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Abstract: Consider a second order differential linear periodic equation. The periodic coefficient is an 

approximation of the Mathieu’s coefficient. This equation is recast as a first-order homogeneous 

system. For this system we obtain analytical solutions in an explicit form. The first solution is a 

periodic function. The second solution is a sum of two functions, the first is a continuous periodic 

function, but the second is an oscillating function with monotone linear increasing amplitude. We give 

a formula to directly compute the slope of this increase, without knowing the second numeric solution. 

The periodic term of the second solution may be computed directly. The coefficients of fundamental 

matrix of the system are analytical functions. 

Key Words: linear differential equation with Mathieu coefficient, parametric resonance, periodic term 

of the solution. 

1. PROBLEM FORMULATION 

Consider the following second order non-linear differential equation with respect to real 

dimensionless time t, 
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In what follows we assume the coefficient Q to be a real positive continuous periodic 

function with t real argument. The following function is a reasonable approximation of the 

Mathieu’s coefficient [1], [2], [3]. 
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 ,        1/9 < q < 1/9. (2) 

The set of solutions is two-dimensional real space [4], [5], [6], [7]. The function x is a 

periodic solution. 
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Let y be a second solution which satisfies, 
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For the characteristic coefficient (q), [8], the yp function is a periodic term of the 

solution y. 

yp= y   t x. (5) 

The problem is to give the analytical formula for this coefficient.

2. EXPLICIT CHARACTERISTIC COEFFICIENT

We recast the equation (1) as a first-order system. The following system is obtained. 
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Let u be the derivative of the periodic solution x. Except the case that q is zero, the 

derivative v of the oscillating solution y is not a periodic function. 

yQ
dt

dv
v

dt

dy
xQ

dt

du
u

dt

dx
 ,,, . (7) 

The functions x, u, y, v have the following property 

x v  u y  = 1 (8) 

Consequently, it results the expression of the fundamental matrix [3] for system (6). 
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The y function is also a solution of fist-order linear equation 
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The periodic term yp is the solution of the following first-order linear differential 

equation. Indeed, substituting the function y in the equation above, we find this linear 

equation (11). 

y = yp   t x,  ,p
dt

dy
v

p
     v = vp   t u + x,  x (vp +  t u +  x)  u (yp +  t u) = 1 
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In order to compute the periodic term we can also consider the fourth-order system (13). 
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Let C be the variable constant of integration for the equation (11), when 

yp = C x           
2

1

xdt

dC
         C(0) = 0. (14) 

We shall consider  constant 
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We introduce the equivalent expressions for the exact x solution, 
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If we make the change of the variable of integration, then the function h(s) is the 

solution of the following equation, 
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The rational function r has the equivalent expression 
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Hence we have an appropriate formula for r function. 
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Consequently, it results the equation of the function h. 
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In order to obtain the value of the coefficient  it is necessary to impose the following 

integral condition. 
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The characteristic coefficient may be found using the formula 
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3. SECOND EXPLICIT SOLUTION 

Let be the integral periodic function 
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The restriction of  on the interval [0, /2) is a known function. Integrating the given 

equation (14) above, we obtain the expression of C constant variable. 
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From (15) we can use the equivalent expression of the x exact solution 
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Consider the following identity 
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Therefore y
*
 can be written as 

y*(t) :  [ 
2
 + ( 1 
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t  ] sin t (25) 

From this it results the periodic term of the y solution. 

yp(t) =  y*(t) +  x(t) (t) (26) 

Therefore 

y(t)  =  y*(t) +  x(t) [(t) + t ] (27) 

It is easy to find the derivative v* 
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Consequently, we deduce successively 
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 + (/) cos t   x +  u (t),               v =  vp +  t u (29) 

The characteristic matrix is the sum of a periodic matrix and an oscillating matrix 
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The matrix and * are unimodular matrix. Finally, the solution of the system (6) has the 

following expression 
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4. RESULTS 

The coefficients of the two-order differential linear system are real continuous functions. The 

unique variable coefficient is a function Q (q, t) in which q is real small parameter. In this 

particular case it is known an analytical explicit solution (x, u)
T
. In order to find the 

expression of the characteristic coefficient, [8], [9], it was imposed an explicit necessary 

improper integral condition. So it was found the explicit analytical formula for the 

characteristic coefficient of one particular two-order differential system. Consequently, it 

was found the second explicit solution (y,v)
T
. 

The vector (ytx,vtu) is a periodic vector. The components of the fundamental matrix 

have explicit expressions in which y* and v
*
 are trigonometric polynomial functions and 

(t) is a definite integral on the real interval (0, t). For directly calculating the periodic term 

yp, the fourth-order system (13) is useful, but if and only if the parameter  is equal with the 

characteristic coefficient , [10], [11].
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