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Abstract: This paper presents the development, results and conclusions obtained with a solid topology 

optimization code, using truss lattices as an alternative to continuum elements. Truss elements are 

used for the simplicity of the implementation in a new code, in all aspects: boundary conditions, 

loadings, elemental stiffness matrix. Blocked structures, well posed mechanical equilibrium problems 

are assured by a proper truss arrangement, lattice driven, similar to structured or unstructured 

meshing.  
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1. SOLID ISOTROPIC MATERIAL WITH PENALIZATION

SIMP is the method adopted in this paper. The design space consists in the material 

properties in the mesh. Each element has a set of material properties, Poisson ratio, Young 

modulus as in linear elasticity. 

The method considers a fictive material density, constant over each element, which is 

used to properly adapt the relevant stiffness variable, which is Young modulus. A power law 

is adopted, 0ExE p
e , where 0E  is the nominal value, E  the effective value, ex is the 

design variable (fictive density), p is the power, chosen constant, and physical density is 

0 ex . 

Power law for continuum has to be smaller than 3, for a Poisson ratio smaller than 1/3, 

as in [1]. Solution uniqueness has to be accompanied by a numerical filtering technique, as 

presented in [2]. 

The design problem is formulated as an optimization problem, where structure’s 

compliance is to be minimized. 

A volume constrained is imposed, followed by lower and upper bounds to ensure 

physical values for density. 
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U  and F are the global displacement and force vectors, K  is the global stiffness matrix, eu  

and ek  are elemental displacement and stiffness matrix.  
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2. OPTIMALITY CRITERIA

Optimality criteria is the adopted method to solve the problem, as in [1] and [3]. The 

Lagrange function is built, where 0  and 1 are scalar and respectively vector multipliers, 

e2  and e3 are lower and upper bound multipliers, removed from the formulation (set to 

zero) and replaced by an ad-hoc fix in the code. 
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Minimization condition 
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An arbitrary value could be set to T
1 , so choosing TU2 the derivative 

ex

U




 is eliminated 

and a simple optimality condition is obtained: 
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Noting e
T
ec ukuq 0 , basically the deformation potential energy of an element with 1ex , a 

new formulation appears: 1
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the limit of an iterative process, like 
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The power 


1  in equation (6) has the property to accelerate the convergence of this 

fixed point like iteration. The volume constraint multiplier 0  must satisfy equation (7), 

which in our code is solved with the secant method, where f is the volume fraction. 

  0)()( 000  fVxVg   (7) 
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3. IMPLEMENTATION 

Truss lattice modeling of a solid media has been inspired by [4] and [5]. The mechanical 

energy equivalence is used in some civil engineering design codes, in order to provide quick 

results, with basic input. What appeared to be promising is the flexibility expected in optimal 

shaping of a structural member, using a simple, fast finite element modeling. Smaller details 

were supposed to result from the optimization, in comparison with a hexahedral mesh. 

Shell/plate elements may be later identified from the optimized lattices, via elemental energy 

equivalence. 

The code is written in FORTRAN 95, and is structured as a typical FEM code. The well 

known truss stiffness matrix, as in [10] is adopted. A graph oriented data structure – 

Compressed Row Storage is introduced for all the data: topology graph, stiffness matrix. The 

first developed linear solver is SOR. It always converges, with a very poor rate. Its 

replacement with the conjugated gradient method as in [11], dramatically improved 

convergence and running time. 

Secant method is used to compute the volume constraint multiplier. For all considered 

cases, the effort to solve this algebraic equation is higher than the linear solver itself, due to 

computation of the density and effective volume. 

OpenMP parallelization is implemented for the conjugate gradient method and other 

routines, but its efficiency has not been proved. Output in vtk format, readable by Paraview 

is the proven method to represent truss/beam elements with assigned field values. 

Validation of the FEM solver has been done against a commercial code, by direct 

generation of the input code in 2 and 3D cases, with very good results. 

Altough SIMP/OC is the driver in our code, the process could be seen as size 

optimization, specific to truss/beam problems. 

A fully unstructured, tetrahedral/triangular approach is fully supported by the code. In 

this respect, a tetrahedral/triangle is just another blocked, valid lattice. 

4. RESULTS AND CONCLUSIONS 

Bi-dimensional cantilever beams have been considered. The 2D functionality is provided, by 

modifying the stiffness matrix and right hand side, to enable a zero value for the out of plane 

DOF. Filtering has been applied with various radii. 

A number of key issues have been identified: 

- power law has to be 0.5, which is radically different than in SIMP, where is around 3; 

however, solution depends on the value; 

-  from eq. (6) could be 1, instead of 0.5 as in SIMP; 

- without filtration (radius smaller then minimum truss element), results are clearly mesh 

dependent, as in Fig. 1 and Error! Reference source not found., where the same 

problem is solved; lattice shape/diagonal orientations provides global topology as by 

the load transmitting mechanism; 

- filtration eliminates small structures; 

- anisotropic unstructured mesh offers the greatest mesh insensitivity, but also has an 

inherent filtration capability Fig. 4; 

Further work will be dedicated to investigation of a proper filtration and to replace truss 

with beam elements (with or without twisting), which may have a significant effect in the 

diffusivity. 
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Fig. 1 Solutions for 40 x 20 and 40 x 40 lattices 

  

Fig. 2 Solutions for 60 x 30 and 60 x 60, square lattice with diagonals 

  

Fig. 3 Left: no filtration (null radius), right: filtration (radius = 2 x truss edge) 

  

Fig. 4 unstructured mesh lattices, 60 x 30 nodes on the boundary 
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