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Abstract: This paper presents new results concerning the physical coexistence of the molecular chaos 

and the continuous determinism in real fluid flows. By using the FLUONS mathematical devices [1], 

the authors investigate the existence of a physical process called MOLECULAR COHERENCE. This 

particular kind of structure equilibrium needs the fulfilment of the conditions required by the 

increasing entropy and the minimum of the kinetical as well as the informational energy. Qualitative 

and quantitative results concerning the fluctuations in real fluid flows support this new point of view 

in Fluid Mechanics. 
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1. INTRODUCTION 

As it was shown in our previous papers [1], [2], the coordinate transformation and the 

FLUON expression reveal interesting aspects of the fluctuations associated to a given mean 

velocity distribution. We continue to exploit the mathematical properties of these FLUONS 

in a much profound sense, namely the coexistence of the physical molecular chaos and the 

determinism of the continuous fluid flows. 

Essentially, let’s consider the  f  normalized distribution ( 10  f , 10  ) as 

an order zero FLUON expression, indicated by the notation    0F . 

For the various order of FLUONS expressions, namely   kF , where Nk ,,2,1,0  , 

we get the algorithm: 
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In the figure 1 (a, b, c) we show some examples of various   0F  discrete and 

continuous distributions leading to about the same   1F ,   2F ,   3F  distributions. 
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This very interesting feature of the expressions  0F ,  1F ,  2F , … concerning the tendency 

towards typical     2~2kF  distribution in spite of the great variety of the continuous 

or discrete  0Ff   distributions needs a complete and correct mathematical treatment. This 

remains, however, beyond the aims of the present paper. 

Physically, the linear combination of the integrals 




0

dfm and of the constants 

 

1

0

dfm  involved in the  kF  distributions leading to about the same distribution 

    01  kk FF  raises a lot of questions. 

Firstly, the very ordered or very disordered macroscopic boundary conditions imposed 

to real flows with undisturbed pressure, temperature, density and viscosity, but with 

eventually various degrees of wall roughness or impurities require the fulfillment of the 

entropy principle (i.e. the Boltzmann law) for a given system. This condition – a given 

system – is very important, because it needs a definite amount of macroscopic energy which 

ensures the normalization of    10  kF  and of 10  . Let’s mention, in this 

respect, the turbulent spot and the biological cell. 

Secondly, the equilibrium structure of this given system requires a permanent 

connection from  0F  towards  1kF  as well as, inversely, from  1kF  towards  0F . In both 

cases the entropy principle is not violated and we can assume that the molecular organization 

is perturbed as structure involving a molecular coherence. 

Thirdly, this molecular coherence needs some energy for the interconnections at the 

microscopic scale. We call this kind of energy information energy and, naturally, this kind of 

energy tends towards a minimum. The paper presents some considerations about   kF  

leading to such minimum. The structure stability around this minimum explains the existence 

of macroscopic fluctuations. We mention also the algorithmic character of the   kF  

succession which facilitates the implementation in some microscopic structures, like in 

biological neuron activity. 

 
 

Figure 1a.    10 FF   transformation for different m  distributions. 
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Figure 1b.      6240 2111 F   Figure 1c. 
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2. THE ANALYSIS OF THE COHERENCE PROCESS 

In the introduction we point out the idea of the existence of a special kind of molecular 

organization at the micro-scale that we’ve called a coherence process. The physical 

motivation lies on the fulfillment of the Gibbs-Boltzmann entropy principle [3][4][5], 

usually conceived as a transition (order towards disorder) in a well-defined space-time 

domain. The classical example presents a usual object destroyed and transformed in a 

disordered mass of its fragments. However, let’s consider a disorder ensemble of such 

objects which can be destroyed to form a macroscopic "ordered" mass of fragments. In order 

to respect the entropy principle, we have to consider this ensemble at a some microscopic 

scale, which really presents a very disordered mass of very small fragments. Therefore, the 

finite space-domain stands for an essential requirement of the entropy principle. In this 

respect, the molecular organization at a some microscopic scale becomes a physical 

condition for the existence of a permanent connection between the molecular chaos and the 

macroscopic deterministic degree of disorder. 

Accordingly, the coordinate transformation and the integro-differential formulation 

(IDF) of the macroscopic conservation law [6][7] play a fundamental role when we analyze 

the fluctuations associated to a macroscopic deterministic distribution. Mathematically, when 

we have a normalized mean distribution  f  ( 10  f , 10  ), we have to associate 

the following expressions:  
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and the finite global quantity: 
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with: 
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1

0

dfQ r
ra  (4) 

for the boundary-layer flow, as well as corresponding expressions CNU , , PIPEU ,  for the 

channel and pipe flows. 

The above expressions are involved in the calculation of the intensity and distribution of 

the fluctuations arising in the mentioned turbulent flows. The FLUON expression:  
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as well as the   kF , is now analyzed in order to explain the coupling between the 

microscopic molecular chaos and the macroscopic fluctuations irregularities (disorder). We 

will examine some macroscopic aspects of the turbulent and transitional flows, pointed out 

in experiments, but without any theoretical explanation. 

First of all, let's examine the chaotic character of the turbulent fluctuations associated to 

a well-established mean velocity profile in boundary-layer, channel and pipe flows. We have 

to observe that the molecular chaos objectively exist, contrary to the so called fluctuations 

which are, more or less, subjectively defined quantities, depending on a lot of microscopic 

and macroscopic (Reynolds number etc.) conditions. The existence of a coherent molecular 

process is related, particularly, to the equilibrium turbulent flow. In this respect, let's 

examine the first order FLUON given as a difference between two FLUON expressions: 

           ffKfFfF ,111  (6) 

where f  is the transferred distribution of f  by means of the integral: 
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For instance, for nf   we get nr

n

rf  1  and 


 nf , where 
nr

n
n




1
, leading 

to: 

      ,,1,, nnKrn  (8) 

where: 
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We can observe that   ,, rn  presents the invariant distribution  1 . 

Now we suppose that the macroscopic fluctuations are related to this . In the figure 2 

we show a possibility to achieve the micro-scale coherence by discrete change of   

belonging always to . It is a kind of coupling between the molecular chaos and the 

macroscopic fluctuations. We can write: 

 kkCk K   11  (10) 

where 




m

e
C

v

LU
KK  (11) 

with eU  a typical macroscopic velocity, L  a typical macroscopic length, mv  the mean 

molecular velocity,   the mean molecular path. 

The chaotic behavior of the k  sequence depends on the conditions 9.3CK , what 

means 9.3
m

e

v

LU
K  or

K

9.3
~Re . However,   ,, nnK  decreases drastically when  nn  

is small or when the FLUON order increases. The discretization of the invariant expression 

 1  depends essentially on the coupling between the very small scale of the difference 

       ,,1,, nnKnn  and the discrete molecular motion ( m , mv ).  

 

Figure 2. The covering of the   ,, nn  difference 
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On the figure 2 we present (at an exaggerated step scale) the covering of   by various 

distances. These distances, limited by the f  and its transform function f  as macroscopic 

boundaries, are finally achieved by the molecular motions. At some microscopic scale, the 

covering of   becomes a discrete motion, realized by bonds from k  to 1k . This coupling 

involves some kinetic energy, naturally supplied by the macroscopic flow characteristics 

(high Reynolds number, perturbations etc.). 

Another kind of discretization lies on the following observation concerning the simple 

numerical expression  kkk K   11 , where 45.3  K , in order to fulfill the 

10   condition. The chaotic character of the sequence ,2,1,0k  can be pointed 

out only as a very small variation of the numerical values of k , what means that a great 

amount of information energy has to be stored in order to see the differences. When we 

restrict the value of k  to the first or second order figures, we get a more regular sequence, 

which shows a fixed periodical variation. The table on the figure 3 stands for an example.  
 

 

 

 

 

  k   

k  1
r

n  2
r

n  9
r

n  
1 0.51 0.51 0.51 

2 0.9 0.97 0.97461 

3 0.3 0.11 0.096507 

4 0.8 0.38 0.340054 

5 0.6 0.91 0.875227 

6 0.9 0.31 0.425898 

7 0.3 0.83 0.953585 

8 0.8 0.55 0.172618 

9 0.6 0.96 0.557001 

10 0.9 0.14 0.962328 

11 0.3 0.46 0.141385 

12 0.8 0.96 0.473442 

13 0.6 0.14 0.972249 

14 0.9 0.46 0.105225 

15 0.3 0.96 0.367195 

16 0.8 0.14 0.906215 

17 0.6 0.46 0.331459 

18 0.9 0.96 0.864216 

19 0.3 0.14 0.457653 

Figure 3. Variation of  kkk K   11 , for 9.0K , 51.01  k  

At the molecular micro-scale the coherence process can be related to the tendency 

towards a periodic variation which needs a smaller quantity of energy by comparison to the 

chaotic variations. However, at the macro-scale level, the fluctuations seem to be chaotic and 

consequently the entropy principle is not violated. 

In the normalized space-time ensemble ( 10  , 10  at ) the general form 

concerning the microscopic-macroscopic coherence process could be: 
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where Nqp ,  and   is given by (6). Previously we examined the most simple case, 

where the operator 1~, 
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that at the microscopic scale the discrete variation of   for a given k  could be assumed to 

provide the next 1k  in a sequence of bonds which ensures the covering of   . This kind 

of motion points out the importance of the /v  fluctuations (normal to the main flow 

direction), because the /u  fluctuations involve the influence of the macroscopic convection 

(along the main flow direction). 

Another interesting application of this coherence process concerns the evaluation of the 

quantity  
1

0

2// dUvu e  for the same normalized space-time ensemble (boundary layer, 

channel or pipe flows). By reference to figure 4 we can write the relation: 
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which is confirmed by the above mentioned flows experimental results. 
 

 

Figure 4. Turbulent fluctuations between aU  and 
aU  

3. CONCLUSIONS 

The main conclusion of this paper concerns the existence of a physical coherence process in 

the domain of molecular chaos-deterministic macro-scale real flows.  

This coherence process explains various qualitative and quantitative aspects of the 

fluctuations field associated to a mean velocity distribution normal to the flow direction. The 

mathematical expression of this coherence process is based on the FLUON essential 

properties to drastically reduce the great values of the various differences between  0aU  

and its associated distribution  0

aU , when we use the relation: 
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which involves the invariant  00 1  , a source of chaos at a very small scale of molecular 

discrete bonds. 
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