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Abstract: Unlike other researches in the field, the simultaneous influence of all structural elements on 

the elasticity module is studied in this paper. The obtained physical – mathematical model is in good 

accordance with the experimental results and it can be used in practice by calculating, prior to the 

production, the values the structural elements must have so that the composite has a certain elasticity 

module. The model gives the opportunity of quick and exact determination of the values for the 

structural elements without experimental determinations and successive difficult calculations.  

The method of establishing the optimum structure presented here can be also used for other 

composites and other mechanical properties. 
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1. INTRODUCTION 

An important category of composite materials is the laminate ones (L.C.M.). Laminate 

composites are made of several layers called plies or laminas. Laminas are made of a single 

row of fibres bound in a matrix material. 

The thickness of the laminas does not usually exceed 0, 2 [mm]. Several adjoining 

laminas with the same fibre orientation form a lamina group. The laminate is made of one or 

more lamina groups. When the laminate has only one lamina group, it is called unidirectional 

composite. 

The mechanical properties of the laminate are the result of the lamina groups’ properties 

and of the sequence of their orientation inside the composite, as well. 

 The structural elements of a laminate composite are: the volume fractions of the fibres 

and of the matrix (Vf ; Vm); fibres orientation in the lamina group (the angle θ); number of 

lamina groups (N); thickness of the lamina groups (hi); sequence of the lamina groups 

orientation. 

 The first two elements characterise the lamina group, while the last three characterise 

the composite ensemble, being also called topological elements. 
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 Some of the obstacles that prevent laminate composite materials from being more 

frequently used in different areas are these materials structural complexity and the difficulty 

of predicting with accuracy the properties of a L.C.M. piece with a certain structure. In other 

words, it is still hard to accurately say which are the volume fractions of the constituents, the 

reinforcement directions, the thickness of the lamina groups, etc, so that the laminate has 

certain values of the physical – mechanical properties, values imposed by the practical 

necessities. 

 The optimum structural organisation, corresponding to a certain performance wanted for 

the composite, is a very important stage in designing L.C.M. items, because through an 

appropriate structural organisation, the properties of a composite made of poorer quality 

constituents can be superior to the properties of composites made of constituents with 

exquisite individual properties but with a structural organisation inadequate for the 

application. 

 Therefore, the research in the structure – properties interdependence area is very 

important from this point of view. 

 By analysing the current researches in the structure – properties interdependence area, 

one can see that they rely on the following theories: the theory of the macromechanics of 

linear elastic anisotropic bodies, the theory of micromechanics and the theory of elasticity 

under contignity and noncontignity circumstances. These researches were focused on getting 

valid mathematical models for a wide range of composite materials, disregarding the 

constituents’ nature and the coupling mechanisms between them. These global approaches 

could only be made in certain simplifying hypotheses, which led to results that are not 

entirely consistent with the real facts. 

 Therefore, the predictions resulted from these researches have only an indicative 

meaning for the manufacturers of pieces made of composite materials. 

 In the case of the theory of macromechanics, the results are only acceptable for 

orthotropic (orthothropic, ortotropic, ortotrope, orthotrope, orthothrope) laminates with 

symmetrical and simple topologies. For orthotropic composites with asymmetrical and no 

symmetrical topologies, or totally anisotropic, the calculated values of the properties 

significantly differ from the ones obtained experimentally. (see 1 pages 208 – 209 and 3 

pages 79 – 80). 

 Also, determining the engineering constants from the compliance matrix is extremely 

exacting and it has a high level of uncertainty, because it implies mechanical tests on 

samples made of one lamina with very thin thickness, tests whose results are hard to 

reproduce and often incorrect. 

 Such small determinations cannot be technical arguments with authority, because the 

international standards in the area of composite materials tests require much thicker 

thickness for the test samples and certain test conditions that cannot be fulfilled by 

determinations on samples at lamina level. 

 Another major boundary of the theory of macromechanics is that the resulted relations 

do not explicitly take into account the reinforcement volume fractions. Because of this, the 

manufacturer of pieces made of composite materials is forced to choose initially a volume 

fraction of the fibres based on intuition or on its own experience. The correctness or 

incorrectness of this choice only results after the experimental determination of the 

engineering constants from the compliance matrix and after calculating the values of the 

composite properties. The stage is repeated if the choice was incorrect. The computing 

programmes based on these theories and developed by different companies have the same 

inconveniences. 
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2. EXPERIMENTAL RESULTS 

Through the conducted researches, we wanted to ascertain through theoretical – 

experimental way, some mathematical models usable in practice, that would include 

explicitly and simultaneously the influence of all structural elements on the elasticity module 

of glass E/epoxy laminates. Based on mathematical models we also wanted to create an 

algorithm and a computing programme regarding the designing of L.C.M. optimum 

structure, so they should have certain imposed properties. It has to be noticed that this 

algorithm and the study method presented below are applicable to all composite materials 

and physical – mechanical properties. 

 The elasticity module of the composite is the result of the elasticity modules of the 

composing lamina groups, arranged in a certain order, with certain orientations and 

thickness. Consequently, initially there was studied the structural elements (Vf ; θ) influence 

on the elasticity module of the lamina group using the regression analysis of the active 

experiment and the optimisation without restrictions. Knowing the elasticity module of the 

group, a theoretical model to determine the elasticity module of the composite was defined, 

in which some other structural factors occurred (N, hi). The theoretical model obtained in this 

way was experimentally tested. The experiments were conducted on the lamina group and 

not on the individual lamina, which allowed the use of samples and testing methodology in 

accordance with international standards. Thus, there were obtained correct and reproducible 

results that make up technical arguments with authority, thus eliminating the inconveniences 

that occur in tests conducted at lamina level. 

 The experiments were organised on the active experiment principle, using the second-

degree orthogonal compositional central programme (PCCO2) with three variable levels. 

The “star” points were established through previous experiments. In order to exclude the 

appearance of some non-random links between determinations, these were randomised in 

time based on the random numbers string (see2). The abnormal results were eliminated on 

the Q criterion. 

 The values presented in table 1 were obtained for the glass E/epoxy laminate composite. 

The glass E armour is of Roving type with the finish Z6040. The used epoxy resin is of 

DGEBA standard type. The plates from which the test-pieces were drawn were made in 

steriliser, using the solidifying and thermal treatment diagrams recommended by the resin 

manufacturer. The resin solidifying was made with TETA solidifying agent. 

Table.1 The experimental values obtained for the elasticity module of the lamina group. 

No Volume fractions of the fibres (Vf ) 

(%) 

Fibres orientation-

angle θ (grade) 

Elasticity module E 

(GPa) 

1. 30 0 17,22 

2. 30 45 8,66 

3. 30 90 4,53 

4. 70 90 11,87 

5. 70 0 19,72 

6. 70 45 12,23 

7. 50 90 7,52 

8. 50 0 17,92 

9. 50 45 9,69 

10. 50 45 9,84 

11. 50 45 9,32 

12. 70 0 19,6 
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13. 11 100,3 2,83 

14. 30 90 4,7 

15. 40 15 14,23 

16. 60 15 15,82 

17. 40 30 11,46 

18. 60 30 12,34 

3. THE MATHEMATICAL MODEL OF THE ELASTICITY MODULE 

The linear model does not lead to a good approximation of the dependence of the lamina 

group’s elasticity module on the volume fraction and the reinforcement angle. In return, the 

second order model proved to be harmonious. 

This has the general form: 

2
21

2

1112210   fff VVVE  (1) 

where: E – the elasticity module of the lamina group – the objective function (GPa); 

  Vf – the volume fraction of the fibres – independent variable (%); 

  θ – the reinforcement angle (the angle between the direction of the fibres and the 

direction of the solicitation) – independent variable (degrees); 

  β0 … β22 – unknown coefficients. 

 After passing to encoded variables and the change of variable necessary to realise the 

orthogonality of the matrix PCCO2, equation (1) becomes: 

2
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where: Y – the objective function; 

  x1, x2 – encoded variables corresponding to the Vf and θ variables; 

  b0 … b22 – unknown coefficients. 

The experimental matrix PCCO2 is presented in table 2. 

Table 2. PCCO2 matrix. 

No. 

exp. 

x0 x1 x2 x1 x2 x1’=x1
2
-2/3 x2’=x2

2
-2/3 Y 

(GPa) 

1. +1 -1 -1 +1 +1/3 +1/3 17.22 

2. +1 -1 +1 -1 +1/3 +1/3 4.53 

3. +1 +1 +1 +1 +1/3 +1/3 11.87 

4. +1 +1 -1 -1 +1/3 +1/3 19.72 

5. +1 +1 0 0 +1/3 -2/3 12.23 

6. +1 -1 0 0 +1/3 -2/3 8.66 

7. +1 0 +1 0 -2/3 +1/3 7.52 

8. +1 0 -1 0 -2/3 +1/3 17.92 

9. +1 0 0 0 -2/3 -2/3 9.69 

The regression coefficients were determined with the calculation relations of PCCO2 

(see 2), getting the following values: 

bo = 9.75 ; b1 = 2.23 ; b2 = -5.16 ; 

bo = 9.75 ; b1 = 2.23 ; b2 = -5.16 ; 
(3) 

 The verification of the significance degree of the coefficients was made through the 

Student criterion for the significance limit of 0,05. 
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 There was ascertained that all coefficients have the absolute value superior to the 

reliance interval. 

It results that all coefficients are significant. The following mathematical model was 

thus obtained: 

2
2

2
12121 94.266.021.116.523.275.9 xxxxxxY   (4) 

 The concordance of the model was verified through the Fischer criterion for the 

significance limit of 0,05. 

 There was ascertained that the mathematical model is in good accordance with the 

experimental data. 

 After passing to real variables, the model of the dependence of the lamina group’s 

elasticity module on the structural elements Vf and θ has the expression: 

22 002.05.161.03.04.114.19   fff VVVE  (GPa) (5) 

Fig. 1 and fig. 2 show the dependence of elasticity module on the fibres orientation and 

on the volume fractions of the fibres. 

Fig. 3 shows the response surface. 

 

Fig.1. Elasticity Module vs. Fibres Orientation 
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Fig.2. Elasticity Module vs. Volume Fractions of the Fibres 

 

Fig.3. The response surface 
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4. THE EQUAL SIGNIFICANCE CURVES 

For an easier geometrical interpretation, the non-linear model of the elasticity module must 

be transformed from form (4) to the standard form. The transformation is made by choosing 

a new reference system, with the origin in the centre of the answering area. The 

transformation actually reduces itself to a translation through which the first degree terms 

disappear, and a rotation through which the binary interaction term b12x1x2 disappears. The 

equation gets the following form: 

2
2222

2
111 XBXBYY s   (6) 

where: Y – the value of the elasticity module in the x1, x2 coordinates system; 

  Ys – the value of the elasticity module in the centre of the answering area; 

  21 X,X  - the variables corresponding to the new coordinates system; 

  B11, B22 – standard coefficients. 

 The solution of the equations system obtained by equalising with zero the partial 

derivatives with x1 and x2 of the mathematical model (4) represents the coordinates of the 

symmetry centre of the answering area. 
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Y
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
 (7) 

 The coordinates of the centre of the answering area have the following values in 

encoded and real dimensions: 
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 (8) 

 The value of the elasticity module in the centre of the area is Ys=2,43 GPa. 

 The rotation angle (φ) of the coordinate axes is: 

o

bb

b
tg 98.1353.02

2211
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

   (9) 

 The standard equation for the elasticity module gets that way its final form: 

2
2

2
1 09.351.043.2 XXY   (10) 

 So the answering area is an elliptical paraboloid whose symmetry centre represents the 

minimum value of the elasticity module (B11>0, B22>0). 

 To highlight the shape of the equal significance lines (the same elasticity module), 

equation (10) can be written in the following form: 

01
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2.43

0.51

2.43

2
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Y

X
+

Y

X



 

(11) 

 Equation (11) represents a family of ellipses in 21 X,X  coordinates (fig.4). The 

ellipses are lengthened in the x1 direction (B11<B22). 

 We call the centre of the answering area marginal point (PM) and its coordinates’ 

marginal values (VM) of the structural elements. 
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 The marginal volume is VfM=11 % and the marginal reinforcement angle θM = 79,25
o
. 

 When the volume fraction of the armour is smaller than the critical volume fraction and 

the reinforcement angle is greater than θM, the elasticity module of the composite is 

controlled by the matrix and it is smaller than the elasticity module of the matrix. In this 

case, the armour does not fulfil its reinforcement role; on the contrary it behaves like 

heterogeneity, diminishing the elasticity module of the matrix. 

 For volume fractions greater than the marginal volume fraction (VfM) and reinforcement 

angles smaller than the marginal reinforcement angle (θM), the elasticity module of the 

composite is controlled by the armour and it is greater than that of the matrix, so the 

reinforcement is efficient. The elasticity module increases by moving from the marginal 

point in the 21 X,X  directions. 

 The marginal values highlighted here accurately limit the real variation domain of 

structural elements for an efficient reinforcement from the elasticity module point of view. 

That is why knowing these values practical and theoretical importance. These marginal 

values have been confirmed by numerous other experimental determinations conducted by us 

or by our co-workers. Considering that the notion of composite material must be correlated 

with the property or properties for which it was created, the coordinates of the marginal point 

(PM) are an answer to this question: “Under what quantitative and topological circumstances 

the introduction of a fibrous heterogeneity transforms the matrix material from monolithic 

material into composite material”. 

 A certain value of the elasticity module can be obtained in several points of the 

structural factors space that is for several values of the corresponding volume fraction and 

reinforcement angle. An example, the elasticity module of 19 GPa can be that of any 

composite with the volume fraction included between 65 % and 70 % and the corresponding 

reinforcement angle between 0
o
 and 4.5

o
 (fig.4). 

 

Fig. 4. The nomogram of the equal significance lines for the elasticity module of the unidirectional composite 
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5. THE ELASTICITY MODULE OF THE LAMINATE 

The laminate can be considered, from the solicitation at traction point of view, a bar with 

non-homogeneous section made of several elements with different properties and the same 

deformation. 

 The composing elements are the lamina groups that make up the composite. 

Consequently, the traction stiffness of the laminate is the sum of the traction stiffness of the 

composing lamina groups. So there can be written: 


N

=i

iic AE=AE
1

..  (12) 

where: Ec – the elasticity module of the composite; 

  Ei – the elasticity modules of the composing lamina groups; 

  A – the transversal area of the laminate; 

  Ai – the transversal areas of the lamina groups; 

  N – the number of lamina groups. 

The width of the composite is equal to the width of the groups and so relation (12) becomes: 

i

N

=i

cc pE=E 
1

 (13) 

where: pi = hi/h – the thickness fractions of the groups 

  h – the thickness of the composite; 

  hi – the thickness of the groups; 

 Considering expression (5) for Ei, equation (13) gains its final form. 
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  (GPa) (14) 

 The relation (14) allows the calculation of the elasticity module of any glass E/epoxy 

composite depending on the volume fractions, the reinforcement angles, the thickness and 

the number of the lamina groups. Values calculated with relation (14) are in a good 

accordance with the experimental data. 

 Thus, for composites that have less than 12 lamina groups the differences between the 

calculated values and the experimental ones are under 10%. In the case of composites with 

the number of groups between 13 and 20, these differences are under 14%. It must be 

stipulated that in practical applications the probability of necessary orientation sequences 

that need a number of groups greater than 8 is almost zero, so we can consider that relation 

(14) meets the practical needs entirely, also knowing the meaning of the difference between 

the calculated values and the real ones. For situations where more than 10 % accuracy is 

needed, the relation that calculates the elasticity module depending on the structural elements 

can be rectified with one coefficient (KE). 

6. THE DESIGN ALGORITHM OF THE OPTIMUM STRUCTURE FROM 

THE ELASTICITY MODULE POINT OF VIEW 

The following stages are passed through in order to establish the optimum structure 

corresponding to a certain elasticity module of the imposed laminate: 
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1) From geometrical, functional and technological conditions the thickness (h) of the 

laminate and the number (N) of the lamina groups are established. 

2) The values established for Ec, h and N are introduced in relation (13), obtaining a second 

degree equation with the real and positive unknowns (Ei) and (hi). The solutions of the 

equation are obtained using common programmes that solve second degree equations with 

“n” unknowns. The solutions are the elasticity modules and the lamina thickness, 

corresponding to the elasticity module of the imposed composite. 

3) With equation (5), the volume fraction (Vf) and the reinforcement angle (θ) are 

determined for each lamina group. The values (Vfi) and (θi) are obtained from the graphic 

(see the nomogram in fig.4), or with the help of a computer using common programmes that 

solve second degree equations with two unknowns. 

Fig. 5 presents the logical diagram of a programme for designing the optimum structure 

of the composite from the elasticity module point of view, programme that also allows 

solving the indirect problem, the calculation of the elasticity module depending on the 

structural elements. 

 
Fig. 5 The logical diagram of the programme for designing the optimum structure 

7. CONCLUSIONS 

1. Unlike other researches in the field, this paper studies the simultaneous influence of all 

structural elements on the elasticity module. 

2. The obtained physical – mathematical model is in good accordance with the 

experimental results and it can be used in practice by calculating, prior to the production, 
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the values the structural elements must have so that the composite has a certain elasticity 

module. The calculation relation contains the structural elements explicitly, unlike the 

constitutive equation from macromechanics analyses. 

3. The model gives the opportunity of quick and exact determination of the values for the 

structural elements without experimental determinations and successive difficult 

calculations. 

4. The method of establishing the optimum structure presented here can be also used for 

other composites and other mechanical properties. 

5. The experimentally confirmed finding that the properties of the laminate depend on the 

properties, sequence, thickness and number of lamina groups that compose it, made it 

possible to conduct experiments on the lamina group and not on the individual lamina as 

in previous researches. This is an essential aspect because, in this way, the difficulties 

and imperfections that appear in experiments conducted on the individual lamina are 

avoided. 

6. The coordinates of the marginal point (PM), called marginal values (VM) are limit values 

that structural elements can have so that the reinforcement be efficient. Knowing these 

values has a theoretical and practical importance because they limit the real domain of 

structural factors variation, in which the composite fulfils the purpose it was created for. 

7. The paper also presents the logical diagram of a programme for designing the optimum 

structure from the elasticity module point of view. 
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