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Abstract: A morphing wing model is used to improve aircraft performance. To obtain the desired 

airfoils, electrical actuators are used, which are installed inside of the wing to morph its upper 

surface in order to obtain its desired shape. In order to achieve this objective, a robust position 

controller is needed. In this research, a design and test validation of a controller based on neural 

networks is presented. This controller was composed by a position controller and a current controller 

to manage the current consumed by the electrical actuators to obtain its desired displacement. The 

model was tested and validated using simulation and experimental tests. The results obtained with the 

proposed controller were compared to the results given by the PID controller. Wind tunnel tests were 

conducted in the Price-Païdoussis Wind Tunnel at the LARCASE laboratory in order to calculate the 

pressure coefficient distribution on an ATR-42 morphing wing model for different flow conditions. 

The pressure coefficients obtained experimentally were compared with their numerical values given 

by XFoil software. 

Key Words: Neural networks, morphing wing, controller, electrical actuator modeling, wind tunnel 

1. INTRODUCTION 

To be able to design a morphing wing control system, it is essential to understand the 

motivation and the aerodynamic issues [1]. The fuel consumption can be reduced if the 

aerodynamic drag is reduced. An efficient way to reduce the drag is to develop a long 

laminar boundary layer by geometrical deformation of the airfoil in flight accordingly with 

flight conditions. The objective is to delay the flow transition on the upper surface of the 

wing [2]. The “morphing” is done with the aim to change one or more parts of a structure 

geometry in order to improve its aerodynamic performances [4]. Accordingly to Sofla et al. 

[5], “morphing” can be achieved to change the geometry along the chord, the span or the 

camber of the airplane wing to improve the lift and reduce the drag. The determination of the 
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appropriate airfoil for each flight case was done for an optimization phase by means of 

experimental flight tests or using optimization algorithm [6]. Campanile and Sachau [7] 

proposed a method to modify the camber of the wing. Another concept was used by 

Chandrasekhara et al. [8] to adapt the leading edge, while Hetrick et al. [9] presented a 

compliant structure to change the geometry of the wing trailing edge. Many other morphing 

wing studies have been proposed to improve the lift [10, 11, 12], or to obtain a better 

laminarity of the flow [13, 14]. A numerical model based on a genetic algorithm was used by 

Strelec et al. [15] to optimize the shape parameters of an airfoil. For the use of an 

experimental optimization method, Hetrick et al. [9] proposed an approach to determine the 

optimal flap deflections. A genetic algorithm was used by Boria et al. [16] to optimize a 

unmanned morphing wing and to test it in a Wind Tunnel. Their proposed model aimed to 

maximize the lift and efficiency by using a wind tunnel [16]. A multidisciplinary approach 

was proposed by Sainmont et al. [17] to change the morphing upper surface and to optimize 

the laminar airfoil. For the deformation of the wing skin, the use of a reliable and accurate 

actuation and control system is necessary to obtain the desired shape determined in the 

optimization phase. A closed-loop control system was proposed by Popov et al. [18, 19] to 

validate a morphing wing model in a wind tunnel. Another study based on using an open-

loop controller to test a morphing wing was presented by Popov et al. [20]. The same authors 

presented the optimization of a morphing wing in real time using wind tunnel validation tests 

[21]. Grigorie et al. [22 to 25] have proposed many controllers based on different techniques; 

in [22, 23] they proposed a new control technique using a combined PI and bi-positional 

laws optimum for a morphing wing application. An actuation mechanism and a control 

technique based on on-off proportional-integral-controllers were proposed and tested 

experimentally [24, 25]. Many other control methods are used extensively in the literature, 

such as Fuzzy Logic and Neural Networks (NN). These two methods are also used, alone or 

in hybridization, to resolve many other problems, such as classification, optimal control and 

manufacturing [26]- [30]. These methods are extremely efficient to solve nonlinear and 

multidimensional systems. Xuan et al. [31] proposed a controller of uncertain parameters for 

nonlinear systems based on NN and Fuzzy Logic methods. Botez et al. [32] have explained 

in details the content of the CRIAQ Project 7.1 regarding the design and manufacturing of a 

morphing wing equipped with smart material actuators and pressure sensors with the aim to 

delay the transition of the flow on the wing, and therefore to improve the aerodynamic 

performance of the wing. Mamou et al. [33] have presented a summary of the results 

obtained in the CRIAQ project 7.1, where CRIAQ is the abbreviation of the ‘Consortium for 

Research and Innovation in Aerospace in Quebec)’. A hybrid fuzzy logic proportional-

integral-derivative and a conventional on-off controller were proposed by Grigorie et al. [34, 

35] for morphing wing actuation. Two other control applications based on Fuzzy Logic were 

proposed by the same authors [36, 37]. Rosario et al, [38]- [41] have developed structural 

and aeroelastic analyses for morphing wing flap design, while Barbarino et al. [42]  have 

presented numerical and experimental methodologies and results for airfoil structural 

morphing studies equipped with smart material actuators. Large complex problems in 

aerospace engineering have been solved using NNs. Rauch et al. [43] used NNs to 

implement fault detection in aircraft. Models based on NNs techniques are proposed by 

Linse and Stengel [44], Wallach et al. [45] and Mosbah et al. [46, 47, 48] to identify and 

predict aerodynamic coefficients, and other methods for detection and icing identification 

were developed in [49, 50, 51]. Controllers for autopilot systems based on NNs were 

developed by Napolitano and Kincheloe [52]. Mosbah et al. [53] developed a new 

hybridization NNs model and extended the great deluge algorithm; their model was validated 
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using wind tunnel test. In this study, a control system based on NNs is proposed. The model 

is designed to be incorporated in a morphing wing model used and validated experimentally 

during wind tunnel testing. 

2. ATR-42 MORPHING WING MODEL 

A mechanism was developed to in order to build an experimental prototype of a morphing 

model which will be used in wind tunnel tests. This mechanism consists principally of two 

eccentric axes mounted inside the model and animated in rotation by two electric actuators. 

The system is used to change the upper surface of the model using the eccentric axes; moved 

by its rotation, the axes push the composite skin vertically upwards at 30% and 50% of the 

chord to obtain the desired deformation of up to 4 mm. The required amount of force that 

needs to be developed by each actuator line on the skin to produce the desired deformation 

mainly depends on the composite structure of the skin, including the positions and the 

number of the actuators. Coutu et al. [6] demonstrated that two actuation rows were 

sufficient to obtain good aerodynamic results for a morphing wing skin equipped with SMAs 

[1]. Figure 1 shows the ATR-42 morphing wing model assembled with the deformation skin 

mechanism and Figure 2 shows the airfoil of the ATR-42 wing model and the position of the 

eccentric axes. 

 

Figure 1. CAD of the ATR-42 model 

 

Figure 2. ATR-42 airfoil 

3. THE CLOSED LOOP ARCHITECTURE OF THE MODEL 

To obtain the desired airfoil shape, we need to deform the skin using two actuators. These 

deformations should be as close as possible (equal) experimentally with those determined 

numerically; a robust position controller is needed. The two actuators that deform the airfoil 



A. B. MOSBAH, R. M. BOTEZ, T. M. DAO, M. S. GUEZGUEZ, M. ZAAG 62 
 

INCAS BULLETIN, Volume 8, Issue 2/ 2016 

of the model from its original to its desired shape and the architecture of the control scheme 

are shown in Figure 3. 

 

Figure 3. Architecture of the closed loop system control 

3.1 Controller architecture 

As shown in Figure 4, the control system is composed of a position controller, a current 

controller, a saturation voltage block to protect the motor, and a DC motor block. 

A control system based on the Proportional Integral Derivative PID was proposed by 

Kammegne et al. [3] to control the actuators positions of the ATR-42 morphing wing model 

(the same model used in this study). The results obtained with the PID controller were 

satisfactory, with an error margin of 0.4 %. The concept here is to replace the PID controller 

with another controller based on neural networks, for more precision and comparison 

purposes between the efficiencies of both controllers. The “position controller” bloc and the 

“current controller” bloc shown in Figure 4 are replaced by two NN blocs obtained by the 

proposed algorithm. 

 

Figure 4. Closed loop control 

3.2 Modeling of the DC motor 

The deformation of the skin is realized using two DC motors, and in order to obtain the exact 

desired deformation, a robust control system should be used. Firstly, the mathematical model 

of the motors is identified. The DC motors can be configured using electrical, 

electromechanical and mechanical engineering equations [1]. Figure 4 represents the DC 

motors’ armature. 

 

Figure 5. Representation of the DC motors 
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where: 

U – voltage [V], Rm – resistance [Ω], L – inductance [H], im – current [A], 

Te – torque [N·m], Em – counter-electromotive force. 

As described by Jérémy [1] and Kammegne et al. [3], the motor resistance Rm and the 

inductance are assumed to be constants. The actuator model can be described by the 

following equations: 

𝑈 = 𝑅𝑚𝑖𝑚 + 𝐿
d𝑖𝑚

d𝑡
+ 𝐸𝑚 (1) 

𝐸𝑚 = 𝑘𝑒𝑊𝑚 (2) 

𝑇𝑒 = 𝑘𝑡𝑖𝑚 (3) 

𝑇𝑒 = 𝑘𝑓𝑊𝑚 +  𝐽
d𝑊𝑚

d𝑡
+ 𝑇𝐿 (4) 

where: 

Wm – motor angular speed [rad/s], ke – angular speed constant [revolution/min/V], 

kf – friction coefficient [N·m/(rad/s)], TL – load torque [N·m],  J – inertia [Kg·m
2
]. 

To study the stability of a real system such as that of a DC motor, a Laplace transform 

must be applied to switch from the time domain to the frequency domain. The Laplace 

transform of equation (1) is the following: 

𝑈(𝑆) = 𝑅𝑚. 𝐼𝑚(𝑆) + 𝐿. 𝑆. 𝐼𝑚(𝑆) + 𝑘𝑒 . 𝑊𝑚(𝑆) (5) 

𝐼𝑚(𝑆) =
𝑈(𝑆) − 𝑘𝑒 . 𝑊𝑚(𝑆)

𝑅𝑚 + 𝐿. 𝑆
 (6) 

and the Laplace transform of equation (4) is: 

𝑇𝑒(𝑆)−𝑇𝐿(𝑆) = 𝑘𝑓 . 𝑊𝑚(𝑆) + 𝐽. 𝑆. 𝑊𝑚(𝑆) (7) 

From where: 

𝑊𝑚(𝑆) =
𝑇𝑒(𝑆)−𝑇𝐿(𝑆)

𝑘𝑓 + 𝐽. 𝑆
 (8) 

and by replacing the Laplace transform of equation (3) into equation (8), we obtain: 

𝑊𝑚(𝑠) =
𝑘𝑡

𝑘𝑓 + 𝐽. 𝑆
. 𝐼𝑚(S) −

𝑇𝐿(𝑆)

𝑘𝑓 + 𝐽. 𝑆
 (9) 

where “S” is the Laplace operator. 

In the absence of the load torque, i.e., TL=0, by replacing TL=0 into equation (9), the 

Im(s) can be written as follows: 

𝐼𝑚(𝑠) =
𝐽. s + 𝑘𝑓

𝑘𝑡
 𝑊𝑚(s) (10) 

By replacing Im(S) given by equation (10) in equation (5), the motor voltage U(S) becomes: 

𝑈(s) = (𝐿. s + 𝑅𝑚)
𝐽. s + 𝑘𝑓

𝑘𝑡
 𝑊𝑚(s) + 𝑘𝑒 . 𝑊𝑚(s) (11) 
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The transfer function of the model, by use of equations (9) and (11), is: 

𝐺(s) =
𝑊𝑚(s)

𝑈(s)
=

𝑘𝑡

𝐽. 𝐿 · s2 + (𝑅𝑚. 𝐽 + 𝑘𝑓 . 𝐿). s + 𝑘𝑓 . 𝑅𝑚 + 𝑘𝑒 . 𝑘𝑡

 (12) 

In our morphing wing model of the ATR-42, a Maxon motor is used. The datasheet 

provided by the manufacturer includes the internal motor characteristics to calculate the 

modeling parameters. These characteristics are presented in Table 1. 

Table 1. Internal Motor Characteristics 

Rm [Ω] J [kg.m²] Kt [Nm/A] L [H] Kf [Pa.s] 

11.4 65.9e-7 0.119 0.0316 1.01738·10
-5

 

The model has been validated by Brossard, J. [1] and Kammegne et al. [3]; its validation 

consisted in the comparison of the values of im and wm given by the manufacturer with 

simulation values using Matlab/ Simulink. The results confirmed that the model was working 

well. The obtained values of the motor current and the motor speed were the same as the 

values given by the manufacturer. 

4. NEURAL NETWORK CONTROL SYSTEM DESIGN 

To design a robust control system, a position controller and a current controller are needed, 

as seen in Figure 4. These two blocs have a very good performance in order to obtain good 

results from the control system. Two Neural Networks are designed to ensure a high 

performance level. The first NN is used to control the position, for which where the inputs 

are the desired positions in degrees and the output is the needed current. The second neural 

network controller is used to control the current consumed by the motor; the input of this 

bloc is the current and the output is the voltage required to reach the desired position. Figure 

6 shows the architecture of our control system, using 2 NN algorithms. 

 

Figure 6. Control system architecture 
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Each neural network controller of the “position controller” and the “current controller”, 

needs a database. The motor used here works using a current between -3.5A and 3.5A and a 

voltage of -48V to 48V. The database for the first NN controller is composed of the desired 

position in degrees, and the current for which this position represents the input and the 

current represents the output. This database is used to train the neural network, therefore it 

can be used to control the current values. The output of the first neural network (the position 

controller) is the input of the second (the current controller), as seen on Figure 6. For the 

training phase of the second neural network, the selected database is composed of the current 

values as an input of the current controller, and the output is the voltage value supplied to the 

power supply, then to the motor to obtain the desired deformation. The challenge of this 

methodology resides in the choice of two databases to obtain the desired deformation of the 

morphing wing. The idea is to accelerate the system when errors are important at the 

beginning of the simulation and avoid overshooting. Tests are needed to determine the 

proper data. The training started using linear inputs and outputs. For the first controller, the 

inputs values are the error between the desired position and the measured position (-360
o
 to 

360
o
 with step equal to 0.18), and the outputs are the current between -3.5A to 3.5A with 

step equal to 1.75 10
-3

. We need to accelerate the system when the measured value is very far 

from the desired value. For the second controller, the inputs values are the current between -

3.5A and 3.5A with step equal to 0.01 and the outputs are the voltages between -48V to 48V 

with step equal to -0.137. For this objective, different data are tested and the results are 

analyzed to define the right interval. Following a few number of tests, we were able to 

construct databases that gave good results. Tables 2 and 3 represent the databases used to 

train the neural network position controller (Table 2 and Figure 7), and the database used to 

train the neural network current controller (Table 3 and Figure 8), respectively. In Table 2, 

for the values of deformations between -360
o
 and -50

o
, in order to accelerate the system, the 

output current is fixed at -3.5A, while for the deformation values between 50
o
 and 360

o
, the 

intensity of the current is equal to 3.5A. For the deformation values between -50
o
 and 50

o
, 

the intensity of the current varies between -3.5A and 3.5A as described by the following 

equation Current=0.07*position, and as shown in Figure 7. 

 

Figure 7. Used data to train the position controller 

Table 2. “Position controller” database 

The input: the deformation [degree] The output: the current [A] 

-360 degree ˂ deformation ˂ -50 degrees -3.5 A 

-50 degree ≤ deformation ≤ 50 degrees 0.07*deformation 

50 degree ˂ deformation ˂ 360 degrees 3.5 A 
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In Table 3, for the current values between - 3.5A and - 0.6A, the output voltage value is 

-48V and for the current values between 0.6A and 3.5A, the corresponding voltage is equal 

to 48V. For the range of current values between -0.6A and 0.6A, the output voltage varies 

between -48V and 48V as given by the following equation Voltage = 80*current, and as 

shown in Figure 8. 

 

Figure 8. Used data to train the current controller 

Table 3. “Current controller” database 

The input: the current [A] The output: the voltage[V] 

-3.5˂ current˂ -0.6 A -48 V 

-0.6 A ≤ current ≤ 0.6 A 80*current 

0.6 A ˂ current ˂ 3.5 A 48 V 

Using the databases shown in Tables 2 and 3, the Neural Networks are designed using 

the following method: 

Step 1: Initialization of the neural network, number of layers = 1; 

Step 2: Randomly selection of the number of neurons between 1 and 15; 

Step 3: Training using error=10
-4

; and 

Step 4: If the training error is not reached, then the layer number = layer number +1 and 

go to step 1. 

The first NNs’ position controller is composed of 3 layers of 14, 13 and 14 neurons, and 

1 output layer of 1 neuron (Figure 9). The second controller is composed of 2 layers of 14 

and 9 neurons, its output layer is composed of one neuron (Figure 10). The non-linear 

transfer function used in the proposed models is “Logarithmic sigmoid”; the transfer function 

of the output layer is linear. 

 

Figure 9. NNs’ Architecture of the Position Controller 

 

Figure 10. NNs’ Architecture of the Current Controller 
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Let Output
(k)

 represent the outputs of layer k, so that the general formula to calculate the 

outputs Output
(k)

 is the following: 

𝑂𝑢𝑡𝑝𝑢𝑡𝑗
(𝑘)

= 𝑡𝑎𝑛𝑠𝑖𝑔 (∑ 𝑂𝑢𝑡𝑝𝑢𝑡𝑖
(𝑘−1)

× 𝑤𝑖,𝑗 + 𝑏𝑗

𝑛

𝑖=1

) (13) 

where j is the index of neurons in the layer (k), n is the number of the neurons in the layer  

(k-1), and i is the index of neurons in the layer (k-1). 

The proposed controller is further compared to the PID controller developed in [3]. The 

simulation results using Matlab/ Simulink allow the comparison between the performance of 

the NNs’ controller with that of the PID controller. 

The error obtained by the PID controller is close to 0.4 %, while the NNs controller 

gives the exact desired values, as shown in Figure 11. 

 

Figure 11. Response Position using PID versus NNs (degree/time (s)) 

5. EXPERIMENTAL WORK 

5.1 Concept of the Experimental Work 

In order to validate the performance of the controller obtained during its simulation, a HIL 

(Hardware in the Loop) process is used which implements the controller simulation via the 

Labview real time environment. 

Labview offers not only the possibility to communicate in real time with the different 

components of our hardware loop, it also allows control algorithms and model simulations to 

be imported from other modeling environments through the model interface toolkit, thus, this 

Labview interface enables the interaction between Labview and third-party modeling 

environments. The validation concept, shown in Figure 12, is based on the idea of 

establishing communication channels between the hardware components, and the Simulink 

controller. The Labview program ensures that all the data required for their control 

operations can be read, processed and sent to a controller. This controller will generate the 
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correct control signal based on the external command from the operator. The type of signals 

and the order of the operations are described in the following sections. 

 

Figure 12. Validation Concept 

5.2 Experimentation and Real Time Validation 

After finding the correct controller for the simulation, we need to prepare it for real-time 

testing. The target platform in our case is Windows. 

5.2.1 Hardware 

The hardware used for testing and validation is specified in Table 4:  

Table 4. List of the hardware used in the experiment 

Hardware Characteristics 

Motor  Maxon motor : RE 35 Ø35 mm, Graphite Brushes, 90 Watt 

Gear box  Planetary Gearhead GP 32 HP Ø32 mm, 4.0 - 8.0 Nm 

Encoder Encoder MR, Type L, 512 CPT, 3 Channels, with Line Driver 

Drive EPOS2 24/5, Digital positioning controller, 5 A, 11 - 24 VDC 

Power supply CPX400DP- programmable dual output 2 x 420 watts 

The wiring and installation are specified in Figure 11: 

 

Figure 13. Hardware Installation 

The “Windows Host” communicates using USB with the programmable power supply 

and the drive Maxon, this drive is used to read and process the angle position value returned 

by the encoder on the motor. The DC motor is fed directly through the power supply, as seen 

in Figure 13. 

5.2.2 Real-Time Model 

First of all, the input and output ports of the controller are created as shown in Figure 14; the 

controller will need the desired position (input 1), the position feedback (input 3), and the 
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current feedback (input 2). Regarding the configuration parameters of the Matlab/Simulink 

model, the solver needs to be “discrete” and the “step solver” should to be chosen as a “fixed 

step” with a size of five millisecond (5 msec). The system target file should be 

‘NIVeristand.tlc’ in order to be used with Labview in real time. 

After desired form of the controller has been given the, and the configurations 

parameters have been set as mentioned above, the model can be built using Matlab’s Real-

Time Workshop. The Labview model’s function is to ensure the interface and the data 

exchange between the hardware and the controller. 

Using the CPX400 DP library in Labview, a USB communication channel is established 

with the power supply; through this channel, we are able to perform some actions such as 

opening a session, initializing a device, enabling/ disabling the output, settling the voltage 

value and reading the average current value. 

 

Figure 14. Simulink / Labview Real-Time Model 

For the calculations of position values, the Maxon drive is used to read and process the 

encoder signal and return the exact angle; some operations are needed to obtain their values 

in degrees. 

The Labview program will need to load the controller model as a Dynamic Link Library 

(DLL), which would be generated during the preparation step when building the Matlab 

Simulink model. This task is performed using the Model Interface Toolkit VIs by specifying 

the path of the generated DLL in order to load it, and by obtaining the sampling time. 

5.2.3 Validation Results 

A step of 50
o
 and another of 100

o
 were sent to the motor in order to test the performance of 

the implemented controller (Figure 15). The results obtained are very good; the error for 50
o
 

is equal to 0%, while the error for 100
o
, is equal to 1%. 

 

Figure 15. Experimental Results 
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5.3 Wind Tunnel Tests 

The experimental results achieved by using the Price-Païdoussis blow down wind tunnel are 

presented here. The pressure on the morphing surface of an ATR-42 wing is measured using 

a pressure transducer to determine the pressure coefficient distribution (Cp). The 

experimental results are compared with numerical values obtained using XFoil code. 

5.3.1 Experimental Tests Equipment 

The Price-Païdoussis wind tunnel and the pressure transducer system are presented here. The 

experiment was done using the Price-Païdoussis subsonic wind tunnel at the Research 

Laboratory in Active Controls, Avionics and Aeroservoelasticity (LARCASE). The Price-

Païdoussis wind tunnel is presented in Figure 16. This subsonic wind tunnel is equipped with 

two test chambers; the first provides a maximum airspeed of 60 m/s and the second offers a 

maximum airspeed of 40 m/s. 

 

Figure 16. Price-Païdoussis Wind Tunnel 

The measurement system was the Multitube Manometer tubes system, as its name 

indicates, this system is equipped with thirty-six tube tilting manometers to measure 

pressures taken from pressure taps on the ATR-42 morphing wing model (Figure 17) in the 

Price-Païdoussis subsonic wind tunnel. The tubes are filled with colored water to obtain very 

good visibility for the readings. The Multitube Manometer tubes transducer is shown in 

Figure 18. 

 

Figure 17. ATR-42 Morphing Wing Model 
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Figure 18. Multitube Manometer Transducer 

5.3.2 Experimental Results 

This section presents the results obtained at the LARCASE laboratory using the Price-

Païdoussis subsonic wind tunnel. The locations of the pressure taps along the chord on the 

morphing surface of the ATR-42 wing airfoil are indicated in Table 5. 

Table 5. Location of pressure taps 

Pressure taps 

number 
1 2 3 4 5 6 7 8 8 9 11 12 13 14 

Position (%of 

the chord)  
5 10 15  20  25  30 32.5  35 37.5 40 45 50 60 70 

Three flight cases were considered during the wind tunnel tests. These tests were 

conducted for three different angles of attack (-2
o
, 0

o
 and 2

o
) and one Mach number equal to 

0.08 (34 m/s). The experimental results are compared with results given by XFoil code. As 

shown in Figures 19 to 21, the experimental pressure coefficients Cp are in a very good 

agreement with the theoretical pressure coefficients results obtained using XFoil code. 

 

 

Figure 19. Experimental results (multitube manometer) of pressure coefficients Cp is for the angle of attack α=0o 

and Mach number=0.08 
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Figure 20. Experimental results (multitube manometer) of pressure coefficients Cp is for the angle of attack α=2o 

and Mach number=0.08 

 

 

Figure 21. Experimental results (multitube manometer) of pressure coefficients Cp is for the angle of attack α=-2o 

and Mach number=0.08 

6. CONCLUSION 

In this paper, a NN controller was designed and tested for an ATR-42 morphing wing. The 

objective is to reproduce a desired specific shape of the morphing wing using electric 

actuators. A robust controller is necessary to obtain a very good precision in order to achieve 

the exact desired airfoil shape. The proposed NN algorithm is used for a new closed loop 

controller methodology. The NN models are designed using Matlab and are further 

converted into Simulink model to be used for a closed loop controller methodology. The 

simulation gave very good results; the model’s responses give the desired values. The model 

is compared to a PID controller. The NN controller gives a more accurate performance than 

the PID controller; during experimental tests, it gave very precise results. The pressure 

coefficients obtained using wind tunnel tests are compared with the pressure coefficients 

given by XFoil software, and confirm the obtainment of a very good performance level. 
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