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Abstract: An important stage in designing of pieces made of composite materials consists of 
establishing the composite topology in such a way that it has certain properties needed in 
exploitation. The paper presents the mathematical apparatus and the calculation programme for 
establishing the optimum thickness of the composite groups so that it should have certain imposed 
(given) flexural stiffness. The method is applicable to all types of laminate composites, no matter of 
the cladding or matrix nature. The direct problem consists in determining the thickness of the groups 
and composite, minimising the bar mass, for an imposed (given) flexural stiffness, knowing the 
densities and elasticity modules of the groups. The indirect problem consists in determining the 
maximum stiffness, the thickness of the groups and composite for a given (imposed) mass, knowing the 
densities and elasticity modules of the groups. The presented programmes offer to the producer of this 
kind of materials the possibility to quickly establish the optimum topology. 
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1. INTRODUCTION 

Composites are heterogeneous and anisotropic materials obtained through macroscopic scale 
combination of two or more phases, which have a separating interphase or interface. This 
combination is done in order to obtain a material with certain properties, superior to those of 
the components. The notion of phase has in this case a strictly descriptive sense of structural 
homogeneous part of a material system and it does not have a thermodynamic sense. The 
rules of the phases, true for the phases in equilibrium and which derive from the fact that the 
chemical potential of one component is the same in each phase, do not apply in the case of 
composite materials. As the concept of phase equilibrium does not operate for these 
materials, composites can have supplemental freedom degrees regarding the nature and the 
quantity of the combined phases. This aspect essentially differentiates composite materials of 
simple materials (monolithic). 
 An important category of composite materials is laminate composites, abbreviated LCM 
(Laminate Composite Materials). They have polymeric matrix (the continuous phase) and 
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fibre cladding (the discontinuous phase). 
 Laminate composites are made of layers, with different fibre thickness and orientation, 
called lamina groups. Fig. 1 presents the laminate composite with (150, -150, 150) topology 
made of three lamina groups. 
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Fig. 1 Composite with (150, -150, 150) topology 

The composite properties are the result of the component phase’s properties and also of 
the thickness and number of groups. 

Topological organisation plays an important role in the composite’s properties. By an 
adequate topological organisation, the properties of a composite formed of poorer quality 
constituents can be superior to those of composites made of constituents with exquisite 
individual properties, but with the topological organisation inadequate to the application. 
Therefore, it is very important that we can establish the volume fractions of the fibres (Vf), 
the reinforcement angle (θ), the thickness of the groups (hi) and the thickness of the 
composite (h), so that the composite can have certain/specific mechanical properties. The 
issue of establishing the optimum values for the volume fractions and reinforcement angles 
corresponding to certain solicitations has been dealt with in other works (see 1). 

2. THE METHOD PRINCIPLE 

In order to establish the groups optimum thickness from the flexural stiffness point of view, 
a composite with rectangular section, made of 5 groups is considered. Due to the 
technological difficulties that appear in the production of composites with a great number of 
groups, composites with maximum 5 groups are used in practice. The results obtained for 5-
group composites can be easily extended to the 2, 3 or 4 groups by simply considering the 
last groups as having zero thickness. 

The laminate has the shape of a symmetrical rectangular bar made of 5 lamina groups 
(fig. 2) with height (h), length (l) and width (b) equal to the unit. The composite is made of a 
median group with thickness (h1), density (ρ1) and elasticity module (E1); two groups situated 
on the both sides of the median group, marked “2”, with thickness (h2), densities (ρ2) and 
elasticity modules (E2); two external groups, marked “3” with h3, ρ3 and E3 features. 
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The composite can be associated with a non-homogeneous section bar made of several 
elements with distinct properties, which do not have longitudinal sliding between one 
another. These elements are, in the case of the composite, the lamina groups. Consequently, 
the shearing efforts and the transversal ones, resulted from the variation of the Poisson 
coefficients, are negligible. 

The fixing of the optimum topology by the flexural stiffness criterion has two problems. 

h h 1
h 3

h 3
h 2

h 2

 
Fig. 2 The 5-group laminate solicited at flexure 

The direct problem consists in determining the thickness of the groups and composite, 
minimising the bar’s mass, for an imposed (given) flexural stiffness, knowing the densities 
and elasticity modules of the groups. 
 The indirect problem consists in determining the maximum stiffness, the thickness of 
the groups and composite for a given (imposed) mass, knowing the densities and elasticity 
modules of the groups. 
 The elasticity modules of the groups are determined (see [1]) depending on the volume 
fraction of the fibres and on the reinforcement angle (the two structural elements of the 
group), with the formula: 

22 002,05,163,04,114,19   ff VVE  (1)

where: 
E – the elasticity module of the group (GPa); 

 Vf – the volume fraction of the fibres (%); 
 θ – the reinforcement angle (degrees). 
 The flexural stiffness of the laminate, according to the theory of the non-homogeneous 
section bars has the expression: 

332211 22 IEIEIED   (2)

where: 
D – the flexural stiffness of the laminate; 

 E1, E2, E3 – the elasticity modules of the groups; 
 I1, I2, I3 – the inertia moments of the groups related to the central axis of the bar’s 
transversal section. 
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 Writing the inertia moments depending on the sections dimensions, after making the 
calculations, the following expression of the stiffness (D) is obtained: 
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To simplify the expression we note: 
V=h1/h; U=(h1+2h2)/h (4)

The “h” thickness of the laminate has the expression: 
h=h1+2h2+2h3 (5)

The thickness of the lamina groups has the following expressions, depending on h, V, U: 
h1=Vh;       h2=(U-V)h/2;     h3=(1-U)h/2. (6)

By introducing the relations (4) into expression (3), the relation for the calculation of the 
stiffness (D) depending on the h, V and U dimensions, is obtained as: 
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The mass per the area unit of the laminate (W) is given by the relation: 
W= ρ1h1+2ρ2h2+2ρ3h3 (8)

 Where: ρ1, ρ2, ρ3 are the densities of the lamina groups. 
 With the notations (4), the mass per the area unit of the laminate becomes: 

    Uρ+VUρ+Vρh=W 32  11  (9)

 The external layers, usually being finishing layers, made of tixotropically modified 
resins, like gel-coat, have limited thickness due to technological reasons. Usually, the ratio 
between the thickness of the external layers and the total thickness of the composite is less 
than 0,2. The most used value for this ratio is 0,1. 
 Considering the ratio h3/h=(1-U)/2 as constant and known, mathematically the problem 
reduces itself, to determine the dimensions (V) and (h), so that they minimise the mass (W) 
for an imposed (given) stiffness (D) and a fixed ratio (U). 
 The optimum values for V and h are those which minimise the Lagrange-type function 
obtained as a connection between stiffness and mass. Considering the (7) and (9) expressions 
of the stiffness and mass, the Lagrange function (L) will have the following form: 
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where: λ - is the Lagrange multiplier. 
 The values (V) and (h), which minimise the Lagrange function, and the multiplier (λ) are 
determined in the case of direct problem in the following three-equation system: 
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By introducing the Lagrange multiplier’s expression, obtained from the first equation 
(11), into the second equation (11), it results the following expression for V: 
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From the third equation (11) the optimum h is obtained as being: 
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In the case of the indirect problem, the third equation of the system (11) will be the 
equation (9). In this case, the optimum ratio (V) will have the same expression (12), while 
the optimum (h) will be given by the following relation: 
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The nomogram in fig. 3 provides the values of the optimum ratio (V) in the case of 
h3/h=0,1; E1=E3 and ρ1=ρ3 depending on ρ1/ρ2 and E1/E2. 

 
Fig. 3 Nomogram of the optimum ratio (V)/values 

3. THE ALGORITHM FOR SETTING UP THE OPTIMUM TOPOLOGY 

To determine the optimum thickness with the minimisation of the composite’s mass so that 
the laminate should have the imposed (given) flexural stiffness, the following stages are 
passed through: 

1. The value for the ratio (V) that minimises the Lagrange function is determined 
from relation (12); 

2. The thickness of the laminate is determined from relation (13) with the imposed 
(D) and the calculated (V); 

3. The thickness of the lamina groups (h1, h2, h3) are calculated using relation (6) 
for the value imposed to (U) by the technology (usually U=0,8, value 
corresponding to a ratio h3/h=0,1); 

4. The minimum mass is determined using relation (9). 
To determine the optimum topology of the laminate composites, there has been 

developed a computer calculation programme whose logical diagram, for the direct problem, 
is presented in fig.4. 
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The determination of the optimum thickness of the groups and of the composite so that 
the latter should have a maximum stiffness and an imposed (given) mass requires passing 
through the following stages: 

1. The ratio (V) that minimises the Lagrange function is determined from relation 
(12); 

2. Depending on the imposed mass (W) and the calculated (V), the thickness (h) of 
the composite is determined with relation (14); 

3. The groups’ thickness (h1, h2, h3) are calculated from relation(6); 
4. The value for the maximum stiffness results from relation (7). 

The calculation programme that solves the indirect problem has its logical diagram 
presented in fig.5. 
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Fig. 4 Programme for optimum typology determination. The direct problem 
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Fig. 5 Programme for optimum typology determination. The indirect problem 
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4. CONCLUSIONS 

The method sets the groundwork for designing the optimum topology of laminate 
composites, so they should have a certain imposed (given) flexural stiffness. On the basis of 
the mathematical apparatus presented above, the optimum topology for composites with 5, 4, 
3 or 2 lamina groups can be determined. Due to the technological complications, composites 
with less than 5 groups are used in practice. 

The method is applicable to all types of laminate composites, no matter of the cladding 
or matrix nature. 

The presented programmes offer to the producer of this kind of materials the possibility 
to quickly establish the optimum topology. 

REFERENCES 

[1] V. Moga, Contributions Regarding the Structure Influence upon the Physical – Mechanical Properties of the 
Laminate Composite Materials and Sandwich Structure. Ph.D. paper, "Politehnica" University of 
Bucharest, 1997. 

[2] B. D. Agarwa., L. J. Broutman, Analysis and Performance of Fibre Composites, John Wiley Publ. Co., New 
York, 1990. 

[3] S. Dzalba Lindis, Materiaux sandwich aerospatiaux, Ed. S.I.P.E., Paris, 1989. 
[4] James H. Starnes, Jr., Mark W. Hilburger, The effects of reinforced cutouts on the buckling of composite 

shells, NASA Langley Research Center, USA; [2002]; 16p; in English; Fifth world congress on 
computational mechanics, 7-12 jul. 2002, Vienna, Austria; ISSN 0094-5765. 

[5] L. E. Hockman, Structural Applications of Honeycomb Materials, ASME Publ., Philadelphia, 1988. 
[6] N. K. Bau-Madsen, Large Deflections of Sandwich Plates. An Experimental Investigation, in Journal of 

Composite Structure, Vol. 23, p. 47-52,1993. 
[7] R. M. Jones, Mechanics of Composite Materials, McGraw – Hill Co., New York, 1975. 
[8] D. Hull, An Introduction to Composite Materials, Cambridge University Press, 1991. 
[9] E. J. Barbero, Introduction to composite materials design, Philadelphia, PA, Taylor and Francis, 1999. 
[10] Masoud Yekani Fard, Aditi Chattopadhyay and Yingtao Liu, Influence of loan type and stress gradient on 

flexural strength of an epoxy resin polymeric material, Journal of aerospace engineering ISSN: 0893-
1321 Subject: engineering; aeronautics and space flight published by American Society of civil 
engineers (ASCE). 

[11] Pizhong Qiao and Jialai Wang, Mechanics of composite sinusoidal honeycomb cores, Journal of Aerospace 
Engineering  ASCE / January 2005, ISSN: 0893-1321. 

[12] X. F. Xu and Qiao, P. Homogenized elastic properties of honeycomb sandwich with skin effect. Int. J. solids 
struct., ISSN 2153–2188, 2002. 

[13] Xu, X. F., P. Qiao, and J. F. Davalos, Transverse shear stiffness of composite honeycomb core with general 
configuration, J. eng. Mech., 2001, ISSN-1144–1151. 

[14] V. Vasiliev, E. V. Morozov Mechanics and Analysis of Composite Materials, Amsterdam, New York, 
Elsevier, 2001. 

[15] A. Kelly, C. Zweben, Comprehensive composite materials, Amsterdam; 1st ed. New York : Elsevier. 
[16] V. Moga, Gh. Zgura, The Bases of Composite Materials Design, BREN Publishing House,  Bucharest, 1999, 

ISBN 973-9493-01-7, (235 p) 
[17] V. Moga, Gh. Zgura, The Structure-Properties Interdependence for the Carbon-Epoxy Composite, 

International Manufacturing Engineering Conference, University of Conneticut, U.S.A., 7-9 august 1997, 
p. 507-511; 

[18] V. Moga, Gh. Zgura, Structure Influence upon Compressive Strength of Composite Materials, Buletinul U.P. 
Bucuresti, seria D, vol. 61, nr.1-2, p.271-285, 1999. 

[19] V. Moga, Gh. Zgura, Establishing the Best Structure of Unidirectional Composite Materials From the Point 
of View of Flexural Resistance, Buletinul U.P. Bucuresti, seria D, vol.61, nr.1-2, p. 335-347, 1999. 

[20] V. Moga, Gh. Zgura, The Design of the Best Topology of the Laminate Composite with Three Laminas 
Groups and of the Nomex Sandwich Structures After the Flexural Strength Criterion, Buletinul U.P. 
Bucuresti, seria D, vol.61, nr.1-2, p. 253-263, 1999. 

INCAS BULLETIN, Volume 4, Issue 2/ 2012 



Bogdan Vasile MOGA, Vasile MOGA 68 
 

INCAS BULLETIN, Volume 4, Issue 2/ 2012 

[21] V. Moga, Gh. Zgura, The Determination of the Best Structure of the Laminate Composite with Three 
Laminas Groups and of the  Sandwich Materials From  the Point of View of  Flexural Stiffness, Buletinul 
U.P. Bucuresti, seria D, vol.61, nr.1-2, 1999, p. 299-311. 

[22] V. Moga, Gh. Zgura, The Electron Beams Welding of the Polymeric Composites Reinforced with High 
Mechanical Strengt Fibres, International Conferance CISSFEL 6, Toulon, Franta, 1996, p. 167-173. 

[23] V. Moga, M. Dumitras, - Study on Noise Diminishing with Composite Sandwich Materials with Honeycomb 
Core, The International Conference on Structural Analysis of Advanced Materials, September 2-6, 2007, 
Patras, Greece. 

 
 
 


