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Abstract: Consider a second order differential non-linear equation having free boundary value 

conditions. Let be a solution having infinity of unknown zeros. The integral of energy gives the 

implicit correlation between the successive modules of the extreme values of oscillation. The method 

of successive approximations transforms this correlation into an algorithmic correlation. The 

decreasing sequence of the modules or local amplitudes converges to zero. For the local amplitude of 

oscillation inside the interval of two successive zeros, the length of the interval is a sum of two 

improper integrals. In order to obtain the values of these integrals, it is necessary to use series 

expansions. If the coefficient of dynamic friction is small and the amplitude reached a low enough 

value, then the polynomial functions are given for the numerical calculus of distances between zeros 

of the oscillation.
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1. PROBLEM FORMULATION 

Consider the following second order non-linear differential equation with respect to time t. 

We assume that the coefficients  and  are positive constants. If u is a solution, then u 

is also a solution. Therefore let us consider the oscillatory solution u: [ t0,  ](,) having 

the following boundary conditions 

This solution has infinity of zeros. Let be (tn , nN ) the increasing sequence of zeros of 

the solution or its derivative and (an, nN ) the decreasing sequence of local amplitudes. 

.)(,0)(,0)( 12122   nnnn tuat
dt

du
tu  (3) 

We assume that the maximum value a0(0, ) is given. 

2. ANALITICAL SOLUTION 

In order to obtain the terms of these sequences it is suitable to use the following integral of 

equation 
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The function V has the expression  

The restriction of c(t) function on the interval of decrease of solution from a2n to a2n+1 

is a constant of integration

.),,(),(),()(,0 34141212212   nnnnnn tttaVaVaVctc
dt

du
 (7a) 

On the interval of the solution increase from a2n+1 to a2n+2  we can write 

.),,(),(),()(,0 543412221222   nnnnnn tttaVaVaVctc
dt

du
 (7b) 

Consequently, it results the implicit relation between local successive amplitudes. 

Let x be an and let y be an+1. Substituting (5) in (7) we find the algebraic equation 

( cos y   sin y ) exp (  y ) = ( cos x +  sin x ) exp (   x ) (8) 

If we suppose that the dynamic coefficient  and the given amplitude a0 have small 

values, than we can use the following appropriate expressions for the local amplitude y. 
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Otherwise, we introduce the constant , the function M and the sequence (ym), namely 

 = atan ,       M(x, y) =  acos [ cos(x) exp (  (x+y) )]   (10) 

y0 = x,      ym+1 = M(x, ym ),       mN. (11) 

The solution y is the limiting value of this sequence. 

If the number of iterations is J, then we use the following algorithm 

q0 = a0         n = 0..N      m = 0..J1 

qn J + m+1 = M( qn J , qn J   if(m = 0,1,0) + qn J + m  if(m > 0,1,0) ) 

n = 0..N       an = qn J        cn = V(an, ). 

(12) 
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The function c(t) is piecewise function. Let c0 be the constant of integration on interval 

(t0,t1). The missing initial value for the given equation results from the following formula: 
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The restrictions of equation (4) on intervals of successive zeros can be integrated using 

the method of separated variables. 

It results the length of these intervals. 

In this expression I(x, ) is an improper integral. 
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3. RESULTS 

In order to obtain the value of this integral it is first necessary to use series expansions. The 

V function is developed in series. 
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Let P be sixth order approximating Taylor polynomial  

2P(u,) = u
2
 { 1 + c3 u + c4 u

2
 + c5 u

3
 + c6 u

4
 },        V(u,) = P(u,) +..., (16) 

where 
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The Q function given from (9) is an approximating Taylor polynomial of y useful 

solution of polynomial equation 

P(y,  ) = P(  x,  ) (17) 

Using series expansions we deduce successively  

If we make change of variables u = x v = x sin , then the value of improper integral I 

can be calculated as integral of continuous function on the interval (0,/2). 
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The last integral has the following approximating Taylor polynomial 

t2n+1  t2n = I( an, ) /,                t2n+2  t2n+1  = I( an,) /. (13) 
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I(x, ) = (/2) p(x, )  x / 6 ) r(x, ) + ... (20) 

p(x, )  1 + x
2
 ( 1 + k1 

2
) / 16 + x

4
 ( 11/12  k2 


 k3 

4
 ) / 256  (21) 

r(x, )  1 + x
2
 [ 1.7   k0 

2
 ] / 4 (22) 

k0 =  /3 1  11/270  0.006457 

k1 = 2[1-8/(3) ]/3  0.100782 

k2 = 2(19+11/135) /  12  1/9  0.036537 

k3 = (17+59/405) /   5  4/9  0.013194

(23) 

The momentary “half-period” is given from (13). 

t2n+2  t2n  =  [ I(an,  ) + I(an,  )] /   ( p(an,  ) (24) 

The instantaneous “period” has the following expression 

t2n+4  t2n    ( [ p(an,  ) + p(an+1 , ) ]. (25) 

4. COMMENT 

Suppose now that f is a real continuous odd function on space R. Consider the second order 

differential equation  

The integral of this equation has the expression (4), but  

V(u, ) =  (0, u)   f(u) exp(u) du = V(u,).  

For exemple 

f(u) = u          V(u,  u – 1 ) exp ( u) ] 
2

.  

Between the local successive amplitudes x and y it results an algebraic equation. 

y = M(x, y) = { 1  (  x + 1 ) exp[( x+y )] }/.  

If we assume that 0 <  < ¼ and 0 < x < ½ than 

y  Q0(x) = x { 12x( 1 + 22
2
x

2
/45) / 3 + 4

2
x

2
( 1 + 26 

2
x

2
/45) / 9 }.  

The second order differential equation (26) can be recast and study as a first-order 

system [1], [2], [4]. 
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