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Abstract: The paper is focused on the stress analysis of thin-walled multicell sections subjected to 
pure torsion. The shear flow and stiffness characteristics of the cross section for torsion are given. 
Example: aircraft wing section. The theory for thin-walled closed sections used in this paper was 
developed by Bredt [3]. The shear flows obtained are used in the design of skins and interior webs, 
ribs and fasteners at skin splices, skin web junctions and the joints where the ribs meet the skin or 
webs. 
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1. INTRODUCTION 

The problems involving torsion are common with aircraft structures. The material covered 
wing and fuselage of the airplane are basically thin walled tubular structures subjected to 
large torsion moments under many flight and landing conditions; therefore the necessary 
knowledge about the torsion stresses and distortions of components is particularly 
necessary with aircraft structural design (See Figure 1).  

The objective is to calculate the stiffness and shear flows for a wing with one or more 
cells in closed cross sections for the conceptual design. This is the solution for the majority 
of the wings and tail planes. 
 

 
 

Figure 1 Classical wing structure 

The thinner wing boxes used on fighters and supersonic aircraft utilize multi-cell boxes 
which provide a much more efficient structure (See Fig.2) 
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Figure 2 Fighter wing (multi-cell box) 

In thin-walled beams the wall thickness is assumed to be much smaller than a 
representative dimension of the cross sections (f.i. chord)   t/c <<1. 

Consider a thin-walled shell structure of arbitrary constant cross section as shown in 
Fig.3. The area bounded by the outer wall is subdivided into an arbitrary number of cells, 
which are separated by thin webs. It is assumed that cross-sectional changes during twisting 
are prevented by transverse stiffening members (ribs or frames) which are considered to be 
rigid within their planes (so that the cross section is maintained unchanged during loading) 
but perfectly flexible with regard to deformations normal to their planes [1]. 

The pure torsion case is considered. In the analysis we assume that no axial constraint 
effects are present and that the shape of the wing (or tail plane) section remains unchanged 
by the load application. 

In the absence of any axial constraint there is no development of direct stress in the wing 
section so that only shear stress are present which resulting in the shear flows q. It follows 
that the presence of booms does not affect the analysis in the pure torsion case [1]. 

The theory for the thin-walled closed sections was developed by Bredt [1], [7]. 

2. TORSION OF THE MULTICELL SECTIONS 

Let’s consider a wing subjected to torsion. The torque Mt will be divided over the several 
boxes. The wing section shown in Fig.3 comprises n cells and carries a torque Mt which 
generates individual but unknown torques in each of the n cells. The case of pure torsion is 
studied. Each cell develops a constant shear flow q1, q2,..qi,..qn.  The shear flow in any 
interior wall is equal to the difference of the shear flows in the adjoining exterior walls. A 
structure with n cells will have n unknown shear flows [1]. 
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Figure 3. Multicell wing section subjected to torsion 

The shear flows must be in equilibrium with the applied torque.  
For equilibrium, the applied torque must equal the sum of the torques in the cells: 
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where Ai is the area enclosed by the midline of the ith cell ( Eq. 1 is called the Bredt-Batho 
formula). 

Equation (1) is sufficient for the solution of the special case of a single cell section 
which is statically determinate. For an n-cell section additional equations are required 
because the structure is statically indeterminate. These are obtained by considering the rate 
of twist in each cell and the compatibility of displacement condition that all n cells possess 
the same rate of twist /d dz ; this arises directly from the assumption of an undistorted 
cross-section [1].  

Consider the  ith  cell of the wing section shown in Fig.3. 
The angle of twist per unit length   is given by the equation (2) (eq.8-65 from [1] ) 
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where G1 is an arbitrary reference modulus (it is possible that the shear module for the wall 
and the webs G1, G2, G3, G12, etc. will differ if the cells are manufactured of different 
materials) and  is a modulus-weighted thickness defined by t
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When the cross section is homogeneous, the subscript on G and the asterisk on t may be 
dropped in Eq.2. 

When only a torque is applied, q is constant in each wall segment and   (angle of twist 
per unit length) may be written: 
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where qi is the constant shear flow around the ith cell and  and  are the shear flows 

around the (i-1) th and (i+1) the cells, respectively. 
11q 11q

Equation (4) may be applied to each of the n cells by equating   for the first and ith 
cells. We can write (n-1) equations of the form: 

INCAS BULLETIN, Volume 2, Number 3/ 2010 



Marcel STERE 102 
 

                     
1,1,2 , 1

1 2 1 11
1

1 1
i i i i

web web webi i ii
i

ds ds ds ds ds
q q q q q

A t t A t t t 
    

  
     

  
     





  (5) 

By letting i run from 2 to n. 
The general form of Eq. (5) is applicable to multicell sections in which the cells are 

connected consecutively. 
The simultaneous solution of these equations with Eq (1) gives the n unknown values of 

qi. 
The value of   can then be found by evaluating Eq. (4) for any of the cells. 

The torsional rigidity 1G J   of the nonhomogeneous section can then be found from the 

defining equation  

1
iM

G J


       (6) 

It is possible to apply this approach to sandwich structures with honeycomb core (see 
Figure 4) and for cheking the rigidity criteria for aileron and tailplane as a preliminary step 
before the flutter analysis ‚4ƒ. 

 

Figure 4   Boeing 767 aileron 

3. THE EQUATION SOLUTION 
To obtain the solution of the simultaneous algebraic system a lot of methods can be applied. 
Bruhn [2] used the method of successive approximations. The method provides a simple and 
rapid approach for finding the shear flow in multiple cells under pure torsion. 

The Gauss-Jordan method and / or a special very efficient procedure TRIDIAG [5] are 
utilized in this work. 
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4. SOLVING THE PROBLEM 

Flow chart of the program 
    Read input data 
                      
    Print input data 
                       
Determination of the geometrical 
parameters 
                        
Generation of the algebraic equations  
PX ACEL 
                        
Solving the equation system 
                         
Calculus of the shear flows 
distribution 
                         
Calculus of the angle of twist TETA 
                         
Torsional rigidity      GJt 
                          
Calculus of the shear stresses 
                          
Printing the results 
 
Figure 5 Flow chart for the software 

5. NUMERICAL APPLICATION 

Example 1 [1] 
Calculate the shear stress distribution in the walls of the three-cell wing section shown 

in Fig.6, when it is subjected to an anticlockwise torque of 11.3 kNm.  
 

 
Figure 6   Wing section of Example 1 
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Input data:  

Wall Length (mm) Thickness (mm) G (N/mm2) 
120 1650 1.22 27600 
12i 508 2.03 27600 

13,24 775 1.22 27600 
34 380 1.63 27600 

35,46 508 0.92 27600 
56 254 0.92 27600 

Cell area (mm2) :  AI  = 258000    ;   AII = 355000   ;   AIII = 161000 
 

Output data: 
 The torsional constant  J  =   .64707641E+05 cm4 
 The torsional rigidity GJ  =   .17859309E+10 daNcm2 
 

 The shear flows in the skin : 

 QMT( 1) =      6.9764 daN/cm. 
 QMT( 2) =      8.6951 daN/cm 
 QMT( 3) =      4.7412 daN/cm. 
 

 Shear flows in the spar webs : 
Web no.1        6.9764 daN/cm. 

 Web no.2        1.7186 daN/cm. 
 Web no.3       -3.9539 daN/cm. 

Web no.4        4.7412 daN/cm. 
 

The shear flows and the shear stresses from torque: 
 

No.       QMT       QMTIN     TAUE        TAUI          TAUIN 
 Cell.    daN/cm   daN/cm     daN/cm2     daN/cm2    daN/cm2 
                                    1        6.98          6.98           57.184        57.184         57.184 
                                    2        8.70          1.72           71.271         71.271         8.466 
                                    3        4.74        -3.95            51.535        51.535      -24.257 
                                    4        0.00          0.00               .000            .000         51.535 

6. CONCLUSIONS 

In spite of its inexactness, this simple and classical method enjoys a considerable popularity 
even in the present finite-element age. 

The shearing stresses in the skins and webs are required to determine whether these 
components buckle and fail in diagonal tension. 
 Also, the forces on the fasteners of a joint can be determined once the shear flow that is 
transmitted through the joint is known. The shear flow gives the force that is transmitted 
across a unit length of the joint, so that: 

      
n

q
Priv       (7) 

 where  Priv  is the shear force per rivet and n is the number of rivets per unit length of 
the joint. 
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