Simplified Mathieu’s equation with linear friction
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Abstract: Consider a second order differential linear periodic equation. The friction coefficient is real
positive constant. Some transformation of the solution and its first derivative allow writing two-order
differential equations with void friction coefficients. The solutions of these equations are periodic
functions or sum of periodic function and an oscillating function with monotone linear increasing
amplitude. The second order equation with linear friction is recast as a first order system. The
coefficients of the principal fundamental matrix solution of the system are explicit analytical
functions.
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1. INTRODUCTION

The approximate theory of infinitesimal standing waves is very fruitful in its application to
problems with various special boundary configurations. The linear character of both the
equations and boundary conditions allowed finding some explicit solutions. Let (X, y)-plane
be at the undisturbed fluid free fixed simply connected surface Q having a piecewise smooth
boundary contour 6Q. A special case of particular interest is the irrotational flow of perfect
incompressible fluid. It is assumed that the bottom fluid is bounded by a rigid fixed surface
z=-h<0. The flow velocity v is related to the potential ¢ by the formula
v=V¢
Differential operations V, div and A are performed with the variables x, y, z. The potential
has the following expression
(X, y, z, t) = H(x, y) cosh (z + h) cos o t, x,y)eQ, ze[0,h], teR

The continuity equation is fulfilled in the fluid domain.

divv=A¢=0
Consequently, the function H is a solution of Hermann von Helhmoltz equation.
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OX? oy?
Let n (ny, ny) be the normal vector to the contour 6Q, it is necessary that the boundary
flow condition be fulfilled
dH oH oH
—=—n+—n, =0, X, o0Q(X,
an o oy b (x,y) € x,y)
The form of the free surface is given by

C(x, Y, t) ~ H(x, y) sin ot

If the surface Q is an ellipse, then Mathieu’s equation can be obtained by expressing the
above equation in elliptical coordinates and by the method of separation of variables [1].

=—k®H, (x,y)eQ, k=const.>0

2. PROBLEM FORMULATION

Consider the following two-order linear differential equation with respect to real
dimensionless time t.

d?z dz

+2—++Q)Z =0 1

dt? dt ( Q) @
We assume that the A coefficient is a positive constant. The following Q function is a

reasonable approximation of Mathieu’s coefficient [1], [2], [3].

8q(1 - 2cos2t)

1+q-2qcos2t’

Q=1+ -1/9<q<1/9 (2

We recast the equation (1) as a first-order system. The following system is obtained.

dz dw
9z _w, = (2+Q)z-2aw 3
dt dt ( Q) ®)
Let (X, U)" and (Y, V)" be the characteristic solutions of these system.
% =U, (L—Ltj —(2+Q)X —20U,  X(0)=1, U(0)=0 ()
‘i‘j_\t( _v, Oc'j_\t’ = (2+Q) —20V,  Y(0)=0, V(0)=1 5)

The problem is to give the analytical expressions of these solutions.

3. USEFUL TRANSFORMATIONS
The functions X, U, Y and V fulfill the relations

%(xv —UY) = =21 (XV -UY), (XV —UY)(0) =1

The solution of this equation has the expression
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XV-UY=exp(-2Art) (6)
Consider the following transformations in order to solve the above systems.
X=zexp(—At), X0=1 = 2z(0)=1, w= % @)
dXx
U= T (w—2Az)exp(-At), U@0)=0 =  w(0)=4 (8)
_ _ _ dy
Y=yexp(-at), Y00 = y(0)=0, v=-- (9)
dy _ _
V = P (v—-Ay)exp(Art), V(@O0)=1 = v(0)=1. (10)
The vectors (z, w)", (y, v)" and (x, u)" are the solutions of the following systems
dz dw
—=w, — =-Qz, z(0) =1, w(0) = A 11
. pm Q (0) (0) (11)
dy dv
=2 —v, — =-Qy, 0) =0, v(0) =1 12
it praaity y(0) () (12)
dx du
— =Uu, e X, XO =1, UO =0 13
pm pm Q ) ) (13)
Consequently,
Z= X+ Ay, W=u+Av (14)
4, RESULTS
The expressions of solutions (x, u)" and (y, v)" have been obtained in [3].
= cost —qcos3q _ cost (1+ 3q — 4q cos? t ) (15)
1-g¢ 1-g¢
sint —3qsin 3t sint
= - = - 1+ 3q —12qcos®t
T gL+ 3a-12qc05't) (16)
Let us introduce the following notations
1-q 8a.q 49(1 - 3q)
_ , - % =T 17
*\1+3q b= 1 30y Y )
Denote T, the periodic function
t o .
r,(t) = —signa [dt,  Ty(t+m) = [y(t (18)
«(0) .[o [1+(a2—1)c032t J a] (t+m) ®
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Finally it results
y=(a?—yocosit)sint+px ([, +t) (19)

v=(1+3yysint)cost+p u ([, +t) (20)

The (y — B t x) difference is a periodic function but (B t x) is an oscillating function with
monotone linear increasing amplitude.
Taking into account the initial real conditions

Z(0) =2, W(0)=W, (21)
we can write
Z
[Vf/((tt))j - ‘58 \tg; (Vf/(((())))J - ‘w —Z AZ V —yky‘(w(j eXpCAM) (22)
Consequently,
Z(t) = {[x(®) + 2 y(t) 1 Zo + y(t) Wo } exp(-A 1) (23)
W(t) =—A Z(t) + {[u(t) + A v(t) ] Zo + v(t) Wp } exp(—A 1) (24)

The set of these solutions is two-dimensional real space [4], [5], [6]. For directly
calculation of (X, U, Y, V) solution it is useful to consider the fourth-order differential
system (4) and (5), [7], [8], [9]. The constant solution (0, 0)" of the first system (3) is
asymptotically stable [10], [11].

A>0 = limz@=0, lmMW()=0 (25)

Let f(t) and g (t) be the periodic functions
A>0 = limZ(t) =0, th_)rg)W(t):O (26)

Let P(t) be the following 2r-periodic matrix
P(t) = {X(t) f(t) + Bx(IL, (t)}
u(t) g(t) +put)l, (t)
This matrix is invertible unimodular matrix
[ P(t) | =x() g(t) —u(t) f() = 1 (28)

Consequently, in the case A = 0, the principal fundamental matrix ®y(t) of the system (3)
has the following expression

(27)

1 x@® y®) | 0 x(t)
P 1) = L(t) V(t)} =P+ Bt{o ) (t)} (29)
Taking into account formulae (17), let By be the parametric nilpotent matrix
) WS
00 00
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Therefore
- 1
eBot = | + nZ:;ﬁ(BOt)n =1+ Byt (31)
Consequently,
CD()(O) = |, CD()(ZTE) =1+ 27'CBO
The appropriate monodromy matrix has the expression
CO =1+ 27'EB(), q)o(t + 27'[) = q)o(t)CO (32)

Taking into account the formulae (14) and (22), for A > 0, the principal fundamental
matrix solution of the system (3) has the expression

CD(t):{ 2 }e‘“:{ X+ hy y }e-ﬂ (33)

W—2AZ V—Ay U+AiAv—A(X+2Ay) v—2Ay
Therefore,
| () |[eM="=(xv-uy)=(xg-uf)=1 (34)
Consequently,
e = {u + xz(v - X) \ﬂ i y[—ﬁ& —ij}em
so that

ey v 0 -A -1 .
(Dl(t)_{{—u—k(v—x) x}ry{?@ x}}ek

We recall the formulae (15) - (20) and we deduce successively

x(21) =x(0) =1, u@m)=u(0)=0, y(0)=0, v(0)=1, @)= (35)
V(t + 27) = V() + 27B U(t), v(2n) = 1 (36)
y(t + 2m) = y(t) + 2rP x(V), y(2r) = 2n3 (37)
[ 1+ 2npn o ],
®(2m) = {x AL+ 27BN 1— 2nm} © (38)

But, ®(t + 2m) is also a fundamental matrix solution.

O(t + 21) = e‘ZMCD(t){(lJ ﬂ + 2npe ™ CD‘l(t)(u B ﬂ + ){—7;3 —17»D}

D(t + 21) = e 2™ D(t) {é ﬂ + 2np(xv - UV){_X;MZ _ﬂ}
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Therefore, using the formula (34), there exists an invertible constant matrix C, so that
O(t+2n)=d() C, C=d(2n)

The appropriate monodromy matrix for the system (3) or (41) has the expression

10 Aol ~
C:C(x,q)z{{o J+2nﬁ(q){_7g_}i}em, rA=0 (39)
8q 1-q <
= , 0.11
B(a) @+ 30) ,/ 1+ 3 Kl (40)
‘i_z Z 0 1
t |2 - -
aw = A)| |, A =|_,2 _ 8q(1 - 2cos2t) 1 _o (41)
at W 1+q9—2qcos2t

5. CONCLUSIONS

The problem of determining the Floquet multipliers of linear differential periodic systems is
often difficult. For the special case of simplified Mathieu’s equation but with linear friction
(1), the characteristic coefficients of the appropriate system (3) or (41) have explicit
analytical expressions and also the monodromy matrix C.
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