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Abstract: Consider a second order differential linear periodic equation. The friction coefficient is real 

positive constant. Some transformation of the solution and its first derivative allow writing two-order 

differential equations with void friction coefficients. The solutions of these equations are periodic 

functions or sum of periodic function and an oscillating function with monotone linear increasing 

amplitude. The second order equation with linear friction is recast as a first order system. The 

coefficients of the principal fundamental matrix solution of the system are explicit analytical 

functions. 
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1. INTRODUCTION 

The approximate theory of infinitesimal standing waves is very fruitful in its application to 

problems with various special boundary configurations. The linear character of both the 

equations and boundary conditions allowed finding some explicit solutions. Let (x, y)-plane 

be at the undisturbed fluid free fixed simply connected surface  having a piecewise smooth 

boundary contour . A special case of particular interest is the irrotational flow of perfect 

incompressible fluid. It is assumed that the bottom fluid is bounded by a rigid fixed surface  

z =  h < 0. The flow velocity v is related to the potential  by the formula 

v =  

Differential operations , div and  are performed with the variables x, y, z. The potential 

has the following expression 

(x, y, z, t) = H(x, y) cosh (z + h) cos  t,       (x, y)  ,     z  [0, h ],    t  R 

The continuity equation is fulfilled in the fluid domain. 

div v =   = 0 

Consequently, the function H is a solution of Hermann von Helhmoltz equation. 
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,      (x, y)  ,    k = const. > 0

Let n (n1, n2) be the normal vector to the contour , it is necessary that the boundary 

flow condition be fulfilled 
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The form of the free surface is given by 

(x, y, t) ~ H(x, y) sin t

If the surface  is an ellipse, then Mathieu’s equation can be obtained by expressing the 

above equation in elliptical coordinates and by the method of separation of variables [1].

2. PROBLEM FORMULATION 

Consider the following two-order linear differential equation with respect to real 

dimensionless time t. 

  02 2

2

2

 ZQ
dt

dZ

dt

Zd
 (1) 

We assume that the  coefficient is a positive constant. The following Q function is a 

reasonable approximation of Mathieu’s coefficient [1], [2], [3]. 
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           1/9 < q < 1/9 (2) 

We recast the equation (1) as a first-order system. The following system is obtained. 

  WZQ
dt

dW
W

dt

dZ
 2, 2  (3) 

Let (X, U)
T
 and (Y, V)

T
 be

 
the characteristic solutions of these system. 

  UXQ
dt

dU
U

dt

dX
 2, 2 ,       X(0)=1,     U(0)=0 (4) 

  VYQ
dt

dV
V

dt

dY
 2, 2 ,       Y(0)=0,      V(0)=1 (5) 

The problem is to give the analytical expressions of these solutions. 

3. USEFUL TRANSFORMATIONS 

The functions X, U, Y and V fulfill the relations 

  1)0)((),(2  UYXVUYXVUYXV
dt

d
 

The solution of this equation has the expression 
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X V U Y = exp ( 2  t) (6) 

Consider the following transformations in order to solve the above systems. 

X = z exp (  t),      X(0)=1          z(0)=1,    
dt

dz
w   (7) 

)exp()( tzw
dt

dX
U  ,     U(0)=0            w(0)= (8) 

Y= y exp (  t ),      Y(0)=0          y(0)=0,    
dt

dy
v   (9) 

)exp()( tyv
dt

dY
V  ,     V(0)=1               v(0)=1. (10) 

The vectors (z, w)
T
, (y, v)

T
 and (x, u)

T 
are the solutions of the following systems 

 )0(,1)0(,, wzzQ
dt

dw
w

dt

dz
 (11) 

1)0(,0)0(,,  vyyQ
dt

dv
v

dt

dy
 (12) 

0)0(,1)0(,,  uxxQ
dt

du
u

dt

dx
 (13) 

Consequently, 

z = x+ y,             w = u +  v (14) 

4. RESULTS 

The expressions of solutions (x, u)
T
 and (y, v)

T
 have been obtained in [3]. 
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Let us introduce the following notations 
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Denote  the periodic function 

dt
t

t
t

 














0 22
sign

cos)1(1
)( ,     (t + ) = (t) (18) 
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Finally it results 

y = (
 2
   0 cos

2
t) sin t +  x ( + t) (19) 

v = (1 + 3  0 sin
2
t) cos t +  u ( + t) (20) 

The (y   t x) difference is a periodic function but (t x) is an oscillating function with 

monotone linear increasing amplitude. 

Taking into account the initial real conditions 

Z(0) = Z0,      W(0) = W0 (21) 

we can write 

)exp(
)0(

)0(

)()(

)()(

)(
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yvzw
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 (22) 

Consequently, 

Z(t) = { [ x(t) +  y(t) ] Z0 + y(t) W0 } exp(t) (23) 

W(t) =   Z(t) + { [ u(t) +  v(t) ] Z0 + v(t) W0 } exp(t) (24) 

The set of these solutions is two-dimensional real space [4], [5], [6]. For directly 

calculation of (X, U, Y, V)
T
 solution it is useful to consider the fourth-order differential 

system (4) and (5), [7], [8], [9]. The constant solution (0, 0)
T
 of the first system (3) is 

asymptotically stable [10], [11]. 

0)(lim,0)(lim0 


tWtZ
tt

 (25) 

Let f (t) and g (t) be the periodic functions 

0)(lim,0)(lim0 


tWtZ
tt

 (26) 

Let P(t) be the following 2-periodic matrix 
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This matrix is invertible unimodular matrix 

| P(t) | = x(t) g(t)  u(t) f(t) = 1 (28) 

Consequently, in the case  = 0, the principal fundamental matrix 0(t) of the system (3) 

has the following expression 
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Taking into account formulae (17), let B0 be the parametric nilpotent matrix 
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Therefore 
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Consequently, 

0(0) = I,         0(2) = I + 2B0 

The appropriate monodromy matrix has the expression 

C0 = I + 2B0 ,       0(t + 2) = 0(t)C0 (32) 

Taking into account the formulae (14) and (22), for   0, the principal fundamental 

matrix solution of the system (3) has the expression 
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Therefore, 

(t) | e
t
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...
 = ( x v  u y ) = ( x g  u f ) = 1 (34) 

Consequently, 
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We recall the formulae (15) - (20) and we deduce successively 

x(2) = x(0) = 1,    u(2) = u(0) = 0,   y(0) = 0,   v(0) = 1,    (0) = I (35) 

v(t + 2) = v(t) + 2 u(t),             v(2) = 1 (36) 

y(t + 2) = y(t) + 2 x(t),              y(2) = 2 (37) 
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But, (t + 2) is also a fundamental matrix solution. 
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Therefore, using the formula (34), there exists an invertible constant matrix C, so that 

(t + 2) = (t) C,     C = (2

The appropriate monodromy matrix for the system (3) or (41) has the expression 
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5. CONCLUSIONS 

The problem of determining the Floquet multipliers of linear differential periodic systems is 

often difficult. For the special case of simplified Mathieu’s equation but with linear friction 

(1), the characteristic coefficients of the appropriate system (3) or (41) have explicit 

analytical expressions and also the monodromy matrix C. 
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