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Abstract This paper presenthe analysis of the unsteady flows past stationary airfoils equipped with
Gurney flapsat low Reynoldsnumbes, aiming to study the unsteady behavior of the aerodynamic
coefficients due to the flow separatsooaccurring attheseReynolds numbers. The Gurney flare

simple but very efficient liincreasing deviceswhich die to their mechanical simplicityare of
particular interest for the small size miceor-vehicles (MAV) flying at low speed and very low
Reynolds number. Thensteadyaerodynamic analysis is performed with an efficient taneurate
numerical method developed for the solution of the N&iekes equations at low Reynolds numbers,
which is secon@rder-accurate in time and space. The papeesents solutions for thensteady
aerodynamic coefficients of lift and drag and for the-ttifdrag ratio of several symmetric and
cambered airfoilsvith Gurney flapsit was found that although the airfoil is considered stationary,
starting from a reléively small incidence (about 8 degrees) the flow becomes unsteady due to the
unsteadiness of the flow separations occurring at low Reynolds numbers, and the aerodynamic
coefficients display periodic oscillations in time. A detailed study is presentde ipaper on the
influence of various geometric and flow parameters, such as the Gurney flap height, Reynolds
number, airfoil relative thickness and relative camber, on the aerodynamic coefficients of lift, drag
and lift-to-drag ratio. The flow separationsialso studied with the aid of flow visualizations
illustrating the changes in the flow path at various moments in time.

2000 Mathematics Subject Classificatioi6, 76G25, 76D05, 76M20, 65M06, 35Q30

Key Words Unsteady flows, Low Reynolds number, Sulméo Aerodynamics, Computatial
Aerodynamics, Viscous Flows

1. INTRODUCTION

The Gurneyflap is a mechanically simple kfhcreasing device, consisting of a small tab
attached at the trailing edge of an airfoil (or wing), on its pressure side, and peufzertd

its chord. Originally installed by Dan Gurney in early 1970s on the rear inverted wing of a
racing car, the Gurney flap was proven to increase the wing lift, which is usually associated
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with a small increase of its drag, resulting in a signifidaorease of its lifto-drag ratio,

when the flap height is only a small percentagh (b 4%) of the wing chord. The lift
increase is mainly due to the fact that the Gurney flap increases the effective camber of the
airfoil and decelerates the flow ohetlower side, while accelerating the flow on the upper
side. In addition to its beneficial effect on the aerodynamic performance of the wing, this
device has the advantage of a very low manufacturing and maintenance cost.

For these reasons, Gurney flagsré been thoroughly studied by many authors. Liebeck
[1] first found that a Gurney flap installed on the inverted rear wing of a car increased
substantially its lift and the racing car performance. Numerical solutions have also been
obtained for airfoils wth Gurney flaps and they were found in good agreement with the
experimental results. Jang [2] has shown that for some configurations, such as a NACA 4412
airfoil with a 1.25% Gurney flap, the lift is higher and the drag is lower than for the airfoil
without flap. However, for large size flaps, the aerodynamic performance is compromised by
a large increase in drag. It has been shown that for optimal use, the flap height should be in
the range of % to 4% of the airfd chord [3].

Recently, some experimentstudies have shown that the positive aerodynamic effects
of Gurney flaps can be enhanced by using perforated flaps or combining them with
harmonically deflected trailing edge flaps $.

All the above studies have been performed for relatively largenddy numbers.
However, due to its mechanical simplicity, the utilization of Gurney flap is of particular
interest for the small size micair-vehicles (MAV) flying at low speed, for which the
Reynolds number isetween 600 and 6000.

Several studies on ¢hsteady flows past airfoils without flaps at low Reynolds number
have been published by Kunz & Kroo [6], and Mateescu & Abdo [7, 8] for airfoils in free
flight, and by Mateescat al[9] for airfoils in the proimity of the ground.

The unsteady flows pastirfoils without flap executing pitching oscillations at low
Reynolds numbers has been recently studied by Matetsaiu[10] by using an efficient
time-accurate methodl'he unsteady flow at low Reynolds numbers past oscillating airfoils
in the proximiy of the ground has been studied by Mateetal [11].

More recently, Mateescat al. [12] have studied the unsteady effects on stationary
airfoils that are generated by the unsteady flow separations developed at low Reynolds
numberslit was found thastarting from relatively small angles of attack (6 or 8 degrees) the
aerodynamic coefficients become unsteady due to the unsteadiness of the flow separations ¢
low Reynolds numberd he new numerical method has been validégdomparison with
experimens.

The first attempt to study the effect of Gurney flaps in steady flows at low Reynolds
numbers has been published by Dumitrescu & Malael [13], which calculated the steady lift
and drag coefficients for the NACA 4404 airfoil at angles of attack up togB€s, for
several flap sizeBy using a steady flow solver.

The present study is dedicated to the analysis ofuth&eadyflows past airfoils
equipped with Gurney flaps low Reynolds numberaiming to study the unsteady behavior
of the aerodynamic clfecients due to the flow separations occurringttaseReynolds
numbers This analysis is performed with an efficient thaecurate numerical method
developedby the authoffor the solution of thaunsteadyNavierStokes equations at low
Reynolds numbersyhich is seconarderaccurate in time and space. A seconder three
pointbackward implicit scheme is used first for the real time discretization, followed by a
pseudetime relaxation procedure using artificial compressibility and a factored Altegnatin
Direction Implicit (ADI) scheme for the pseudione integration. A second order central
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113 Unsteady effects in flows past stationar’

finite difference formulation is used on a stretched staggered grid (which avoids thedbdd
even points decoupling). A special decoupling procedure using the uibntaguation
reduces the problem to the solution of scalar tridiagonal systems of equations, which
enhances substantially the computational efficiency of the meS8wddtions for the lift and
drag coefficients and for the lifo-drag ratio are presentddr several symmetric and
cambered NACA airfoils equipped with Gurney flatgdifferentReynolds numbers

At somewhat larger angles of attack (above 8 degrees, depending on the airfoil geometry
and flap size), the lift and drag coefficients display teiins in time which are generated
by the unsteady flow separations developed at laynBlds numbersThe influence of
various geometric and flow parameters, such as the flap size, Reynolds number, angle of
attack and the airfoil relative thickness amanber,is also studied in this paper.

2.PROBLEM FORMULATION

Consider a cambered airfoil of choid placed at an incidenca in a uniform stream of
velocity U, , as shown in Figure 1. The airfoivhich is equipped with a Gurney flap of
height cl , is referred to a Cartesian reference system of coordicatesy , where x and
y are nondimensionaloordinates (with respect to the choed, with thex-axis along the
airfoil chord and its origin at the airfoil leading edge. The airfoil upper and lower esgrfac
are defined by the equations

y=e()=h(x)+e(x) and y=- e(x)=h(x)- e(x), (1)
where the subscripts 1 and 2 refer to the upper and lower surfaces, andh(ok)emnd
e(x) define, respectively, the camberline and the airfoil thickness variation along the airfoil
chord. The special case of symmetric airfoils is characterizedgky)=e,(x)=¢e(x) and
h(x)=0. The viscous fluid flow past the oscillating airfoil is referred to a fixed Cartesian
reference system of coordinates, c/7 defined by the equations

x=xcosa+ysina, h=-sina+ycosa, 2

where x and h are nondimensional coordinates with respect to the airfoil cleoravith
the x-axis parallel to the uniform stream velocity, , which is inclined with the angla

with respect to the airfoil chord (as shown in Figure 1).
Let U, u and U, v denote the fluid velocity components along the fixedand h -

axes, whereu and v are the nondimensional velocity components with respeldt,to

The time-dependent NavieBtokes and continuity equations for the incompressible flow
past the airfoil can be expressed in riomehsional conservation form as

SAN _ _HU _ pv_
—+Q(V,p)=0, DIV="—+——=0, 3
where t =t*U, /c is the nondinensional time (* is the dimensional time)y ={u,v}T
represents the vector of the dimensionless velocity componentsQéwdp) , which

includes the convective derivative, pressure and viscous terms, caxplessed in -D
Cartesia coordinates in the form

Q(v.p)={Q,(uv.p). Quv.p}" . (@)
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_uluu) , ulve) ,up_ 1 &P g
Q.(uv. p) T Red el k (59)
Qo p)= ) ub) e LGy v g b

where p is the dimensionless pressure, nondimensionalized with respch;,cf, and
Re=cU, /n is the Reynolds number based on the chord lengthafid n are the fluid

density and kinematic viscosity).
In the present computational analysis we focus our attention on flows &dgnolds
numbers, in which the viscous effects play a very important role.

A

Figure 1. Geometry of an airfoil placed in a uniform flow at the angle of attack

The problem is solved in a rectangular computational domiim six subdomains,
which is obtained from the physical domain indicated in Figure 2 by a gecahet
transformation defined as

X=gxhn), Y=f(xhn), (6)

where g(x,h) and f(X,h) are defined foeachdomain in the following forms.

Xcosa - hsina
= , fix,h)=h,
) L,cosa +/1sina Lo ( ) (73)

Domain 1 (for x<0 and0</A<H,): g(x.A

Xxcosa - hsina
L,cosa +hsina

Domain 2 (for x<0 and- H, <A <0): g(x,h)= Ly, f(xh)=h, (7b)

Domain 3(for 0<x<1 and el(x)< y<H,):

- vcosa. hs _ y- &(x) (70)
g(x,n)=xcosa - hsina, f(x,h) M abcosm +xsina H, cosa,
Domain 4 (for 0O<x<land- H,<y<- ez(x)):
glx,n)=xcosa- hsina,  f(x.h)= y+e,(x) H,com, ('Y

H,- e(x)cosa - xsina
Domain 5(for x>1 and - sina <A <H,):

g(x,h):XCOS&_hSina_l(Ll-lﬁl, f(X,/?)

_ h+sina H (7e)
L cosa- hsina-1 H, +sina

1
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115 Unsteady effects in flows past stationar’

Domain 6 (for x>1 and- H, <A/ <-sina):
xcosa - hsina-1 h +sina 7f
gl )= 0214, foh)= 02y, (1)
L cosa- Aisina-1 H, - sina
In equations (7)/7=H, and #=-H, are the nondimensional physical coordinates of

the upper and lower fdreld boundaries of the computational domain (which are considered
equal in the specific nuenical applications presented furthét, =H, =H ), while x=- L,

and x=L, are the nondimensional physical coordinates of the inflow and outflow
boundaries, as shown in Figure 2.

In the computational domaivﬁX,Y), the upstream inflow and downstream outflow
boundaries and the upper and lower boundaries are defined by the same nondimensiona
coordinates X =-L,, X=L, and Y=H,, Y=-H,, respectively. The height of the
Gurney flap in the computational domain/is=| (Hzcossz)/(H2 - sina), thatisY =-/.

Upper far field boundary

£ 1 | S
i i . i H
! i Domain 3 i //:
4 | Out-flow boundary !
H n L4 ! cH,
; |
Weo i Domain 5
i I
i irfoi i
Domain 1 Airfoil s\urface i
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| | a
' | |
o | — T e e | Do
i i cH.
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| boundary ! !
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Figure 2.Geometry of the computational doma(i)q,Y) defined by the transfamations (6)(7).

The NavierStokes and continuity equations can be expregsetthe computational
domain, as

ﬂ+GV =0 DV =0 8
I (V,p) =0, ; (8)
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where
v={uv',  G(v,p)={G,[uv.p)Guv.p}". ©)
e buy Py | Lopvy) L pvY)
G,(uv,p=¢C, +C +C +C
oy X oy 10
2 2 2
+C7£+C2£+C1 - L; +GCe ok +GCs H l;
WX MY - TpX HXY HY
_c B L pvY) L W) L~ BV
GV(U1V! p)—C7 +C +C, +C3
T TS WY 1
2 2 2
+C o +C DG BTG L T
Xy X XYy
Hu Hu i i
DV=C,—+C,—+C,—+C;—,
7,UX 2,uY 4,uX 3,uY (12
in which the expressions of the coefficields, C,, . ..,C, are obtained for each domai

from the coordiate transformations (6)7).

In order to study the unsteady flow past stationary airfoils with Gurney flaps at low
Reynolds numbers, the NawviStokes momentum equation is first discretized in real time
based on a secommtder thregpoint-backward implicit scheme:

VAo VAL VLI VLE
where the superscriptei- 1, n and n+1 indicate three consecutive time levels, and
Dt=t™-t"=t"-t"™! represents the real time stephuE, equations8j i (12) can be

, (13)

expressed at the time leviel™ in the form
Vn+l+an+1:Fn’ DVn+l=O, (14)
wheres =2Dt/3, G™ =G(v™, p™) and F" = (av"- v™1)/3.
An iterative psedo-time relaxation procedure with artificial compressibility is then used
in order to advance the solution of the selisicretized equations from the real time let/l

to t" in the form
»

$ 3 $

KV 4T +sG=F", a”u—8+DV=O, (15)

R ut ut

where V(¢) and B(I) denote the pseudanctions corresponding to the variable velocity

n+l

and pressure at pseutime ¢, between the real time levelS andt

an artficially-added compressibility.
An implicit Euler scheme is then used to discretize equatids)sbgtween the pseudo

time levelst” and ¢"** =¢" + Dt , and the resulting equations are expressed in tefihe
pseudetime variationsDu = . EP? Dv =y \% Dp= %”1— %’" . in the matrix form

[l +sDr (D, +D,)|Df =Dt S, (16)
where Df =[Du,Dv,Dp]", s =2Dt/3, | is the identity matrix, and where

, and d represents
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e 1 V) e U o
M+= 0 C,—— A\ 0 C,— :
g S 7p.)(3 g 2p_YH eF" ?-SGSQ
_é H o _é HO c=Cn_ & anl
Dx—é O M C4—Xuv DY—é 0 N+g C Yl:l S eV SGV[:" (17)
é W25 éc '8 §-(d)ovn g
1 m G 1 g 2 B G M5y
gsdpX sdpX V] gsqu sd py v
in which the differential operatorfsl and N are defined as
] 2f
Mf = C7 ( )+C 'u'(w( )+C1'u 5 (18)
Nfzczﬂ(&;f)+03ﬂ(6b7f)+c 4 +C, ki (19
7

uY Xy
wheref can beDu, Dv or Dp.
The optimal value of the artificial compressibility/, and the size of the pseutime
step Dr, are determined, as indicated in our previous papers [7, 8], based on the

characteristic propagation velocity in the axial directibnz s q++/(sq)* +s/d , as
- 2q21Dz‘ ’ b= C/DX ’ (20)
where g is a representative velocity of the unsteady flddx is an average value of the
mesh size andC is the CouranfriedrichsLevy number(between 30 and 40 is consideyed
The resulting values fod and Dt are eventually optimized by numerical experimentation.
A factored Alternating Direction Implicit (ADI) scheme is used to separate equation
(17) into two successive sweeps in theand X directions, defined by equations

[l +sDrD,| DF*=Dr S, [l +s DD, | DF =DF * | (21)

where Df* =[Du*, Dv*, Dp*]" is a convenient intermediate iatle vector.

These equations are further spatially discretized by central diffeggion a stretched
staggered grid, in which the flow variables v and p are defined at different positions. By

using a staggered grid, this method avoids the-asdteven point decoupling vile
preserving the secormder accuracy in space of the method. The grid stretching is defined
by hyperbolic sine functions in th¥ andY directions.

A special decoupling procedure (Mateescu & Abdo [8]), basedhencontinuity
equation, is used for each sweep to eliminate the peefsuin the momentum equations.

The following relations, which are derived using equatiod} é2d (T7) - (19) from the
continuity eqation expressed for each sweep,

,_ Dre 8, _ ubour) . pbv)e _ y». D p(Du)

Dt =- = @DV +C = TS+ Gy Dp=Dpr- o S0 (22)
are used to eliminate the psetidoe variations of the pressure from the systems of
equations for the pseudime variations of the velocity components in each sweep.

In this manner, the problem is reduced to thlit®n of two sets of decoupled scalar
tridiagonal systems of equations, for each sweep. As a résslimethod is characterized by
excellent computeonal efficiency and accuracy.
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3. METHOD VALIDATION FOR STEADY FLOWS PAST AIRFOILS
WITH GURNEY FLAPS

The numerical method is validated by comparison with the results for steady flows obtained
by Dumitrescu & Malael [13], the only published resultsdisfoils with Gurney flaps at low
Reynolds numbers (no other numerical or experimental studiasfoits with Gurney flaps
at low Reynolds numbers are knowrThey used in their study a steady flow solaed
restrictectheir computations to angles of attack smaller than 8 degheeshey didnot find
the oscillatory behaviour of the aerodynamic coeffitsethat is generated by the unsteady
flow separations occurring at low Reynolds numbers (discussed furtherngxt sction).

The present solution for the pressure coefficient distribut@p, along the upper and

lower sides of d&NACA 4404 airfoil with a Gurney flap of height =2% at the angle of

attack a =4* and Reynolds number Re=1000 is compared in FigBineith the results
obtainedn [13]; a reasonable good agreement canlbserved betweehése results.

-15

, \\%

-0.5

G

< ————

0

05 PO

{ —-Present Computational Solutio
1

—-©- Dumitrescu & Malael (201C

15
0 0.1 0.2 03 0.4 X 05 0.6 0.7 0.8 0.9 1

Figure 3. Method validation: Present solution for the pressure coefficient distribatgon,
along the NACA 4404 airfoil with a Gurney flap of height 296 at 4 =4” and Re=100,
compared with the results obtained13].
The present solutions for the lift coefficier®, , and the lifito-drag ratio,C, /C , of a
NACA 4404 airfoil equipped with a Gurney flap of height=2%, at Reynolds number
Re=1000, are also compariedrigure4 with the results obtaindd [13].

l%?g . ‘

: /'

—+—Present computational solutior

—+—Present computational solutior

03
1
T -O-Dumitrescu & Malael (2010 -0- Dumitrescu & Malael (2010
02

o 1 2 3 4 5 6 7 8 0 1 2 3 4 s 6 7 8
h h

Figure4. Method validation: Present solution for the variations with the angle of ataclf the
lift coefficient, C, , and the liftto-drag ratio,C, /Cy , of the NACA 4404 airfoil with a Gurney flap
of height | =2% at a = 4" and Re=1000, compared with the results obtaingi3].
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119 Unsteady effects in flows past stationar’

For steady flows, the infence of the Gurney flap height,, on the lift and drag
coefficients, C, and Cg, is illustrated in Figure 5 for a NACA 000C&rfoil at Reynolds
number Re=1000. One can notice that b@hand C, are increasing with the flap height
| . However, the increase in the lift coefficient is much larger than the increase in drag, and

thus the liftto-drag ratio,C, /C,, , is substanélly increasing with the Gurney flap height, as
it can be seen in Figure 6.

r—
07 _— —
/ ]
. /,/ / —
05 /I /
Q —
" n/ j;/
03 /
/ / Y -O-unflapped airfoil
02 1% flap
I/ ~o-2% flap
il ¢ -=-3% flap
4% flap
0
0 1 2 3 ﬁ 5 6 7 8
0.16
015
014 / P
013 /I /
% —
0.12 / /
011 //'//‘ M/
57/»/ -o-unflapped airfoil
0.1 ﬁi — | / 1% flap
— o—— |
~o-2% flap
oo -8-3%flap
4% flap
0.08

0 1 2 3 5 6 7 8

T

Figureb. Influence of the Gurney flap height,. Typical variations with the angle of attaca,
of the lift and drag coefficientsC, and C,, for the NACA 0002 airfoil at Re=1000
for various flap heights, fromh =0% (airfoil without flap) to | =4%.

6

1
=
et '//L/—i'o
G/ C;) /I/ /
/ / *Z;f] Izzzed airfoil
e /

N

~o-2% flap

-#-3% flap

4% flap

0

0 1 2 3 4 5 6 7 8
h

Figure 6. Influence of & Gurney flap height| . Typical variation witha , of the liftto-drag ratio,C, /C, , for
the NACA 0002 airfoil at Re=1000 for various flap heights, frbm 0% to | =4%.

INCAS BULLETIN, Volume 7,dse 4/ 2015



Dan MATEESCU 120

4. UNSTEADY EFFECTS ON AIRFOILS WITH GURNEY FLAPS DUE TO
THE FLOW SEPARATIONS AT LOW REYNOLDS NUMBERS

The unsteady flow analysisdicates however that at larger angles of atthekflow past the

airfoil becomes unsteady due to the unsteadinesiseoflow separations occurring on the
airfoil upper side at low Reynolds numbers. As a result, the aerodynamic coefficients of the
airfoils with Gurney flaps,computed with the numerical methadiscussed,display
oscillations in time at larger angles oftamk The typical variations with the non
dimensional timet=t*U,/c (where t* is the dimensional time) of thkft and drag
coefficients, C, and C,, and of the liftto-drag ratio, C, /C, , are illustrated in Figures

and 8 for the symmetricirfoil NACA 0004 equippedwith a 2% Gurney flap (=2%) at
Reynolds number Re=1000 for various values of the angle of atacky comparisorwith

the same airfoil without flapI(=0%). One can notice that the lift and drag coefficients of

the airfoil with Gurney flap display oscillations in time at incidences larger tha8", and
the oscillation amplitudesicrease substantially with the angle of attagk, The amplitudes

of these oscillations of the aerodynamic coefficients, as well as their mean values are much
larger than in the case thfe same airfoil without flap.

1.8 —
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L5 15
Y A ™ o
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- d \ N PR A 14
127 \ O A\ o X - 12k i
= ] i / T o=16
f \ / \ / \ / \ / A
0.9 | S o pWef o | =12 0o A o 5 g
| ) [ P\ A\ \
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\ 7 \ A / Y o=14
[ o A ——t - a=8" - \,y’: o/ b~ g ‘w,g"’ 1
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0.6 . a=6 oer 5 | i ) P | a=10
s t > L T > > T i > ¥ - T CL73::
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5 52 5.4 t 5.6 5.8 6 5 5.2 54 t 5.6 58 6
0.6 NACAQ004, Re—1000, 2% Flap oer NACA0004, Re=1000, %0 FlapNo Flap
05| 05k
C a=16’
04 04 -
[ 0 Q :! 0 o
G L/ P P P w1 Cp a=16
B ol o} O~ ol /
03k o 03k
i o o T / AN = o
a=12 ;R A s - Mooy o, / w14
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Figure 7. Typical time variations of the lift and drag coefficier@s, and C, , for the NACA0004airfoil with a
2% Gurney flap ( =2%) at Reynolds number Re=1000, for various valuge@fingle of attacka ,
in comparison with the same airfoil without flap£ 0% ).

INCAS BULLETIN, Volume 7, Issue 4/ 2015



121 Unsteady effects in flows past stationar’

6 [i
NACA0004, Re=1000, 2% Flap g NACAO0004, Re=1000, No Flap

a=6"

(6% ol F N o = F,r"ﬂ:(""“’” P CI/C' a=10

0 T R | T T 1 L 1] 1 1 1 ]
5 5.2 54 t 5.6 5.8 6 5 52 54 5.6 58 6

Figure8. Typicaltime variations of the lifito-drag ratio,C, /Cp, , for a symmetric NACA)004airfoil with a 2%
Gurney flap ( =2%) at Reynolds number Re=10@@mparedvith the airfoil without flap ( = 0%).

The periodic variations of the aerodynamic coefficients, which are illustrated in Figure
7, are consistent with theinsteady flow separation patterns illustrated by the flow
visualizations shown in Figu@at several moments in time for the angle of attack10".

In this figure, the lines represent the streamlines of the flows, and the color shades
indicate the local value of the nalimensional flow velocity (with respect to the free stream

velocity U, ).
One can notice that the complexity of the unsteady flow separations increases with the
increase in the angle of attack.

Influence of the Reynolds number
The influence of the Reynolds number can be seen by comparing the FiQunebidh
present the variations with the nondimensional titret*U, /c of the lift and drag
coefficients, C, and C,, for the Reynolds numbers Re=600 and Re=1500, with the Figure

7 presenting theesults for Re=1000.

One can notice that the amplitudes of oscillations of the aerodynamic coefficients, as
well as their mean averages, increase substantialljtgtincrease in the Reynolds number.

For Re=1500, the variations in time of the aerodynamic coefficients at the angle of

attack a =16%, although periodic, becomes more complex than a simple harmonic

oscillation, which is due to the increaisethe complexity of the unsteady flow separations
with the hcrease in the angle of attack.
One can also notice that the stall conditions are reached in this case betwdeh

and a =16", with the lift coefficient decresing for a =16* while the drag cefficient is still
increasing.
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Figure9. lllustration of the flow separations for NACA 0004 airfoil with a 2% Gurney flap

(1 =2%) at various moments itime for a
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Figure D. Thetime variations of the lift and drag coefficients, and , for the symmetric
NACA 0004airfoil equippedwith a 2% Gurney flap ( ) at Reynolds humberRe=600 an&ke=1500,
for various angleof attack, , in comparison with the same airfoil without flap ().
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