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Abstract: Rendezvous process of spacecrafts is one of major issues in study of aerospace engineering. 
Tracking control in Rendezvous process is very complex due to the need to fulfill the conditions and 
constraints to determine the control forces to bring Chaser toward Target. The paper will implement 
the control of the trajectory of the relative translation movement between Chaser and Target in the 
Closed-Rendezvous stage through two different approaches: the first using PID Controllers, and the 
second using the SDRE (State Dependent Riccati Equation) technique. Then based on obtained 
results, a comparison between two methods is carried out. 
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1. INTRODUCTION 
Nowadays, with the desire to further explore space, studies on aerospace missions are 
becoming more and more attractive to researchers. Rendezvous and Docking operations will 
be concentrated to study and improve, especially in the field of control. 
There are some authors with remarkable achievements that have applied in their works 
various advanced methods of control such as: Guillermo Ortega who used in [9]. Fuzzy logic 
the techniques for rendezvous and docking of two geostationary satellites; I. Lopez and C. R. 
McInnes who used the artificial potential function for autonomous Rendezvous, [8]; P. 
Singla, K. Subbarao, and J. K. Junkins who used the Adaptive Control for their study of 
Rendezvous and Docking, [7]; With robust parametric method, Dake Gu and Yindong Liu 
solved spacecraft rendezvous problem, [6]. In aerospace field, the State-Dependent Riccati 
Equation technique (SDRE) is widely applied in designing controller for nonlinear systems 
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thanks to its simplicity and effectiveness. The use of the State-Dependent Riccati Equation 
(SDRE) is to provide feedback control for nonlinear systems by allowing nonlinearities in 
the system state. Specifically, by imitating the Linear Quadratic Regulator (LQR) for linear 
systems, SDRE allows computing a sub-optimal solution of nonlinear control problem by 
solving online the Algebraic Riccati Equation (ARE). 

Then this method is used in lots of works related to Rendezvous problem to solve 
particular aims, [1-5]. 
 This paper also uses SDRE approach for tracking control of spacecrafts in closed-
Rendezvous range and applies it in the specific example. 

Besides, as one of the most popular control method, PID control method is employed 
here for solving an identical issue. When implementing Rendezvous operation, the V-bar 
approach is considered as approach strategy. 

The work does not intend to establish a hierarchy of methods, to determine if a method 
is better than the other. 

However, based on the obtained results we will have an overview about performance of 
each method. Additionally, depending on the criteria of specified task such as: energy 
consumption or issue relating to time for steady state, we can choose suitable control method 
for desired purposes. 

2. RELATIVE TRANSLATIONAL MOTION DYNAMICS 
Commonly, in Rendezvous and Docking missions, local orbital frame centered on the 
Chaser, and the Target namely Local Vertical Local Horizontal (LVLH) frame, and an Earth 
– Centered Inertial frame are used to compute position vectors of spacecrafts. They are 
depicted in Figure 1. 

 
Figure 1. Reference frames 

x – axis in the same direction and orientation as the orbital velocity vector (V-bar), y – axis 
normal to the orbit, with opposite direction of the orbital angular momentum vector (H-bar), 
z – axis completes the system, oriented in the radial direction, perpendicular to the plane of 
horizon, nadir direction (R-bar). 

In the approximately circular orbit, Hill equations derived by Clohessy and Wiltshire 
(CW) have been widely used to describe the relative motion between spacecrafts, [10]. Then 
the guidance of Chaser vehicle during Rendezvous and Docking maneuvers in the case 
without disturbing acceleration are expressed as: 
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assuming the case in which the target is in a low circular orbit (LEO) with the position vector 
rt and ω constant, according to: 

3
tr
µω =  (2) 

where µ  is Earth’s gravitational constant (m3/sec2), 
, ,x y zF F F  are forces exerted by Chaser to control position and velocity, and x, y, z are 

the coordinates of the chaser in the local vertical/ local horizontal (LVLH) coordinated 
system attached to the Target. 

In case the perturbation is taken into account, the equations of relative motion between 
Chaser and Target are expressed as: 
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where , ,x y za a a∆ ∆ ∆  are the perturbing acceleration components due to J2 in local orbital 
frame. They are computed as following: 

( ) ( ) ( )2
2 22

4
3 1sin .sin .cos sin .sin .cos 1 3sin .sin

2
e

J x y z
J Ra i e i i e i e
r

µ
θ θ θ θ = − + + −  

 (4) 

in there, , ,x y ze e e are unit vector in the LVLH frame of the Target, 
 Re is the Earth’s radius, 
 ,i θ  are inclination and argument of latitude of spacecraft, respectively. 

Then relative effect of the Earth oblateness due to J2 becomes:  

2 2
( , , ) ( , , )J c c c J t t ta a r i a r iθ θ∆ = −  (5) 

In the equation above, inclination i, argument of latitudeθ , and position vector r  are 
assumed to be known for Target and Chaser. 

From Equation (1), the general solution can be expressed conveniently in terms of state 
vector as, [10]: 
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[ ] [ ]0 0 0 0 0 0, , , , , ( ) , , , , , TTx y z x y z H t x y z x y z=      (6) 

where ( )H t is the state transition matrix for CW equation, and is expressed as: 
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( ) ( )
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=  
 

 (7) 

in there, its components representing for position vector and velocity vector are written in 
more detail as: 
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Let denote ,f ft r  be the final time and final relative position of two spacecrafts, then 
the required initial velocity in LVLH frame of Target is: 

( ) ( )0
1 1

0. ( )h rv f rr f rv f fV N t M t r N t r− −= − +  (9) 

 Then the first velocity impulse in the LVLH frame of Target is: 

0 0 0t hV V V∆ = −  (10) 

where 0V  is the initial relative velocity between two spacecrafts. 
From that, the final relative velocity upon successful rendezvous is determined as: 

( ) ( ) 00f vr f vv f tV S t r T t V= + ∆  (11) 

 And the velocity required for second impulse is: 

fV V∆ = −  (12) 

To nullify the approach velocity the exponential braking law characterized by an 
exponential change of velocity with time may be given, [11]. 
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3. USING SDRE FORMULATION FOR CONTROLLING RELATIVE 
TRANSLATIONAL MOTION 

Let consider the autonomous system that is full-state observable, nonlinear in state and affine 
in the input given by: 

( ) ( ) ( ). ( )x t f x B x u t= +  (13) 

where nx R∈  is the state vector, mu R∈ is the input vector, and it is assumed that 
: n nf R R→ , : n n mB R R ×→ . 

Through the state-dependent coefficient (SDC) factorization, the nonlinear equations 
can be represented as linear structures with state-dependent coefficients. Thus, this procedure 
is similar to the LQR method except that all matrices may depend on the state.  
 Based on this concept, the sate-space equations for nonlinear system in Equation (13) 
can be expressed as a linear state-space equation using direct factorization as: 

( ) ( ). ( ).x t A x x B x u= +  (14) 

where the factorization for ( ) ( ).f x A x x=  with ( ) n nA x R ×∈  is possible if and only if 
(0) 0f = , and ( )f x is continuously differentiable.  

 The state-dependent dynamic matrix A(x) is non-unique where 1n > , [15]. The optimal 
control problem mentioned above is to find a state-feedback control law ( )u x , which 
minimizes the cost functional: 

[ ]( )
0

1 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
2

T T T
r rJ x t x t Q x x t x t u x R x u x dt

∞
 = − − + ∫  (15) 

where ( )rx t is the reference or desired state vector provided by the guidance scheme, 

 ( ) n nQ x R ×∈ is the state weighting matrix satisfying ( ) ( ) 0TQ x Q x= ≥ , 

 ( ) m mR x R ×∈  is the input weighting matrix satisfying ( ) ( ) 0TR x R x= > . 
for all x in order to ensure the local stability, [16].  It should be noted that ( )Q x  and ( )R x
are not only allowed to be constant, but can also be varied as functions of states. And it is 
assumed that (0) 0f =  and ( ) 0B x ≠ . For a valid solution to the SDRE, the pair 
{ }( ), ( )A x B x  must be wise-point stabilizable in the linear sense for all x in the domain 
interests. 

 
Figure 2. Diagram of the SDRE control in closed-loop 
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As shown in Figure 2 the SDRE method for obtaining sub-optimal solution problem can 
be summarized, [13]: 
 - Through the SDC factorization, transforming the nonlinear equation of Equation (13) 
into the linear-like structure of Equation (14), 

- Solving the SDRE of the form: 
1( ). ( ) ( ). ( ) ( ). ( ). ( ). ( ). ( ) ( ) 0T TP x A x A x P x P x B x R x B x P x Q x−+ − + =  (16) 

 Provided ( )P x exists, the nonlinear feedback control law is then: 

[ ]( ) ( ). ( ) ( )ru x K x x t x t= −  (17) 

where ( )K x  is denoted as the state feedback gain for minimizing Equation (15), and is 
expressed 

1( ) ( ). ( ). ( )TK x R x B x P x−= −  (18) 

 Applying this control law, results in the closed-loop system dynamics being given by: 

[ ]( ) ( ). ( ) ( ). ( ). ( ) ( )rx t A x x t B x K x x t x t= − −  (19) 

For the case of relative translational motion between two spacecrafts Chaser and Target, 
by following the instruction mentioned above, the system matrix A(x) is: 
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in there, the denominator z must not be allowed to be zero to avoid a singularity. 
 Without loss of generality, in our study it is supposed that mass of the Chaser is constant 
during simulation time. Then the control matrix is: 
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Since Equation (16) should be determined at each instant time, so the state weighting 
matrix Q and the input weighting matrix R are also considered to be constant. Then they are 
respectively expressed as: 

10 . (6 6)pQ I= ×  (22) 

10 . (3 3)qR I= ×  (23) 
The properly chosen initial matrices without causing the thruster saturation are required. 

If larger Q and smaller R weighting matrices are chosen initially, the controller may become 
saturated then consequently resulting in control commands that cannot be executed by the 
thruster. 

When the weighting matrices are adjusted at steady state, the control forces are modified 
and tracking is then reduced to the desired value without thruster saturation. 

This adjustment of the weighting matrices is very important in order to generate 
approximately control forces. 

4. USING PID CONTROLLERS FOR CONTROLLING RELATIVE 
TRANSLATIONAL MOTION 

In this section, PID controller, one of the most popular control methods, will be applied for 
the trajectory control for the same problem mentioned above. 

Similar to any control method, the system will become closed-loop control system when 
using PID controller. 

Based on updating current state of the system through the feedback signal, the 
controlling forces are executed correspondingly to perform given task thanks to PID 
controllers. 

 
Figure 3. Diagram of closed-loop control system using PID controller 

With a closed-loop system as we can see in Figure 3, the tracking error e(t) is sent to the 
PID controller, then the controller output u(t) is computed as, [12]: 

( )( ) . ( ) ( ). .P I D
de tu t K e t K e t dt K

dt
= + +∫  (24) 

in there, KP, KI, KD are proportional, integral, and derivative gains, respectively, ( )u t  is force 
for controlling the Chaser as in Equation (3), 

( ) ( ) ( )e t r t q t= −  (25) 

with ( )r t  is reference state of Chaser given by homogenous solution of CW equations, ( )q t  
is current state of the Chaser. 
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For our study case, the working process can be interpreted as follows: the control signal-
controlling forces ( )u t  will be sent to the Chaser needed to control, then the new signal 
output q(t) will be obtained. 

Subsequently, the feedback is needed to take in period of time to find the new error 
signal.  

Based on this new error, the PID controller computes to give the new control signal and 
the process keeps going on to control the Chaser approaching the Target. 

5. APPLIED SIMULATION AND RESULTS 
For simulating relative translational motion as expressed in Equation (3), MATLAB 
Simulink is the useful tool for that purpose. Let’s use some given data as: 

3 2
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in there, cm is mass of the Chaser, and is considered constant during simulation time. 
The model will simulate closed-rendezvous stage in 900 seconds (corresponding to S31-

S32 proximity operation). 
Based on that, some initial state conditions of system are used as: 

0 0
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 By applying the Genetic Algorithm as in [14] for tuning PID parameters in our system, 
the values of , ,Pi Ii DiK K K  (i=1, 2, 3) are determined as: 

1 1 1

2 2 2

3 3 3

2.7100; 0.0220; 7.6800;
5.3100; 0.1170; 6.9400;
5.5800; -0.0100; 7.6100.

P I D

P I D

P I D

K K K
K K K
K K K

= = =
= = =
= = =

 

 

 
Figure 4. Simulink model for PID controller’s method 
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Figure 5. Simulink model for controlling SDRE method 

And the results obtained from Simulink model are shown in Figures as following:

 
Figure 6. Movements in X direction versus time by using PID controllers (a), SDRE (b) 

 

Figure 7. Movements in Y direction versus time by using PID controllers (a), SDRE (b) 
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Figure 8. Movements in Z direction versus time by using PID controllers (a), SDRE (b) 

 

Figure 9. Variation of Control Forces in X direction using PID controllers (a), SDRE (b) 

 

Figure 10. Variation of Control Forces in Y direction using PID controllers (a), SDRE (b) 

 

Figure 11. Variation of Control Forces in Z direction using PID controllers (a), SDRE (b) 
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With the above control forces, we now observe the total translation error to see how well 
they performe the given task, which is computed in the expression as: 

( ) ( ) ( )2 2 2( ) ( ) ( ) ( ) ( ) ( ) ( )tot des des dese t x t x t y t y t z t z t= − + − + −  (26) 

where ( ), ( ), ( )des des desx t y t z t  are desirable coordinates, and ( ), ( ), ( )x t y t z t  are actual 
coordinates of the Chaser, respectively. 

Then the result is shown in Figures below: 

 

Figure 12. Variations of total error using PID controllers (a), SDRE (b) 

6. CONCLUSIONS 
Based on the obtained results, one can observe that both two methods performed very well 
the given task, i.e the actual relative trajectory tracks tightly the commanded relative 
trajectory. Speciffically, with the control method using PID controllers, the absolute values 
of control forces when the Chaser is in steady state is smaller than if using the SDRE 
method. Consequently, the total translational error when using PID controllers is also smaller 
than the other one. However, when using the SDRE method, the system reached steady state 
faster than using PID controllers. Therefore, as mentioned previously, that does not mean 
that the PID control approach is more advantageous than the SDRE one, due to existing 
difficulty: with PID controllers, we have to determine PID parameters: proportional, integral, 
and derivative gains; this is complicated because of their interaction. Then, in practice, we 
will choose the appropriate control method, according to the specific control requirement. 
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