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Abstract: The purpose of this paper is to present a fast mathematical model that can be used to 

quickly asses the drag coefficient for generic launcher configurations. The tool developed based on 

this mathematical model can be used separately or it can be integrated in a multidisciplinary 

optimisation algorithm for a preliminary microlauncher design. 
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1. INTRODUCTION 

The need for a small dedicated launcher emerged with the increased desire to insert into the 

Low Earth Orbit (LEO) of a growing number of nano - and micro- satellites.  At the moment 

these payloads are carried into space as secondary payload in so-called “piggyback” 

missions. Because of the lack of dedicated small launchers, there are several ongoing 

projects worldwide that have as primary objective the development of a conceptual design 

for an affordable small launcher. 

A multidisciplinary approach must be used to successfully obtain a preliminary design 

of the microlauncher, which is often realised with the aid of a multidisciplinary design 

optimisation (MDO) algorithm. The exact structure of the MDO algorithm can vary from 

one author to another. Figure 1 shows as an example the block scheme for the MDO 

algorithm used in the papers [1] and [2]. 

The MDO tool developed core is constituted by the four main disciplines that must be 

assessed: Weights & Sizing, Propulsion, Aerodynamics and Trajectory. The complexity of 

the last disciplines that must be integrated, in this case the trajectory, dictates the complexity 

of the entire MDO algorithm including the Aerodynamics module. To significantly reduce 

the complexity of each individual module of the MDO algorithm, a 3DOF approach is 

desired. As seen in [3] an accurate orbit injection is obtained even when using this simplified 

approach. For a more detailed overview of the launch vehicle conceptual design process, the 

papers [1] and [2] can be studied. 
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Figure 1 - Block scheme of a MDO algorithm  

The objective of this paper is to elaborate the mathematical models that can be used in 

the aerodynamic assessment of the small launcher. 

By using a 3DOF approach, the only aerodynamic assessment that must be realised is 

the estimation of the drag force acting on the launcher, which in the end, corresponds to 

computing the drag coefficient of the launcher at zero angle of attack. 

2. DRAG ANALYSIS 

The value of the drag force acting on the surface of the launcher is difficult to quantify 

because of the numerous factors that affect it. To get values that are suitable for comparison, 

the drag force ( D ) is normalised by the dynamic pressure ( q ) and the reference area ( refA ) 

to get a non-dimensional force coefficient. This is known as the drag coefficient and has the 

following definition: 

ref

d
qA

D
C =  (1)  

The reference area used for the launcher is the maximum frontal area. The mathematical 

model used must provide accurate drag coefficient estimations for any possible small 

launcher configuration. Thus, it is practical to separate the launcher complex geometry into 

multiple simple geometric components. Such a breakdown can be seen in Figure 2. 
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where: N - number of simple components; iA - local reference area; 
idC - individual 

component drag coefficient 
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Figure 2 – Microlauncher breakdown into individual components 

The methods used to assess the aerodynamic performance are based on linearized 

models and thus, the superposition principle can be applied. For each of the simple 

components, a drag coefficient will be calculated and normalized by the local reference area. 

To compute the total drag coefficient of the launcher, all individual contributions are 

scaled to the global reference area and then summed up. 

It is of interest to present what are the simple geometries that can be used to build up the 

studied launcher configurations. There are four major types of components, each one having 

its own mathematical model for the drag coefficient estimation. 

The tool developed based on these mathematical models can use the following simple 

geometric components: Fairing – multiple nose cones; cylindrical stage; positive transition; 

negative transition. The simplest geometry can be imagined consisting of a fairing and a 

cylindrical stage, when the microlauncher stages have constant diameter. 

A 2D view of some of the simple components used in the developed tool can be 

observed in Figure 3. 

 

Figure 3 – Simple components used for aerodynamic assessment 
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Other components can also be used in the construction of the launcher. In some cases, 

the architecture of the launcher dictates that add-on boosters or fins are required. The 

necessity of adding fins to stabilise the launcher during the ascending phase has been 

removed because of the thrust vector controlling capabilities of the rocket motor. Also, when 

discussing small launchers, using boosters is not an optimal solution because the booster 

miniaturisation will not lead to a high enough performance to justify the price and mass 

increase. Also, the complexity of the launcher will be increased with the number of extra 

components which is not desired in the conceptual design phase. 

Because the mathematical models have to provide very fast drag coefficient estimations, 

the launcher geometry is simplified, if needed. This is the reason why a skirt is added to the 

bottom part of the stage, zone where the nozzle is located. 

The equations used to estimate the drag coefficient are based on both analytical and 

semi-empirical models. For each of the four main components (fairing, stage, positive 

transition and negative transition) different mathematical models are used to estimate the 

individual drag coefficient which will be presented in detail. 

3. MATHEMATHICAL MODEL 

When calculating the drag coefficient for the launcher of interest, it is very important to first 

separate the drag into component parts. There are numerous methods of dividing the drag, as 

detailed in [4] the simplest being that of considering whether the drag is caused by normal 

acting forces to the launcher or by forces acting tangential to it. Here, the drag is divided into 

pressure drag and skin friction drag. The surface used to calculate the pressure drag is the 

launcher exterior geometry including the base. 

Another method is to divide the drag intro foredrag and base drag. The foredrag is 

considered to be all of the drag acting on the surface of the launcher excluding the base and 

contains both pressure and skin friction drag. The base drag is mainly due to pressure drag. 

The last method that can be used is that in which the drag is divided into 3 main separate 

components. These are the pressure foredrag (also known as the body pressure drag), the 

base drag and the vicious drag (also known as the skin friction drag). 

It is easier to consider that these components provide distinct quantities of drag but in 

reality, they are not independent of one another. The skin friction drag influences the base 

drag, but in this paper the 3 distinct quantitates will be considered independent to reduce the 

complexity of the model. 

Beside these 3 components of the drag, another one which is very difficult to quantify 

exists. Between the different components of the launcher interference drag can develop 

which can modify at least one of the 3 drag contributions. Interference drag mainly appears 

for configurations with add-on booster, which are not of interest for the current 

microlauncher study. 

The aerodynamic drag, in this paper, for the case of the launcher, has thus 3 main 

contributions: Skin friction drag (
fdC ), body pressure drag (

pdC ) and base drag (
bdC ). 

The individual drag coefficient is computed by summing all of the previous presented 

contributions: 

bpfi dddd CCCC ++=  (3)  
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The skin friction drag is caused by the friction between the vicious airflow and the 

launcher. In [5], the author presents equations for estimating the skin drag coefficient for 

both laminar and turbulent flow regimes.  

For the case of interest of this paper, dealing with the size of the launcher and the high 

speeds occurring during the launcher ascent, it is safe to assume that the turbulent flow 

regime will be dominant for the most part; the laminar and transitional regime will appear 

only in the first seconds of flight.  

To obtain the skin friction drag coefficient, one can use the following equation: 

( )

( )












+

−

=

8.0,
15.01

8.0,1.01

58.02

2

Mif
M

C

MifMC

C
f

f

d f

 

(4)  

The skin friction coefficient ( fC ) can be modelled as a function of Reynolds number     

( Re ), the surface roughness ( sR ) and launcher length ( L ). Papers [5] and [6] present a 

database with the surface roughness values based on the exterior surface type. Normal 

aviation paint has been considered for this paper.  

The skin friction coefficient can be estimated using: 
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(5)  

The skin friction coefficient is modelled adequately for each of the flow regime cases. In 

the laminar flow regime, the laminar flat plate approximation has been used, while for the 

transitional and turbulent regime, a model derived from the results of the turbulent flat plate 

has been used, together with the aid of a transition factor. 

The most important regime in the case of a launcher is the “high” turbulent regime, 

where the surface roughness of the exterior surface is no longer inside the fully developed 

turbulent boundary layer. Thus, the skin friction drag is expected to be higher compared to a 

regular turbulent flow. 

The surface roughness critical Reynolds number is defined as: 
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(6)  

The local reference area used in the computation of the skin friction drag coefficient is 

the wetted area of the individual component. It is of great importance to correctly scale each 

of the drag contributions to the same reference area before adding them up to obtain the 

individual component drag coefficient (
idC ). 
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The body pressure drag appears because the launcher is forcing the air to curve around 

it. This contribution of the total drag of the launcher occurs when modifications to the 

launcher geometry with respect to the airflow appear. The dominating component 

contribution for the pressure drag is the fairing, but it also appears at transitions or 

interstages. The problem of shock waves at supersonic and hypersonic speeds must be 

thoroughly investigated in detailed analyses, as the analytical and semi-empirical models 

offer only reasonable estimates. Several types of popular fairings will be now presented and 

the mathematical models used for estimating the pressure drag coefficient will be detailed. 

The first geometry analysed is the conical fairing, where the nose pressure drag is 

proportional to the joint angle (  ), as derived from [7]. The joint angle for a conical fairing 

can be seen in Figure 4. The local reference area is that of the maximum frontal area which is 

proportional to the base diameter of the fairing. 

 

Figure 4 - Conical fairing joint angle 

At very low speeds, the pressure drag coefficient can be estimated with: 

=
=

2sin8.0
0,MpdC  (7)  

At a Mach number equal to 1, the pressure drag coefficient can be estimated with: 

=
=

sin1
1,MpdC  (8)  

At supersonic speeds, for Mach numbers greater than 1.3, the pressure drag coefficient 

is provided in [8] and has the following form: 
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The following equation will be used to estimate the pressure drag coefficient for Mach 

numbers lower than 1.3: 

0, =
+=

Mpp d
b

d CMaC  (10) 

where a  and b  are computed to fit the pressure drag coefficients from equations (7), (8), 

(9) and derivative constraints from [6]. 
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For the ogive fairing, in the subsonic regime the pressure drag coefficient is small 

enough to be negligible, while in the transonic and supersonic regimes, the ogive pressure 

drag coefficient is computed using an analogy with the conical fairing, where the pressure 

drag coefficient is corrected with the shape factor: 

( )( )
conep dd CC +−= 82.05.072.0

2
 (11) 

The ogive shape parameter (  ) of 1 corresponds to a tangent ogive and values between 

0 and 1 will result in a secant ogive. 

For other types of fairing, analytical models are not capable of accurately estimating the 

pressure drag. For the next fairings semi-empirical models will be used. 

One of the most accurate fairing databases is the one in [9], database which will be the 

starting point of the mathematical model used to assess the fairings pressure drag coefficient. 

The drawbacks of the database are that it only contains results for nose fineness ratio 3 

and also for Mach number up to 2. The most popular fairings are the Haack series type 

because they are not geometrical derived, but rather mathematically derived to minimise 

drag. The L-D Haack series, also known as the von Kármán ogive has the minimal drag but 

is somewhat restrictive on the interior volume. 

For a greater interior space, suitable for mounting satellites, with a small increase in 

drag, the L-V Haack series is preferred. 

Based on this database, semi-empirical model has been developed and some of the 

results can be observed in Figure 5. 

 

Figure 5 – Fairing pressure drag coefficient, from [9] 

It is now of interest to expand the model for other fairing fineness ratio. The fineness 

ratio is defined as: 

fairing

fairing

N
D

L
f =

 
(12) 

Here, the diameter is considered to be the base diameter of the fairing. For a fairing 

having 0=Nf , the data from a blunt cylinder can be used, where the pressure drag 

coefficient is proportional to the stagnation pressure, as stated in [8]. 
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Having now the pressure drag coefficient for two different fineness ratios (0 and 3), the 

following approximation can be used for the pressure drag coefficient estimation: 
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After simple calculations it can be observed that: 
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In most cases, for thermal loads decrease during the launcher ascent purposes, the nose 

is not sharp at the tip, but rather blunted. The bluntness ratio ( rB ) is defined as:  

f

n
r

R

R
B =  (17) 

where: nR  - nose radius; fR  - fairing base radius.  

The top part of the fairing is now a sphere, a tangency condition being used at the 

junction between the fairing profile and the spherical tip. Because of the rounding of the top 

part of the fairing, its total length will decrease with the increase of the bluntness ratio, as 

shown in Figure 6 for different fairing profiles. 

 
 

%5=rB  

 
 

%15=rB  

 
 

%30=rB  

Figure 6 – Nose bluntness ratio comparison 
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Using a blunted nose also has an impact on the pressure drag coefficient. If the bluntness 

ratio is below a threshold then the increase in drag is not significant. This threshold is in the 

range of 15% - 20%, as stated in [9], [10] and [11]. It is thus advised to limit the bluntness 

ratio to 15% in order not to significantly increase the launcher drag coefficient, while still 

decreasing the thermal loads on the fairing. 

The following relations are proposed to compute the effect of the tip bluntness: 

rcdd FCC ,sharpp,bluntp,
=

 
(18) 

2

, 6.416.01 rrrc BBF +−=
 

(19) 

For the cylindrical stages the pressure drag coefficient is negligible because there are no 

modifications in the geometry with respect to the airflow. For positive transitions, an analogy 

with the conical fairing is made. The pressure drag coefficient is considered to be the same 

as for a cone having the same joint angle, the local reference area being the difference 

between the aft and fore ends of the transition.  

In the case of negative transitions, the proposed model is based on wedges data. The 

pressure drag coefficient for a negative inter-stage or boat tail can be estimated using: 
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where:   - length to height ratio for the negative transition (
aftfore dd

length

−
= ); 

aftbdC
,

 - 

equivalent base drag coefficient for the aft part of the transition. 

The length to height ratio of 1 corresponds to a 27° reduction angle and the height to 

length ratio of 3 corresponds to a 9° reduction angle for the negative transition. If negative 

transitions are to be used in the small launcher architecture it is thus desired that they have a 

very small reduction angle. 

The base drag occurs when a low pressure area is created at the end/base of the launcher 

or in any place where the body diminishes rapidly. It is the most difficult drag contribution to 

quantify because it is highly dependent on the flow separation point. Also it is directly 

influenced by the exhaust gases.  

Paper [11] suggests using a single relation based on tactical missiles for the base drag 

coefficient estimation, but the accuracy of the results provided is low. In [9], the author 

presents a theoretical distribution of the base drag coefficient for a three dimensional body of 
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revolution for a specific Mach number interval. In [12] experimental results of interest can 

be gathered, for supersonic flow conditions. In this paper a hybrid model based on the results 

from [9] and [12] is chosen. The data used are from different Mach intervals. Between the 

two sets of data, a matching curve model is proposed for 0.8 < M < 1.5, being similar to the 

theoretical distribution, only adjusted with a correction factor of 1.2. The proposed model 

base drag distribution is presented in Figure 7, together with the data from [9] and [12] . For 

Mach numbers greater than 10, the data from [12] have been extrapolated and a simplified 

equation is provided in (22). 

 
Figure 7 – Base drag coefficient model 

Summarising, the following data are used for the base drag coefficient computation: 
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The local reference area for the base drag computation is that of the aft end, which is in 

many cases, also the global reference area. The exceptions are that of launchers with a wider 

fairing than the base, used to encapsulate voluminous payloads. 

The influences of the exhaust gases are very difficult to quantify by means of analytical 

or semi-empirical formulations. As stated in [6], in a simplified model it can be considered 

that the reference area for the base drag is reduced by the exhaust exit area when the rocket 

motor is in operation. For a detailed analysis, CFD investigations are required, but they are 

not needed in the preliminary design of the launch vehicle. In this paper, the influence of the 

exhaust jet will not be considered, thus the studied configuration is the one that appears in 

the coasting phase of the trajectory (also known as the power-off configuration). 
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Another important aspect of the launcher geometry is whether the launcher nozzles are 

in a streamlined enclosure, such as an engine/nozzle skirt or not. If the nozzles are exposed 

then in that region recirculation pockets can occur, especially at low speeds, which are very 

hard to predict and to quantify in a drag coefficient. 

It is preferred to have this in mind when using the MDO approach and if the nozzles are 

not enclosed by a skirt then a simplification of geometry is needed so that the mathematical 

model presented can be applied.  

For a fast, first approximation of the drag coefficient the models presented in this paper 

offer good results and have the advantage of being robust enough so the majority of small 

launcher geometries can be calculated. 

4. RESULTS 

Based on the mathematical model earlier presented, a Matlab tool has been developed. The 

average run time for a 3-stage small launcher is around 0.02sec. 

This small computational time is desired because when implemented in a full loop MDO 

tool, for the optimal solution to reach convergence it can take up to several hundred thousand 

iterations [2]. 

For this paper, sea level conditions have been used, for both the Matlab tool and the 

CFD investigations. 

To validate the results provided with the mathematical model proposed in this paper, a 

comparison with CFD results, obtained with the aid of Ansys Fluent, version 18 is used. The 

microlauncher test geometry proposed can be observed in Figure 8, while details about its 

dimensions are presented in Table 1. 

The microlauncher geometry is a complex one, having in its architecture both positive 

and negative transitions. 

Table 1 – Test configuration dimensions 

Test configuration 

Component Dimensions 

Fairing 

Length: 2.4m/1.65m/0.9m 

Diameter : 1.6m/1.15m 

LD Haack nose cone 

Third stage 
Length : 2.6m 

Diameter: 1.15m 

Second stage 
Length : 2.4m 

Diameter: 1.15m 

Interstage 1-2 

Length : 0.8m 

Fore diameter: 1.15m 

Aft diameter: 1.55m 

First stage 
Length : 5.5m 

Diameter: 1.55m 
 

 
Figure 8 – Test configuration 
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The results obtained with the aid of the model proposed in this paper are shown in 

Figure 9 and Figure 10.  

 
Figure 9 – Drag coefficient contributions 

 
Figure 10 – Individual components drag 

In Figure 9 the launcher drag coefficient variation with Mach number can be observed 

for all of its contributions, up to Mach 10. 

In the subsonic region, the most important drag contribution is that of the base drag, but 

after passing the Mach 1 mark, the dominant contribution is that of the body pressure drag. A 

steady decrease in friction drag can also be observed as the Mach number increases, being 

almost one order of magnitude lower than the pressure drag at very high speeds. 

Figure 10 depicts the contribution of all of the 7 individual components composing the 

launcher complex geometry. 

Only 4 of these 7 components generate significant drag: the launcher nose cone, the two 

transitions and the first stage. 
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Again, it can be seen that in the high supersonic flow regime, the dominant drag 

contribution is given by the fairing nose cone which is responsible for the apparition of body 

pressure drag. 

 
Figure 11 – Comparison with CFD 

Figure 11 shows the results provided by the proposed model and the ones obtained with 

the aid of CFD techniques. A high order of accuracy has been obtained, the computational 

time needed for the tool developed being only a very small fraction of the one needed for the 

CFD computations. 

5. CONCLUSIONS 

The paper presents a mathematical model based on analytical and semi-empirical 

aerodynamic assessment methods. The proposed model can be used to quickly assess the 

drag coefficient for most small launcher configurations. 

In the preliminary phases of a launcher design, when a high number of configurations 

must be quickly aerodynamically assessed, the models providing fast approximations are 

preferred. In this paper, the launcher is divided into individual simple geometric components 

which are then aerodynamically assessed via drag coefficient estimation. To compute the 

launcher total drag coefficient the individual contributions are scaled to the reference area 

and then summed up.  

The results provide a very good first approximation, as can be seen from the comparison 

with the CFD results. The tool developed based on this mathematical model can be used 

separately or it can be integrated in a more complex, multidisciplinary optimisation tool. 

Because of the low computational time, the proposed mathematical model is suitable to be 

used in a full loop MDO algorithm. 
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