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1. INTRODUCTION 

In FEM analysis, static loads are applied to geometric and scalar points in a variety of ways, 

including: 

 Loads directly applied to grid points. 

 Pressure loads on surfaces. 

 Distributed and concentrated loads on elements. 

 Gravity loads. 

 Centrifugal loads due to steady rotation. 

 Tangential loads due to angular acceleration. 

 Loads resulting from thermal expansion. 

 Loads resulting from enforced deformations of a structural element. 

 Loads resulting from enforced displacements at a grid point. 

The import capability allows the user to retrieve an aerodynamic model into the current 

FEM analysis database. 

2. BUILDING SPECIALIZED IDEALIZED MODELS FOR AEROELASTIC 

CALCULATION OF IAR99 SOIM (HAWK) AIRCRAFT 

The subject of this chapter is developing the model of the IAR 99 HAWK Soim (Figure 1) in 

a green configuration (empty equipped version) for free vibration, static aeroelastic and 

flutter analysis (Figure 2 and Figure 3). Creating idealized models is based on the following 

elements: 
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- SHELL 63- which is a 4 or 3-nodes flat plate element, subjected to bending and in 

plane forces, 

- LINK 8- a 2-nodes element, subject to compression and tension, 

- MASS 21- 1-node mass element (includes inertial moments). 

For each structural element the corresponding various material properties are used. 

Typical material properties include Young’s elasticity modulus, density, etc. Each property 

is indicated by a label, eg. ANSYS-EX, EY, EZ for Young’s modulus directional 

components, DENS for density, etc. All material properties can be considered entry data and 

temperature functions. 

Some material properties used in analysis that are not temperature dependant are called 

linear properties because the typical solutions with these properties only require one 

iteration. 

The linear properties of materials are fed to the program using the MP command, while 

non-linear properties are introduced using the TB command. 
 

 
Figure 1. The IAR 99 SOIM (Hawk) aircraft, empty equipped 

 
Figure 2. The IAR 99 SOIM (Hawk) aircraft, empty equipped  
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Figure 3. The IAR 99 SOIM (Hawk) aircraft, weapons configurations 

 

Figure 4. The IAR 99 SOIM (Hawk) aircraft, vibration mode 

3. FLUTTER ANALYSIS OF THE IAR 99 AIRCRAFT 

3.1 Theoretic summary 

Notation 

  M  mass matrix (positively defined), 

C  dampening matrix, 

K  rigidity matrix (semipositively defined), 

 x  acceleration vector, 

x  speed vector, 

x  displacement vector, 

EXTF  external force vector, 

MISCF  structural movement dependant forces vector, 
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    pulsation [rad/s], 

 
2

  f



  frequency [Hertz = cycles/s], 

KΦ  characteristic k – mode vibration form k (k = 1, …, M) corresponding to  

characteristic frequency K  2  fK , 

     M1 ΦΦΦ   modal form vibration matrix, 

  q    generalized coordinates, 

    T ΦMΦμ    generalized mass matrix, 

ΦCΦβ  T    generalized dampening matrix, 

ΦKΦγ  T    generalized rigidity matrix. 

    T FΦf    generalized force vector, 

 I    identity matrix, 

 2Ω    diagonal matrix of characteristic squared pulsations 

 

Equations of Motion  

General Equations 

General equations of motion for a structure are: 

 
MISCFFF

FxKxCxM





EXT  

  
 

where the matrixes are N x N and the vectors N x 1. 

Free Vibration Equations 

Are obtained if the dampening matrix C = 0 and the force vector F = 0 namely, 

 0xKxM      

The equation above leads to the eigenvalue problem: 

 xKMx -1   2  

Solving the above eigenvalue problem the first M vibration frequencies corresponding 

to the first M modal forms of structural vibrations can be computed, for M<<N.  

Modal Form of Equations of Motion (Figure 4) 

In the generalized motion equations the x displacement vector (size N X 1) is 

approximated with the first M modal vibration forms multiplied by the generalized 

coordinate vector q (sized M X 1) , that is: 

 qΦx    

This means to approximate the N-dimension space by a M<<N dimension space (the 

Ritz approximation). 

The following motion equations result: 

 FqΦKqΦCqΦM      

and they are projected in M-sized space by left-multiplying with the transposed of the modal 

form matrix, that is: 
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 FΦqΦKΦqΦCΦqΦMΦ   TTTT    

Or, by introducing the generalized mass, dampening and rigidity matrices and the 

generalized force vector the above equation becomes: 

 fqγqβqμ     

As modal form vectors are the eigenvalue vectors of a matrix, it means they are defined 

up to an arbitrary multiplicative constant. If the scaling of the modal forms (of the 

eigenvalue vectors) is done such as the generalized mass matrix is equal to the unit matrix I, 

then the generalized rigidity matrix is equal to the diagonal matrix of the squared 

characteristic pulsations, that is: 
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In this case the equations of motion in modal form are written as: 

 fqΩqβq 2     

3.2 Matching the structural and aerodynamic models 

3.2.1 Theoretical overview 

The used method is called Thin-Plate Spline (TSP). 

The main equations describing the method are given below. Displacement w(x,y,z) in an 

arbitrary point P(x,y,z) caused by the forces FJ applied in the points given by (xJ, yJ, zJ) can 

be written as: 





N

1I

II321o Sa  ),,( Fzayaxazyxw  (1) 

where: 
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The conditions imposed on the forces FI are that the sum and their moments with respect 

to the three axes are zero, that gives:  
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matrix R being: 

 zyx1R     (4) 

Imposing the conditions that in the J=1,…, N structural points the displacement is equal 

to that resulting from structural calculations, we obtain:   

N1,...,J   unde   Sa       ),,(
N

1I

IIJ3J2J1oJJJJ  


Fzayaxawzyxw J  (5) 

Or using matrices: 

FSaRW    (6) 

where: 
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From (3) and (6) we get: 
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 (8) 

The displacements w(xk,yk,zk) in an aerodynamic point P(xk,yk,zk) corresponding to 

structural displacements W are given by equation (1), yielding: 





N

1I

IKI321o Sa  ),,( Fzayaxazyxw KKKKKK  (9) 

where: 
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KIKI z-zy-yx-x  rcu          rlnr S KKK   (10) 

Equation (9) can successively be written as: 

    Fa  KNKIK1 SSS1  KKKK zyxw  (11) 
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The derivative of displacements along x in aerodynamic points is: 
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with 
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And thus: 

   2

KIKIKIx, rln1x-x2S   (17) 

 

Flutter Results for the V-g Method 
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4. CONCLUSIONS 

The idealized model of the IAR 99 SOIM (HAWK) aircraft, in an empty equipped 

configuration, with a mass of 3300 kg, is to be used in the following analyses: 

o free vibration analysis for the entire aircraft and comparison of theoretical results with 

the experimental ones. 

o flutter analysis of the entire aircraft, based on theoretical vibration modes and 

comparisons with the experimental flutter analysis based on measured vibration modes. 

o static aeroelastic analysis and pressure distribution comparison on the elastic and rigid 

aircraft. 
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