About zeros of some oscillations with dynamic friction
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Abstract: Consider a second order differential non-linear equation having free boundary value
conditions. Let be a solution having infinity of unknown zeros. The integral of energy gives the
implicit correlation between the successive modules of the extreme values of oscillation. The method
of successive approximations transforms this correlation into an algorithmic correlation. The
decreasing sequence of the modules or local amplitudes converges to zero. For the local amplitude of
oscillation inside the interval of two successive zeros, the length of the interval is a sum of two
improper integrals. In order to obtain the values of these integrals, it is necessary to use series
expansions. If the coefficient of dynamic friction is small and the amplitude reached a low enough
value, then the polynomial functions are given for the numerical calculus of distances between zeros
of the oscillation.
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1. PROBLEM FORMULATION

Consider the following second order non-linear differential equation with respect to time t.

d’u 1 |duldu .
—— +Z¢—|—+o’sinu=0 (1)
dt® 2 |dt|dt

We assume that the coefficients € and o are positive constants. If u is a solution, then —u
is also a solution. Therefore let us consider the oscillatory solution u: [ ty, o ]—(—m,7) having
the following boundary conditions

Ut)=0,  S)>0  uE)=0. @

This solution has infinity of zeros. Let be (t,, neN ) the increasing sequence of zeros of
the solution or its derivative and (a,, neN ) the decreasing sequence of local amplitudes.
du
u(th) = O’ E (t2n+1):O’ an :| u(t2n+l) | (3)

We assume that the maximum value aye(0, =) is given.

2. ANALITICAL SOLUTION

In order to obtain the terms of these sequences it is suitable to use the following integral of
equation
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1( du’ . du 2 : du))_
E(Ej exp [gu3|gn(ED+a) V[U’SSIQn(ED_Ca) 4)

The function V has the expression

V()= [1— (cosu — ssinu)exp(su) |=V (-u,— &) (5)

1+¢&?

The function c(t) is piecewise function. Let ¢, be the constant of integration on interval
(to,t1). The missing initial value for the given equation results from the following formula:

%{(z_l:j(to)} =0’V (a,,€)=C, (6)

The restriction of c(t) function on the interval of decrease of solution from a, t0 —azn+1
is a constant of integration

du
E<O, C(t) = Cany =V (820,—8) =V (—85,1,7€) =V (8gp,1:8),  tapug <<ty 3. (72)

On the interval of the solution increase from —ayn+1 t0 42 We can write

du
ot >0, c(t) =Coppp =V (-820,1:8) =V (B2n,2:€) =V (820,07 )y Tz <t <typs. (7b)

Consequently, it results the implicit relation between local successive amplitudes.

O<a, <7, V(. &)=V (-a,,¢), n=0,1,:-- (7

n+1?
Let x be a, and let y be a,.1. Substituting (5) in (7) we find the algebraic equation
(cosy—¢esiny)exp(ey)=(cosx+esinx)exp(—¢ex) (8)

If we suppose that the dynamic coefficient ¢ and the given amplitude a, have small
values, than we can use the following appropriate expressions for the local amplitude y.

2 1 4 1
y=Q(x)= x{l—gsx[l+g(3+ 2282)X2:|+§82X2 |:1+E(9+2682)X2:|} )
Otherwise, we introduce the constant d, the function M and the sequence (yn), namely
d = atan e, M(x, y) = acos [ cos(6—x) exp (—€ (x+y) )] - o (10)
Yo=X,  Ymr1=M(X yn), meN. (11)

The solution y is the limiting value of this sequence.
If the number of iterations is J, then we use the following algorithm

Jo= a9 n=0.N m=0.J-1
Ons+met = M(Qny, Ong x if(M=0,1,0) + gy +mx if(m>0,1,0) ) (12)
n=0.N an = Qn ¢ = V(ay, €).
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The restrictions of equation (4) on intervals of successive zeros can be integrated using
the method of separated variables.
It results the length of these intervals.

toner —ton = I( an, 8) lo, tone2 —Tones = I( —an,S) lo. (13)
In this expression I(x, €) is an improper integral.
. ep(cu)
I(X,€)= du
(xe)=], \/2V(x,s)-2V(u,e) (14)

3. RESULTS

In order to obtain the value of this integral it is first necessary to use series expansions. The
V function is developed in series.

(1+e2)V(u,e) = 1+Im{(e — i )exp(e +i ) ul} =Im{(e—i )= pso (£ + i )"u"/ 1}

V(Ue) == Zc @u", ¢ ()= —Im{(a+|) Hoc(e)=(Dc,(e).  (15)

n>2

Let P be sixth order approximating Taylor polynomial

2P(ue)=u{l+csutcsu’+csu®+csu’},  V(ue) =Pue) +..., (16)
where
2 1 1 1
c,=1 c,=—¢, C 3&’-1) c.=—¢le?-1) c. =—(1-10e% +5¢*
? 3 ! 12( ) * 15 ( ) 6 360( )

The Q function given from (9) is an approximating Taylor polynomial of y useful
solution of polynomial equation

P(y,e)=P(-X,¢) a7
Using series expansions we deduce successively

2V (x,€) =2V (u,€) = x* —u? +ch(s)(x” —u”)

n=3

2V (x,€) — 2V (VX,€) = xz(l—vz)[1+ A(x,e,v)]

A(x,&,V) —Z{c (e)x" 2£1+ 3 vk j}

n=3

(18)

If we make change of variables u = x v = x sin o, then the value of improper integral |
can be calculated as integral of continuous function on the interval (0,/2).

expexv) 5 | expexsinoc)
(xe)= I\/ (1-v2)[1+ Ax,&,V)] dv= -[ \/[1+ A(x,&,sinc] do (19)

The last integral has the following approximating Taylor polynomial
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I(x, €) = (n/2) p(x, €) — (e X/ 6) r(X, €) + ... (20)
px, €)=1+x (1+ky€?)/16+x* (1112 —ky&* — ks €*) / 256 21)
rx,e)=1+ xX*[17-n/2-koe?]/4 22)

ko= m/3-1-11/270 = 0.006457
k; = 2[1-8/(3n) ]/3 = 0.100782
k, = 2(19+11/135) / n —12 — 1/9 = 0.036537
ks = (17+59/405) / m — 5 - 4/9 = 0.013194
The momentary “half-period” is given from (13).
o —ton = [(@n, €) + I(-an, €)]/ © = (/o) p(a,, €) (24)

The instantaneous “period” has the following expression
tonra — ton = (W) [P(@n, €) + p(an+1, €) |- (25)

(23)

4. COMMENT

Suppose now that f is a real continuous odd function on space R. Consider the second order
differential equation

d’u 1 |duldu
dt= 2 |dt|dt

The integral of this equation has the expression (4), but
V(u, &) = /0.y f(u) exp(eu) du = V(-u,—g).

+a*f(u)=0 (26)

For exemple
fuy=u = VUu,e)=[1+(su—-1)exp(cu)]e?
Between the local successive amplitudes x and y it results an algebraic equation.
y=M(x y)={1-(ex+1)exp[-g(x+y)] }e.
If we assume that 0 < ¢ < %4 and 0 <x < than
y = Qo(X) = x { 1-2ex( 1 + 226*X%/45) | 3 + 4&°x°( 1 + 26 £°X°/45) / 9 }.

The second order differential equation (26) can be recast and study as a first-order
system [1], [2], [4].
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