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Section 4 – System design for small satellites 

Abstract: In this paper, the authors propose a new architecture for the control of the satellites’ 

attitude by using a control law mainly based on a proportional-integrator component with respect to 

the quaternion vector and to the satellite’s angular velocity vector. The control law has two nonlinear 

components with saturation zone; the actuators’ saturation will be considered both from the 

generated gyroscopic couples’ point of view and from the gyroscopic frame angular velocities’ point 

of view. The new obtained nonlinear control system is software implemented and validated through 

complex numerical simulations; the stabilization and the control dynamic characteristics of the system 

are obtained and analyzed in detail. 
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1. INTRODUCTION

To answer well to multiple tasks, the satellites must have good rotational handling and agility. 

Such satellites need an automatic system for their attitude’s control by performing fast slewing 

maneuvers. 

To perform fast slewing maneuvers, such satellites must use an automatic system for their 

attitude’s control because the physical limitations of the sensors/ actuators, the structural 

rigidity of the satellites and the mission’s type influence the repositioning maneuvers of the 

satellites [1-3]. 

Sometimes, the Euler equation describing the satellite’s evolution of the orientation on its 

attitude proves to be too difficult to work with and, therefore, the attitude’s dynamics must be 

put into a double integrator form with respect to the parameters describing the satellite’s 

attitude [4]. 

The parameterization of the satellite’s attitude is mainly described by the cosine rotation 

matrix which is associated to the orthogonal group SO(3) [5-8]. Because the usage of the 

cosine rotation matrix leads to difficulties in the numerical implementation process, a solution 

to the problem of satellite’s stabilization is to use the quaternion parameterization [9-11]. A 

new and interesting method to control the satellite’s attitude is without angular velocities [12-
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16] and, as a consequence, the main purpose is to control the attitude of satellites without using 

gyros, but the method proved to be very expensive [11]. 

Because the Euler representation is always characterized by an inherent geometric 

singularity, a four-parameter description of the satellite’s orientation, known as “quaternions” 

is more often used [17]; the advantage of using quaterninons is related to the fact that 

successive rotations result in successive multiplications of the quaternion commutative 

matrices [17]. 

The present study involves the design of a new architecture for the control of the satellites’ 

attitude by using a control law mainly based on a proportional-integrator component with 

respect to the quaternion vector and to the satellite’s angular velocity vector; the control law to 

be designed has two nonlinear components with saturation zone; the actuators’ saturation will 

be considered both from the generated gyroscopic couples’ point of view and from the 

gyroscopic frame angular velocities’ point of view. 

The new architecture is implemented and validated through complex numerical 

simulations for the case of a mini-satellite involved in a typical maneuver (complete cycle) 

around its own axis. 

2. DYNAMICS OF THE SATELLITE 

The motion of the satellite (S) is achieved on an elliptical trajectory in the plane containing 

the center of Earth. 

The attitude of a satellite (Euler angles –  ,  and  ) can be defined by means of the 

quaternion vector   .321

T
qqqq  

The significances of these angles are similar to the ones expressing the attitude of an 

aircraft with respect to the Earth tied frame: φ is associated to the roll angle, θ – associated to 

the pitch angle and ψ – associated to the direction angle [18]. 

 The absolute motion of the satellite is described by the equation [13]: 

,u    JJ  (1) 

where 


 is the vector of the satellite’s angular velocities, J – the inertia moment, u – the 

control law for the stabilization of the satellite, while   is the following matrix: 
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with  321 ,,  the components of the satellite’s angular velocity  .321 kji


  

 The stabilizing control law can be chosen as [13]: 

, JKK dp
 qu  (3) 

such that the satellite’s dynamics (1) gets the form: 

, dp KKJ  q  (4) 

with Kp and Kd – gain matrices having positive terms. 

 Putting together the equation (4) and the differential equations of the quaternions [19]: 
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one obtains the equations of the closed loop control system: 
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(6) 

 If one chooses the matrices Kp and Kd as: 

 
  ,diag

,diag

321

321

JkkkJkK

JkkkJkK

ddddd

ppppp




 (7) 

the closed loop control system is asymptotically stable [20] and the equations (6) become: 
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(8) 

These equations describe the automatic control system of the satellite’s attitude around 

its own axis; thus, the motion’s control will be achieved by using the quaternion and the 

angular velocities’ vectors. 

3. DESIGN OF THE NEW ARCHITECTURE FOR THE 

CONTROL OF THE SATELLITES’ ATTITUDE 

Denoting with   
T

,qx  the state vector of the system (8), then a saturation function 

depending on the vector x(6x1) has the form [21]: 

         ,satsatsatsat 662211

T
xxx x  (9) 

where 
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A command law for the control of the satellite around its own axis, having two nonlinear 

functions (saturation type) is described by the equation: 
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  ,sat  JKPK dp
 qu  (11) 

with 

    ,diag,,diag 321321 pppPJkKJkkkJkK ddppppp   (12) 

where 3,1,, ipk ipi  and kd are positive constants (control law’s parameters) to be 

determined; this is equivalent with the control law (4). Using this, the closed loop control 

system is described by the equations: 
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(13) 

 We consider the motion of a mini-satellite which performs a typical maneuver (a complete 

cycle) around its own axis (with constrained angular speed); the three phases of the motion are 

[21]: 

  1) the accelerated angular motion; 

  2) the uniform angular motion; 

  3) the braked motion. 

In the first phase, S makes a rotation around its awn axis with the angular velocity ,t  

Mu   (M – the equivalent gyroscopic moment) with the components of the vector M 

being constant ( .constiM ). 

In the second phase, S is rotated also around its awn axis with the angular velocity 

0,.const   u   (response to a null input), while, in the third phase, S is rotated 

around its awn axis with the angular velocity ., Mu   t  

 A gyro system consisting of four control moment gyros, is used to control the satellite; 

both the speed gyros’ saturation and the saturation of the actuators will be taken into account. 

We also consider that the moments generated by the actuators (gyros) iM  satisfy the 

inequality: 

,,1, miMM ii   (14) 

where m is the number of the actuators and iM  the maximum value of the moment Mi ; 

generally, m > 3 or 13 m  to be assured that there is at least one actuator that works 

under the failure of three of them. 

The control vector is   ,321

T
uuuu  with 321 ,, uuu  the control moments acting 

around the fixed axes of the satellite linked frame. 

Also, we denote with   
T

mMMM 21M  the vector of the moments generated by 

the actuators with saturation and with   
T

gmgg MMM 21gM  the vector of the 

moments generated by the actuators without saturation (see fig. 1). In these circumstances, the 

vector u can be expressed as follows: 
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(15) 

B is the transformation matrix (the distribution matrix of the vector M around the command 

axes of the satellite), while ,,1,3,1, mjibij   are the weights of the induced moments by 

the moment of the actuator j (Mj) around the axes i of the satellite; .1i
T
i bb  At least three 

vectors bi from the m vectors must be linearly independent in order to achieve the control of 

the satellite after its three axes. 

 If   TT BBBB
1   is the pseudo-inverse of the transformation matrix B, then: 

.cg B uM   (16) 

In the ideal case when ,gMM   the matrix B is invertible and, therefore, ;1  BB  in 

that case, u = uc, i.e. S is controlled by the command vector uc. If the saturation appears to at 

least one of the actuators, then ., cg uuMM   

 Let us denote with max
  the constrained maximum rate of S during its rotation around 

its own axis (rotation described by the equations (13)), with the saturation of the gyros and 

    ;00,00  q  also, let us suppose that *t  is the time moment at which the conditions 

  1* tqp ii  and      *,0,3,1,00 ttitqq ii   are fulfilled. In [21] it is proved that if 

one chooses: 

 

 
,,

0

0
max kJPK

q
kk p

i

dpi  
q

 (17) 

where  ,diag 332211 pkpkpkk ppp  with ipi pk ,  positive constants, then, for  ,,0 *tt   

the following properties are true: 1) the motion of the satellite is achieved around an own 

axis q(0); 2) the constrained maximum rate of S is finite, i.e.   ;max t  3) the attitude 

error  tq  is monotonically decreasing; 4) at the time moment t
*
, one has: 

  .3,1,1*  itqp ii  

 We choose the control law uc, with nonlinear element having saturation, which ensures 

the achievement of a typical maneuver by the satellite; 

,)(sat dpc KPK  qu  (18) 
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with Kp, Kd and P of forms (12); the relationships between the control law’s parameters ( p ik  

and dk ) are (17). 

 Putting together the equations (15), (16), (18), the equation describing the dynamics of 

the satellite, the equations of the quaternions – (5) and the correlation formulas between the 

components of the quarternion vector q and the satellite attitude angles [19]: 
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one obtains the automatic system for the control of S around its awn axis – fig. 1. 

 By using the criteria in [21], the nonlinearity of the actuators’ saturation under 

normalized form is described by the next two equations: 
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Fig. 1 – The automatic system for the control of the satellite around its awn axis 

4. NUMERICAL SIMULATION AND CONCLUSIONS 

In this section, the satellite’s attitude control system (fig. 1) is the software implemented and 

validated in Matlab/Simulink environment, for the case of a mini-satellite. 

The attitude of the satellite (the angles  ,  and  ) will be controlled by using a 

control law mainly based on a proportional-integrator component with respect to the 

quaternion vector  T
qqqq 4321

ˆ q  and to the satellite’s angular velocity vector  .  

According to (5), the modification of the vector   leads to other expressions of the 

quaternion vector q, this resulting in the change of the satellite attitude (see eq. (19)). 

 As we already stated above, the motion of the satellite is described by three phases: the 

accelerated angular motion, the uniform angular motion and the braked motion [21]. The control 
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system is also described by four actuators (m = 4) which are placed such that the matrix B has 

the form [21]: 

.deg45,

sin0sin0
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also, the following values are used: 

  ,mkg152020diag,deg/s3.0,Nm25.0 2
max  JM i
  
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qqq  qq     and   have the 

forms  T321   and (2), respectively. 

 The nonlinearity  gM


sat  is described by the equation (21), with  ,q  of form (20); 

,4,1, iM gi  are the components of the vector gM and their values are introduced every 

iteration in the equation (20) for the calculation of        gtt Mqq .,,    is calculated by 

means of equation (16). 

We chose 707.0  and ;rad/s1.0n  using these values, one obtains: 

;2,2 2JkJPKJJkK npndd   it resulted 02.02,1414.02 2  nnd kk  

and 

   .3.04.04.0diag,121.2828.2828.2diag  PKK pd  (23) 

 The matrix Kp is determined with ,JkK pp   where  .diag 321 pppp kkkk   The 

coefficients ,3,1, ik pi  are calculated using (17); it yields  .385146diag10 2pK  

Matrix P is determined by means of equation (23) with Kp presented above; it results: 

 .43.7843.7814.87diag1   JkKP p  (24) 

 The nonlinearity    ii PP
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with   ,3,1,.321  iLLLLL i

T
 are calculated from the condition associated to the steady 

regime  ,0cu  i.e. 

maxmax  
ddp KKLK   (26) 

or 

,max 
dp kLk  (27) 
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equivalent with the following one: 

 

 
.3,1,

0

0)17(

max  i
qk

k
L

ipi

d
i

q  (28) 

 The Matlab/Simulink model used in the validation process of the control system in fig. 1 

is the one presented in fig. 2.a; this model includes two sub-systems: 

1) “Subsystem omega_x” – fig. 2.b (mainly based on equation (2)); 

2) “Subsystem q and q4” – fig. 2.c (used for the calculation of the quaternion q̂  by using 

information from the vector of angular velocities    – equation (5)). 
 

 

a. 

 

Fig. 2 – Matlab/Simulink models for the satellite’s attitude control system 

 In fig. 3.a we present the time histories of the satellite’s attitude angles  ,,,   angular 

velocities  321 ,,   and of the three components of the control law u; in fig. 3.b we present 

the time histories associated to the components of the quaternion  ,,,,ˆ
4321 qqqqq  the  

components of the vector  4321 ,,, MMMMM  and the norm   .t  
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b. 

Fig. 3 – Time histories of the main variables associated to the satellite’s attitude control system 
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 As one can see in fig. 1.a, the control of the satellite’s attitude is achieved by controlling 

the quaternion vector q and the satellite’s angular velocity vector  .  Actually, the first 

component of the designed control law is of proportional type and ensures the convergence 

of the quaternion vector q to the desired quaternion   ,000
T

q  while the second 

component of the control law cancels the deviation of the angular velocity vector from the 

one associated to the reference frame. 

The closed loop control system has good convergence, global asymptotically stability 

and     ;0,0  tt q  on the other hand, as one can notice from fig. 3, the cancellation of 

the vectors q  and   leads to the cancellation of other variables: the deviation of the 

satellite’s attitude angles with respect to their desired values, the components of the vector 

 4321 ,,, MMMMM  and the three components of the control law u. 

The closed loop control system has been proved to be characterized by convergence and 

global asymptotic stability. 

ACKNOWLEDGEMENTS 

This work was supported by the project “Computational Methods in Scientific Investigation 

of Space”, project number 72/29.11.2013, of the Romanian National Authority for Scientific 

Research, Program for Research - Space Technology and Advanced Research – STAR. 

REFERENCES 

[1] N. Jovanovic, Aalto-2 satellite attitude control system. Thesis of Master – Science in Technology. Aalto 

University, School of Electical engineering, 2014. 

[2] J. Bouwmeester and J. Guo, Survey of worldwide pico- and nano- satelitte missions, distributions and subsystem 

technology. ActaAstronautica, vol. 67, pp. 854-862, 2010. 

[3] V. F. Lavet, Study of passive and active attitude control systems for the OUFTI nanosatellites. Thesis of Master – 

Engineering Physics. University of Liege, Faculty of Applied Sciences, 2010. 

[4] K. Kreutz, Manipulator control by exact linearization, IEEE Transactions on Automatic Control, vol. 34, no. 7, 

pp. 763-767, 1989. 

[5] R. Bayadi and R. N. Banavar, Almost global attitude stabilization of a rigid body for both internal and external 

actuation schemes, European Journal of Control, vol. 20, pp. 45-54, 2014. 

[6] T. Lee, Robust adaptive attitude tracking on so(3) with an application to a quadrotor UAV, IEEE Transactions on 

Control Systems Technology, vol. 21, no. 5, pp. 1924-1930, 2013. 

[7] N. Chaturvedi, A. Sanyal and N. McClamroch, Rigid-body attitude control, IEEE Control Systems Magazine, 

vol. 31, no. 3, pp. 30-51, 2011. 

[8] R. Mahony, T. Hamel and P. J.-M., Nonlinear complementary filters on the special orthogonal group, IEEE 

Transactions on Automatic Control, vol. 53 , Issue: 5, pp. 1203-1218, 2008. 

[9] Z. Zhu, Y. Xia, M. Fu, Adaptive sliding mode control for attitude stabilization with actuator saturation, IEEE 

Transactions on Industrial Electronics, vol. 58, pp. 4898-4907, 2011. 

[10] C. G. Mayhew, R. G. Sanfelice and A. R. Teel, Robust global asymptotic attitude stabilization of a rigid body 

by quaternion-based hybrid feedback, Joint 48th IEEE Conference on Decision and Control and 28th 

Chinese Control Conference, 2009. 

[11] L. Benziane, A. Benallegue, Y. Chitour and A. Tayebi, Inertial Vector Based Attitude Stabilization of Rigid 

Body Without Angular Velocity Measurements, Mathematics – Optimization and control, 2015. 

[12] D. Thakur, Adaptation, gyro-free stabilization, and smooth angular velocity observers for attitude tracking 

control applications, Ph.D. dissertation, The University of Texas at Austin, August 2014. 

[13] L. Benziane, A. Benallegue and A. Tayebi, Attitude stabilization without angular velocity measurements, in 

IEEE International Conference on Robotics & Automation (ICRA), pp. 3116–3121, 2014. 

[14] A. Tayebi, A. Roberts and A. Benallegue, Inertial vector measurements based velocity-free attitude stabi-

lization, IEEE Transactions on Automatic Control, vol. 58, no. 11, pp. 2893-2898, 2013. 



103 Nonlinear automatic control of the satellites by using the quaternion and the angular velocities’ vectors 
 

INCAS BULLETIN, Volume 7, Issue 2/ 2015 

[15] B. Xiao, Q. Hu and P. Shi, Attitude stabilization of spacecrafts under actuator saturation and partial loss of 

control effectiveness, IEEE Transactions On Control Systems Technology, vol. 21, pp. 2251-2263, 2013. 

[16] R. Schlanbusch, E. I. GrÃžtli, A. Loria and P. J. Nicklasson, Hybrid attitude tracking of rigid bodies without 

angular velocity measurement, Systems & Control Letters, vol. 61, pp. 595–601, 2012. 

[17] S. M. Joshi, A. G. Kelkar and J. T. Wen, Robust Attitude Stabilization of Spacecraft using Quaternion Feed-

back. IEEE Transactions on Automatic Control, vol. 40, no. 10, pp. 1800-1803 , 1995. 

[18] C. Heiberg, D., Bailey and B. Wie, Precision Spacecraft Pointing using Single-Gimbal Control Moment Gyro-

scopes with Disturbances. Journal of Guidance, Control, and Dynamics, vol. 23, no. 1, pp. 77-85, 2000. 

[19] J. T. Wen and K. K. Delgado, The Attitude Control Problem. IEEE Transactions on Automatic Control, vol. 36, 

no. 10, pp. 1372-1379, 1991. 

[20] B. Wie, H. Weiss and A. Arapostathis, Quaternion Feedback Regulator for Spacecraft Eigenaxis Rotations. 

Journal of Guidance, Control and Dynamics, vol. 18, no. 6, pp. 375-380, 1989. 

[21] B. Wie and J. Lu, Feedback Control Logic for Spacecraft Eigenaxis Rotations Under Slew Rate and Control 

Constraints. Journal of Guidance, Control and Dynamics, vol. 18, no. 6, pp. 1372-1379, 1995. 

 

 

 

 


