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Abstract: We consider solutions, with infinity of zeros, of real second-order linear differential 

equations. The graph of a solution locates the zeros with a certain precision, which means that zeros 

are between some successive numerical values of the solution. Once the first zero is calculated, the 

given equation is converted into a new first-order equation. The zeros of this new equation form a 

subset of numerical values of the solution of the first order equation. 
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1. TRANSFORMING BESSEL’S EQUATION 

In the monograph “A Treatise on the Theory of Bessel Functions” [1], the properties of the 

function J(x) with the real index  and the real argument x  0 are specified. In particular, 

this function is a solution of the linear differential equation 
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We shall consider the transformation and the next derivatives 
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The zeros of the Z function are also zeros of the y function. The Z function is a solution 

of the linear equation 
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A system of two non-linear equations for the unknowns H and  with the argument x, is 

associated with this equation, according to the following identities 
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These identities result in successive formulas 
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Consequently, we have the non-liner differential system 
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The zeros of the y and Z functions correspond to the np values of the function (x). It is 

therefore useful to specify the equation system for the unknowns H and x in relation to the 

argument . 
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We admit that a positive root j0, of the function J(x) has been calculated. The initial 

useful condition of solution x(.), is x(-) = j0,,. For the integration interval [, (N1) ] with 

(Np+1) division points, the x(sp) values of the numerical solution will be the roots of the 

specified function.  

2. CALCULATING SUBSETS OF FIRST ZEROS 

Knowing a root of the function J(x), the following roots can be calculated by solving a 

single differential equation. For calculating the values of function J(x), it would be 

necessary to specify the initial condition of the monotone decreasing function H. 

The first positive zeros of J0, J1, J2 and J3, according to the Mathcad 7 program, are 

determined with the following instructions 
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x = 2.404826,      j0,0 = root(J0(x),x),        j0,0= 2.404826,        J0(j0,0) = 1.15010
10 (14) 

x = 3.831706,      j0,1 = root(J1(x),x),        j0,1= 3.831706,        J1(j0,1) = 6.02610
12 (15) 

x = 5.135622,      j0,2= root(Jn(2, x), x),     j0,2= 5.135622,   Jn(2, j0,2) = 5.13610
11 (16) 

x = 6.380162,    j0,3= root(Jn(3, x), x),     j0,3= 6.380162,    Jn(3, j0,3) = 1.56810
11 (17) 

These zeros values are the initial conditions of equation (12) in the cases =0, =1, =2 

respectively =3. The integration interval is [, (N1)]. Each subinterval [k, (k+1)] has 

p+1 nodes. Let S be the function 
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The system of the four equations (12) is considered. 
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The solution is obtained with Carl David Runge and Wilhelm Kutta method [2]. 

N = 5         p = 32        R  rkfixed(uo,, N, Np,D) (20) 

The vectors of numerical values of the solutions are 

X0 :R
<1>

,         X1 :R
<2>

,         X2 :R
<3>

,        X3 :R
<4>

 (21) 

The subset of zeros of the functions J0(x), J1(x), J2(x) and J3(x) have the components 

s : 0..N        js,0 : X0sp     js,1 : X1sp     js,2 : X2sp     js,3 : X3sp (22) 

For  = 0, 1 these zeros agrees with values in Tafeln Höherer Funktionen [3]. 
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If the index  does not have integer value, it is applied Poisson’s formula [3].
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(.) is the gamma function [4]. For example 

= 0.5,  x = ,   j0 = root(J(, x), x),  J(, j0) = 9.6310
12

,  j0   = 3.02410
8 (26) 
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The functions { J(x js,), s = 0, 1, 2, ...} defined on the interval [0,1], are an orthogonal 

functions subset [5], [6]. 

3. EXAMPLES OF THE ORTHOGONAL FUNCTIONS 

Let a, b be the positive real numbers and functions A(x) = y(ax) and B(x) = y(bx), where y(x) 

function is a solution of equation (1). Hence 
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By integration, we have formula  
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If a and b are zeros A(a) = y(a) = 0 , B(b) = y(b) = 0 and a  b, then y(ax) and y(bx) are 

orthogonal functions. 

 

Figure 1. The graphs of orthogonal Bessel's functions on interval [0, 1] 
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The square of the norm has the expression 

J( jm,) = 0          
1
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From (29) if a(dy/dx)(a) + h y(a) = 0 and  b(dy/dx)(b) +h y(b) = 0 then functions y(ax) 

and y(bx) are also orthogonal functions.
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4. THE DIFFERENTIAL EQUATION OF THE FUNCTION f 

Let h be a real positive number [5]. We consider solution y(x) of equation (1) and function 

f(x). 
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So the derivative also depends linearly of the solution y and its derivative. 
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Inverting the algebraic linear system we have the representation 
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The second derivative of function f  has the expression 

y
xdx

dy
x

xdx

yd
h

dx

fd























 1

2

22

2

2

2

2

 (35) 

From Bessel’s equation (32) we could write 
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Taking into account formulas (34), we will consider the differential equation of function 

f(x). 
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The coefficients of the equation have the following expressions 
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The final expression of the equation is 
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For calculating the values of function f given in relation (32), account is taken of a 

recurrence relation [1], [4]. 

f(x) = 0.5 x [ J 1 (x)  J+1 (x) ] + h J(x)  (40) 

5. THE EQUATION FOR ZEROS OF THE FUNCTION f 

It is suitable to use the functions K and w defined by following relations 
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These functions are solutions of the non-linear differential system (42) and (43). 
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From equation (39) of function f and definition (41) we could write  
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Therefore the differential system for K and w has the expressions  
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The first positive zeros of function f, according to the Mathcad program, are determined 

with the following instructions. 

h := 0.5,     := 2,        f(z) := 0.5z(Jn(1,z)Jn(1,z))+hJn(,z) (46) 

z1:= 3.31075389   x1:=  root(f(z1),z1)   x1= 3.31075389    f(x1)=2.2110
12
 (47) 

If the initial value z1 is different from the root x1, then the z1 value is changed so that 

z1 = x1. From (39) it results the expressions of the coefficients 
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Let F be the function 
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The [w0, w1] interval of integration have N > 4 components of 2 length.

w0 := N := 5           w1 := N        p := 32 (50) 

The solver parameters and solution matrix of equation (45). 

ic0 := x1       D(w,u) := F(u0,w)         R := rkfixed(ic, w0, w1, Np, D) (51) 

Solution xmp  values and the zeros of function f defined in (32), (40), (46) and (54). 

x := R
<1>

            m := 0..N          km := xm.p          errm := f(km) (52) 

k
T
 = [ 3.310754    6.787223    10.021532    13.209152     16.378533    19.538786 ]         

 10
7 
err

T
 = [ 21.2210

5   
   1.11     1.55     1.89     2.17     2.42  ]

(53) 
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Figure 2. The graphs of orthogonal Dini's functions on interval [0, 1], for  = 2 
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From formula (29) for case b = a, inner product < y(ax), y(bx) > would have an 

undetermined value.  
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The l'Hôspital rule applies. 
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If y(a) = J(a) = 0 then according to the recurrence relations we will have dy/da=J+1(a) 

and formula (31). If  a dy/da + h y(a) = 0, then will have formula (56). 
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6. RESULTS 

In the theory of surface waves problems are often formulated which lead to the 

determination of roots of certain functions [7], [8], [9] and [10]. Problems with eigenvalues 

have been recently formulated [6], [11], [12]. In the above, the zeros of the functions of 

Bessel J0, J1, J2, J3 formulas (22), (23) and the series of orthogonal functions (30), (31) are 

specified. Also the zeros of function f are given in formulas (52), (53) and the orthogonal 

functions are given in formulas (55), (56). Only in the calculation of the first zero it is 

necessary to know the values of the function. The non-linear differential equation for 

determining the other zeros have coefficients with known rational expressions. 
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