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Section 2 – Flight dynamics simulation 

Abstract: Strain gage balances provide the most important output of the supersonic wind tunnels. 

Typically, the time histories of the six forces/moments components must be filtered out, to provide useful 

results for performance assessment of the models. Various filtering models do exist, from basic 

regressions, to frequency domain and combinations of piecewise fit polynomials. Results with decoupled 

piecewise linear fit (moving window) showed the need of more suitable methods, namely piecewise, that 

must properly connect the neighboring fit curves, to provide continuity up to the first derivative. A 

polygonal line fit is derived and modified for increased smoothness. A third order cubic spline is 

derived, offering connectivity up to the first derivative. A fifth order spline is derived with continuity up 

to the second order derivative. Filtering results are shown for real and synthetic sets of data with 

conclusions. 
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1. INTRODUCTION 

Strain gauge balances for wind tunnels in quasi-static conditions require dedicated signal 

acquisition and processing. The first stage considers setting the optimal intrinsic filtering and 

sampling rate according to the physics. Another step is numerical filtering and data reduction, 

according to the aerodynamics practice and this constitutes the topic of the current work. 

Single or standard function polynomial regression is of limited use because data may be 

sometimes too complex. The simple connection of more polynomials, under various classes 

of continuity is a very strong instrument, enabling the reconstruction of virtually all types of 

data in experimental physics. 

There is a long standing tradition in scientific data interpolation in the form of smooth 

curves, if only to present a general visual representation of experimental data in a more natural 

format whenever only discrete data points are available, and perhaps the most used method is 

the least squares fit using curves chosen so that they are somehow conform to local data trends 
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[1]. Complementary data smoothing methods include Fourier transformations, polynomial 

fitting and carious convolution operations that have been found to ease data fitting using 

splines by reducing data noise [2]. A special consideration is given to the avoidance of data 

fitting to noise not to actual data trend whenever very noisy signals appear [1]. The data points 

used as well as the first and second derivatives of the approximation function are optimizable 

parameters. The fitness of the approximation can be probed in a number of ways, for example 

evaluating the weighted mean-square residual error of the spline approximation, treated as an 

objective function to be minimized. There is a method of constraining this optimization 

problem, using various criteria such as having a term proportional to the mean of the curvature 

of the spline in the objective function [1], and various methods to shape the spline using control 

points in a robust and not overly resource consuming way for large data sets using a 

progressive and iterative approximation method for the least squares fit (LSPIA) [3]. There 

are other methods for spline fitting, using for example the relatively recent and innovative 

firefly algorithm to trace an optimum B-spline at minimum square distance from existing data 

points [4]. However, none of these works used a direct computational approach in the sense of 

explicitly solving an equation system to join the existing data segments with functions that are 

continuous and derivable (at least once, for third order approximation and at least twice for the 

fifth order splines). This is the approach used in this work, and for simplicity and briefness we 

will initially assume the knots (control points for the spline) to be uniformly distributed. 

Optimizing the knots distribution is a complex problem in itself, that can be tackled in various 

ways, from observing data trends and gradients to the more exotic ones as the iterative 

evolution of the several fitness functions used in the firefly algorithm [4]. 

 The third order spline fit methods are well reviewed in [5] where the 3rd order spline fit 

method is commended for obtaining first and second order continuous derivatives, an 

important aspect since many parameters evaluated in experimental aerodynamics are 

themselves or use these derivatives. The smoothness of the resulted curves is therefore of 

prime importance to the evaluation of performance of the tested objects on the entire 

operational envelope. The algorithms discussed are also flexible by using parametric 

placement of knots for the spline fit, allowing for local optimization. 

 Other fitting strategies such as the Zernicke method were investigated and found inferior 

to B-splines for complex wave fronts [6] such as is the usual case in experimental 

aerodynamics, observed from datasets collected during the years of operations at the Trisonic 

Wind Tunnel. 

 For the strategies using Bspline fit, the problem of choosing the number and location of 

knots is of utmost importance, as the number and position of the knots greatly influence the fit 

quality for the B-spline approximators. However, an arbitrarily large number of knots 

complicates computation and consumes resources unnecesarily without any improvement of 

the fit. Therefore adaptive methods appeared [7] to help with automatic knot selection, [8] 

resulting in a sparse spline regression with a reduced number of points but keeping a good fit, 

comparable to penalized spline regression results. 

2. CONTINUOUS PIECEWISE LINEAR FIT – POLYGONAL FIT 

The classical moving window method based on regression lines has as greatest limitation the 

lack of continuity, generating artificial noise. The idea of trying to connect the piecewise 

elements is straightforward, although at the expense of solving a linear system. Given the high 

price of the data obtained in an industrial supersonic wind tunnel facility, it makes sense to use 

relatively complex methods for the upper level of data filtering. The derivation of the 
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polygonal line reconstruction is straight, using the standard least squares procedure. The 

resulted linear system can adequately be solved with the method of Thomas. 

The signal is constituted by (𝑥𝑘 , 𝑦𝑘), 𝑘 = 1, 𝑛. The purpose is to produce nf filtered values 

yk in the knots xk provided by the user, but typically equally distributed. Sums in equations 

(2) - (4) are applied for k index, upon each filtering subinterval [𝑥𝑖−1, 𝑥𝑖]. Equation (2) 

corresponds to the left knot, equation (3) is for the inner knots and equation (4) is for the right 

knot. 

𝑠𝑘 =
𝑥𝑘 − 𝑥𝑖

𝑥𝑖+1 − 𝑥𝑖
 (1) 

𝑦1 ∑ (1 − 𝑠𝑘)2

1
+ 𝑦2 ∑ (1 − 𝑠𝑘)𝑠𝑘

1
= ∑ (1 − 𝑠𝑘)𝑦𝑘

1
 (2) 

𝑦𝑖−1 ∑ (1 − 𝑠𝑘)𝑠𝑘
𝑖−1

+ 𝑦𝑖 (∑ 𝑠𝑘
2

𝑖−1
+ ∑ (1 − 𝑠𝑘)

2

𝑖
) + 𝑦𝑖+1 ∑ (1 − 𝑠𝑘)𝑠𝑘

𝑖

= ∑ 𝑠𝑘𝑦𝑘
𝑖−1

+ ∑ (1 − 𝑠𝑘)𝑦𝑘
𝑖

 
(3) 

𝑦𝑛𝑓−1 ∑ (1 − 𝑠𝑘)𝑠𝑘 +
𝑛𝑓−1

𝑦𝑛𝑓 ∑ 𝑠𝑘
2

𝑛𝑓−1
= ∑ 𝑠𝑘𝑦𝑘

𝑛𝑓−1
 (4) 

  

a) b) 

  

c) d) 

Fig. 1 Moving window regression lines with 100 knots a) & b), polygonal fit with 30 knots c) & d) for identical 

datasets 

A comparison between moving window regression lines and polygonal fit is in Fig. 1. A 

typical requirement is to extract about 100 filtered values from a time series, while decades 
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ago, 20-25 values were considered satisfactorily. We may conclude that the polygonal fit 

requires less knots for better results and slope discontinuities are handled well. Convergence 

with respect to the signal size (from 5000 to 5 million data points) is shown in Fig. 2. This 

artificial signal is generated by perturbing sine function with random numbers. It is obvious 

that the noise related to the peaks is reducing when increasing the size of the signal. The 

procedure was tested for up to 50 million signal points, requiring a couple of seconds to run. 

  
a) b) 

  
c) d) 

Fig. 2 Polygonal line filtering with 100 points for perturbed sinus function, signal size 5000 a), 50000 b), 500000 

c), 5000000 d) 

Smoother polygonal lines may be built by modifying the least square formulation in such 

a way that the sum of squared lengths of the line segments is added to the objective function. 

When multiplying the total length with the weight 𝑤, the tridiagonal system takes the new 

form as in equations (5), (6) and (7). 

𝑦1 (𝑤 + ∑ (1 − 𝑠𝑘)
2

1
) + 𝑦2 (𝑤 + ∑ (1 − 𝑠𝑘)𝑠𝑘

1
) = ∑ (1 − 𝑠𝑘)𝑦𝑘

1
 (5) 

𝑦𝑖−1 (∑ ((1 − 𝑠𝑘)𝑠𝑘)
𝑖−1

− 𝑤) + 𝑦𝑖 (2𝑤 + ∑ 𝑠𝑘
2

𝑖−1
+ ∑ (1 − 𝑠𝑘)2

𝑖
)

+ 𝑦𝑖+1 (∑ (1 − 𝑠𝑘)𝑠𝑘
𝑖

− 𝑤) = ∑ 𝑠𝑘𝑦𝑘
𝑖−1

+ ∑ (1 − 𝑠𝑘)𝑦𝑘
𝑖

 
(6) 

𝑦𝑛𝑓−1 (∑ ((1 − 𝑠𝑘)𝑠𝑘) − 𝑤
𝑛𝑓−1

) + 𝑦𝑛𝑓 (𝑤 + ∑ 𝑠𝑘
2

𝑛𝑓−1
) = ∑ 𝑠𝑘𝑦𝑘

𝑛𝑓−1
 (7) 

In the modified polyline fit formulation, the inner points equations contain an additional 

left-hand side term suggesting numerical diffusion: −𝑤(𝑦𝑖+1 − 2𝑦𝑖 + 𝑦𝑖−1). When applying 

the method to cvasiperiodical signals with multiple time averged peaks, the filtered values are 

dampen out proportional with the value of the weight 𝑤, see Fig. 3. 
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a) n=5000, nf=200, w=0 b) n=50000, nf=200, w=0 

  
c) n=5000, nf=200, w=10 d) n=50000, nf=200, w=10 

  
e) n=5000, nf=200, w=100 f) n=50000, nf=200, w=100 

Fig. 3 Effect of smoothing weigh and signal size upon the polygonal line 

3. THIRD ORDER SPLINE FIT 

The foundation of these spline approximation methods is placed by Carl de Boor and John R. 

Rice in their seminal paper [9], dealing with a fixed knots variant of the least squares cubic 

spline approximation method. Here the accent is placed on driving a best-fit spline with a prior 

fixed number of knots through a data point scatter using the least squares metric optimization. 

This simple algorithm does not impose the number or placement of knots but lets the user find 

the appropriate values to these parameters, but the work clearly states the crucial importance 
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of these two parameters on approximation fit quality and computational ease. Historically the 

first attempts to standardize the procedure of knot finding and control by a computational 

method are described in [10] where simultaneous approximation of points and normal vectors 

associated to them followed by successive iterations adjusting the field of normal vectors leads 

to a simple and computationally efficient method for planar curve reconstruction from noisy 

data represented by a scattered cloud of data points. The method is generalized for 3D space 

use, but a trivial 2D method is derived and exemplified. Both the parametric and the implicit 

(algebraic) curve fitting problems can be thus reduced to solving sequences of systems of 

linear equations. 

The current version of cubic splines considers the knot values and slopes as optimization 

variables. From the standard least squares formulation, we provide the resulting linear system 

of equations. Thus, equation (8) shows the relation between the polynomial coefficients and 

the knot filtered 𝑚1, 𝑚3 and slopes 𝑚3, 𝑚4, that all have to be optimized. Polynomials 𝛼, 𝛽, 

𝛾 and 𝛿 are introduced in equation (9). They are used to compute the components of vector 𝑓, 

introduced in equations (10) and (11), that are combined to become elements of linear system’ 

matrix. First index of 𝑓 refers to the subinterval upon that all sums are computed. 

[
 
 
 
 
1 𝑥𝑖 𝑥𝑖

2 𝑥𝑖
3

0 1 2𝑥𝑖+1 3𝑥𝑖
2

1 𝑥𝑖+1 𝑥𝑖+1
2 𝑥𝑖+1

3

0 1 2𝑥𝑖+1 3𝑥𝑖+1
2 ]

 
 
 
 

[

𝑐1

𝑐2

𝑐3

𝑐4

] = 𝑀𝑐 = [

𝑚1

𝑚2

𝑚3

𝑚4

] (8) 

[

𝛼
𝛽
𝛾

𝛿

] = 𝑀−1𝑇
[

1
𝑥
𝑥2

𝑥3

] (9) 

∑ 𝛼𝑘
2

𝑗
 ∑ 𝛼𝑘𝛽𝑘

𝑗
 ∑ 𝛼𝑘𝛾𝑘

𝑗
 ∑ 𝛼𝑘𝛿𝑘

𝑗
 ∑ 𝛽𝑘

2

𝑗
 ∑ 𝛽𝑘𝛾𝑘

𝑗
 ∑ 𝛽𝑘𝛿𝑘

𝑗
  

(10) 

𝑓𝑗,1 𝑓𝑗,2 𝑓𝑗,3 𝑓𝑗,4 𝑓𝑗,5 𝑓𝑗,6 𝑓𝑗,7 
 

∑ 𝛾𝑘
2

𝑗
 ∑ 𝛾𝑘𝛿𝑘

𝑗
 ∑ 𝛿𝑘

2

𝑗
 ∑ 𝛼𝑘𝑦𝑘

𝑗
 ∑ 𝛽𝑘𝑦𝑘

𝑗
 ∑ 𝛾𝑘𝑦𝑘

𝑗
 ∑ 𝛿𝑘𝑦𝑘

𝑗
 

 

(11) 

𝑓𝑗,8 𝑓𝑗,9 𝑓𝑗,10 𝑓𝑗,11 𝑓𝑗,12 𝑓𝑗,13 𝑓𝑗,14 

First knot equations (12) are particular, as well as for the last knot (15), that closes the linear 

system. Inner knots equations stand for 𝑖 = 3: 2𝑛𝑓 − 2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  as in equations (13) and (14). From the 

implementation point of view, the matrix is stored in a sparse format with bandwith equal to 

six and the solver is chosen accordingly. The unknown vector is stored in the order: filtered 

value, slope value, for all knots and therefore equation (8) is used to compute the local 

polynomial coefficients, using the stored inverted matrices. 

𝑚1𝑓1,1 + 𝑚2𝑓1,2 + 𝑚3𝑓1,3 + 𝑚4𝑓1,4 = 𝑓1,11 
(12) 

𝑚1𝑓1,2 + 𝑚2𝑓1,5 + 𝑚3𝑓1,6 + 𝑚4𝑓1,7 = 𝑓1,12 

 

𝑗 = (𝑖 − 1) 2⁄ , 𝑖 𝑜𝑑𝑑 

(13) 𝑚𝑖−2𝑓𝑗,3 + 𝑚𝑖−1𝑓𝑗,6 + 𝑚𝑖(𝑓𝑗,8 + 𝑓𝑗+1,1) + 𝑚𝑖+1(𝑓𝑗,9 + 𝑓𝑗+1,2) + 𝑚𝑖+2𝑓𝑗+1,3

+ 𝑚𝑖+3𝑓𝑗+1,4 = 𝑓𝑗+1,3 + 𝑓𝑗+1,11 
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𝑗 = (𝑖 − 1) 2⁄ , 𝑖 𝑒𝑣𝑒𝑛 

(14) 𝑚𝑖−3𝑓𝑗,4 + 𝑚𝑖−2𝑓𝑗,7 + 𝑚𝑖−1(𝑓𝑗,9 + 𝑓𝑗+1,2) + 𝑚𝑖(𝑓𝑗,10 + 𝑓𝑗+1,5) + 𝑚𝑖+1𝑓𝑗+1,6

+ 𝑚𝑖+2𝑓𝑗+1,7 = 𝑓𝑗+1,4 + 𝑓𝑗+1,12 
 

𝑚2𝑛𝑓−3,𝑓𝑛𝑓−1,3 + 𝑚2𝑛𝑓−2𝑓𝑛𝑓−1,6 + 𝑚2𝑛𝑓−1𝑓𝑛𝑓−1,8 + 𝑚2𝑛𝑓𝑓𝑛𝑓−1,9 = 𝑓𝑛𝑓−1,13 
(15) 

𝑚2𝑛𝑓−3𝑓𝑛𝑓−1,4 + 𝑚2𝑛𝑓−2𝑓𝑛𝑓−1,7 + 𝑚2𝑛𝑓−1𝑓𝑛𝑓−1,9 + 𝑚2𝑛𝑓𝑓𝑛𝑓−1,10 = 𝑓𝑛𝑓−1,14 

4. FIFTH ORDER SPLINE FIT 

This method comes as an attempt to increase the accuracy of the third order, after  

implementing it with a reasonable effort. The same formalism as in the previous case stands, 

this time adding the second order knot derivatives as optimization variables: 𝑚3 and 𝑚6 for 

each subinterval, equation (16). The number of subinterval polynomials goes from 5 to 7, as 

in equation (17). Also the number of polynomial combination sums 𝑓 is growing from 14 to 

27 for each subinterval, equations (18) - (21). The effort to derive the linear system plus the 

implementation was reasonable, given the experience gathered with the third order spline. 

[
 
 
 
 
 
 
 
1 𝑥𝑖 𝑥𝑖

2 𝑥𝑖
3 𝑥𝑖

4 𝑥𝑖
5

0 1 2𝑥𝑖 3𝑥𝑖
2 4𝑥𝑖

3 5𝑥𝑖
4

0 0 2 6𝑥𝑖 12𝑥𝑖
2 20𝑥𝑖

3

1 𝑥𝑖+1 𝑥𝑖+1
2 𝑥𝑖+1

3 𝑥𝑖+1
4 𝑥𝑖+1

5

0 1 2𝑥𝑖+1 3𝑥𝑖+1
2 4𝑥𝑖+1

3 5𝑥𝑖+1
4

0 0 2 6𝑥𝑖+1 12𝑥𝑖+1
2 20𝑥𝑖+1

3 ]
 
 
 
 
 
 
 

[
 
 
 
 
 
𝑐1

𝑐2

𝑐3

𝑐4

𝑐5

𝑐6]
 
 
 
 
 

= 𝑀𝑐 =

[
 
 
 
 
 
𝑚1

𝑚2

𝑚3

𝑚4

𝑚5

𝑚6]
 
 
 
 
 

 (16) 

[
 
 
 
 
 
𝛼
𝛽
𝛾
𝛿
𝜖
𝜁]
 
 
 
 
 

= 𝑀−1𝑇

[
 
 
 
 
 
1
𝑥
𝑥2

𝑥3

𝑥4

𝑥5]
 
 
 
 
 

 (17) 

 

∑ 𝛼𝑘
2

𝑗
 ∑ 𝛼𝑘𝛽𝑘

𝑗
 ∑ 𝛼𝑘𝛾𝑘

𝑗
 ∑ 𝛼𝑘𝛿𝑘

𝑗
 ∑ 𝛼𝑘𝜖𝑘

𝑗
 ∑ 𝛼𝑘𝜁𝑘

𝑗
 ∑ 𝛽𝑘

2

𝑗
 

 

(18) 

𝑓𝑗,1 𝑓𝑗,2 𝑓𝑗,3 𝑓𝑗,4 𝑓𝑗,5 𝑓𝑗,6 𝑓𝑗,7 
 

∑ 𝛽𝑘𝛾𝑘
𝑗

 ∑ 𝛽𝑘𝛿𝑘
𝑗

 ∑ 𝛽𝑘𝜖𝑘
𝑗

 ∑ 𝛽𝑘𝜁𝑘
𝑗

 ∑ 𝛾𝑘
2

𝑗
 ∑ 𝛾𝑘𝛿𝑘

𝑗
 ∑ 𝛿𝑘𝜖𝑘

𝑗
 

 

(19) 

𝑓𝑗,8 𝑓𝑗,9 𝑓𝑗,10 𝑓𝑗,11 𝑓𝑗,12 𝑓𝑗,13 𝑓𝑗,14  
 

∑ 𝛾𝑘𝜁𝑘
𝑗

 ∑ 𝛿𝑘
2

𝑗
 ∑ 𝛿𝑘𝜖𝑘

𝑗
 ∑ 𝛿𝑘𝜁𝑘

𝑗
 ∑ 𝜖𝑘

2

𝑗
 ∑ 𝜖𝑘𝜁𝑘

𝑗
 ∑ 𝜁𝑘

2

𝑗
 

 

(20) 

𝑓𝑗,15 𝑓𝑗,16 𝑓𝑗,17 𝑓𝑗,18 𝑓𝑗,19 𝑓𝑗,20 𝑓𝑗,21 
 

∑ 𝛼𝑘𝑦𝑘
𝑗

 ∑ 𝛽𝑘𝑦𝑘
𝑗

 ∑ 𝛾𝑘𝑦𝑘
𝑗

 ∑ 𝛿𝑘𝑦𝑘
𝑗

 ∑ 𝜖𝑘𝑦𝑘
𝑗

 ∑ 𝜁𝑘𝑦𝑘
𝑗

 
 

(21) 

𝑓𝑗,22 𝑓𝑗,23 𝑓𝑗,24 𝑓𝑗,25 𝑓𝑗,26 𝑓𝑗,27  



Mihai Victor PRICOP, Sarif OMAR, Ionut BUNESCU, Alexandru Marius PANAIT 132 
 

INCAS BULLETIN, Volume 11, Issue 2/ 2019 

First knot equations (22) are particular, as well as for the last knot (26), that closes the 

linear system. Inner knots equations stand for 𝑖 = 4: 2𝑛𝑓 − 3̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  as in equations (23), (24) and 

(25). The unknown vector is stored in the order: filtered value, slope value, second derivative, 

for all knots and therefore equation (16) is used to compute the local polynomial coefficients, 

using the stored inverted matrices. Bandwith is increased from 6 in the case of cubic spline, to 

9 in the case of fith order spline. 

𝑚1𝑓1,1 + 𝑚2𝑓1,2 + 𝑚3𝑓1,3 + 𝑚4𝑓1,4 + 𝑚5𝑓1,5 + 𝑚6𝑓1,6 = 𝑓1,22 

𝑚1𝑓1,2 + 𝑚2𝑓1,7 + 𝑚3𝑓1,8 + 𝑚4𝑓1,9 + 𝑚5𝑓1,10 + 𝑚6𝑓1,11 = 𝑓1,23 

𝑚1𝑓1,3 + 𝑚2𝑓1,8 + 𝑚3𝑓1,12 + 𝑚4𝑓1,13 + 𝑚5𝑓1,14 + 𝑚6𝑓1,15 = 𝑓1,24 

(22) 

Inner subinterval equations stand for 𝑗 = 2: 𝑛𝑓 − 1. 

𝑖 = 3(𝑗 − 1) + 1 

𝑚𝑖−3𝑓𝑗−1,4 + 𝑚𝑖−2𝑓𝑗−1,9 + 𝑚𝑖−1𝑓𝑗−1,13 + 𝑚𝑖(𝑓𝑗−1,16 + 𝑓𝑗,1)

+ 𝑚𝑖+1(𝑓𝑗−1,17 + 𝑓𝑗,2) + 𝑚𝑖+2(𝑓𝑗−1,18 + 𝑓𝑗,3) + 𝑚𝑖+3𝑓𝑗,4
+ 𝑚𝑖+4𝑓𝑗,5 + 𝑚𝑖+5𝑓𝑗,6 = 𝑓𝑗−1,25 + 𝑓𝑗,22 

(23) 

𝑖 = 3(𝑗 − 1) + 2 

𝑚𝑖−4𝑓𝑗−1,5 + 𝑚𝑖−3𝑓𝑗−1,10 + 𝑚𝑖−2𝑓𝑗−1,14 + 𝑚𝑖−1(𝑓𝑗−1,17 + 𝑓𝑗,2)

+ 𝑚𝑖(𝑓𝑗−1,19 + 𝑓𝑗,7) + 𝑚𝑖+1(𝑓𝑗−1,20 + 𝑓𝑗,8) + 𝑚𝑖+2𝑓𝑗,9
+ 𝑚𝑖+3𝑓𝑗,10 + 𝑚𝑖+4𝑓𝑗,11 = 𝑓𝑗−1,26 + 𝑓𝑗,23 

(24) 

𝑖 = 3(𝑗 − 1) + 3 

𝑚𝑖−5𝑓𝑗−1,6 + 𝑚𝑖−4𝑓𝑗−1,11 + 𝑚𝑖−3𝑓𝑗−1,15 + 𝑚𝑖−2(𝑓𝑗−1,18 + 𝑓𝑗,3)

+ 𝑚𝑖−1(𝑓𝑗−1,20 + 𝑓𝑗,8) + 𝑚𝑖(𝑓𝑗−1,21 + 𝑓𝑗,12) + 𝑚𝑖+1𝑓𝑗,13

+ 𝑚𝑖+2𝑓𝑗,14 + 𝑚𝑖+3𝑓𝑗,15 = 𝑓𝑗−1,27 + 𝑓𝑗,24 

(25) 

𝑗 = 𝑛𝑓 − 1; 𝑖 = 3𝑛𝑓 − 2 

𝑚𝑖−3𝑓𝑗,4 + 𝑚𝑖−2𝑓𝑗,9 + 𝑚𝑖−1𝑓𝑗,13 + 𝑚𝑖𝑓𝑗,16 + 𝑚𝑖+1𝑓1,17 + 𝑚𝑖+2𝑓1,18 = 𝑓1,25 

𝑖 = 3𝑛𝑓 − 1 

𝑚𝑖−4𝑓𝑗,5 + 𝑚𝑖−3𝑓𝑗,10 + 𝑚𝑖−2𝑓𝑗,14 + 𝑚𝑖−1𝑓𝑗,17 + 𝑚𝑖𝑓1,19 + 𝑚𝑖+1𝑓1,20 = 𝑓1,26 

𝑖 = 3𝑛𝑓 

𝑚𝑖−5𝑓𝑗,6 + 𝑚𝑖−4𝑓𝑗,11 + 𝑚𝑖−3𝑓𝑗,15 + 𝑚𝑖−2𝑓𝑗,18 + 𝑚𝑖−1𝑓1,20 + 𝑚𝑖𝑓1,21 = 𝑓1,27 

(26) 

5. CONCLUSIONS 

The polyline fit in its modified form is probably the most effective method and the number of 

knots and weight 𝑤 are easiest to set. Convergence with signal size is the fastest. Third order 

spline is more complex in picking up the number of knots, althouth it is the only parameter to 

set up. Oscilations may occur if number of knots is either too large or too small. Fith order 

spline is the most sensitive of all methods. Splines require one order of magnitude less knots 

than the polygonal fit Fig. 4. Convergence of data reconstructions with splines shows slower 

rate. The absolute accuracy level of splines can reach superior levels in comparison with the 

polygonal fit, but some efort is required to properly set the number of knots. 

Given the fact that the typical signals aquired with the strain gauge balances in high speed 

wind tunnels are presenting much simpler shapes Fig. 1 than the benchmarking cases from 
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Fig. 2 - Fig. 3, we consider that the developed tools are more than adequate, in the following 

hierarchy: modified polygonal fit, third order spline fit and fifth order spline fit. Future work 

will focus on optimal knot positioning. 

  
a) b) 

Fig. 4 Third order spline a), Fifth order spline b), 20 knots, 2.5 million signal points 
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