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Abstract: This paper presents some general two- and three-dimensional finite element models to study 

the equivalent orthotropic mechanical properties of honeycombs. The models are developed on a 

representative volume element with appropriate periodic boundary conditions for six load cases for 

three-dimensional models to obtain the in-plane and out-of-plane elastic properties of hexagonal 

honeycombs. The developed models use beam, solid 2D and 3D, and also shell type finite elements. 

The proposed models are validated using analytical relationships from literature. For this reason 

some aspects regarding their proper use, depending on the purpose of the analysis, are presented. It is 

shown that similar models can be used for different periodic cell structures as chiral and anti-chiral 

honeycomb structures. The developed finite element models can also be used conveniently for 

parametric and sensitivity analyses because the total number of degrees of freedom is relatively small 

compared to a complete model. 

Key Words: Mechanical properties, Honeycombs, Finite elements, Periodic Boundary Conditions, 

Young's moduli, Poisson's ratios, Representative Volume Element. 

1. INTRODUCTION

Usually the term honeycomb is used in a broader sense to describe any array of identical 

prismatic cells which nest together to fill a plate. The cells are typically hexagonal, in cross-

section, but they can also be triangular, square or rhombic. Because honeycombs have a 

regular geometry their deformations can be analyzed more or less exactly to give equations 

which describe their mechanical equivalent properties, [1]. 

 In order to simplify the static or dynamic analysis of structures achieved with 

heterogeneous materials (Fig. 1), it is extremely useful to estimate the homogenized 

constitutive behaviours of such materials subjected to small and even large deformations. 

Actually, the analysis of such structures can be divided into two sequential problems [2, 3]. 

In the first problem (micro-problem) the global behaviour of a so called Representative 

Volume Element (RVE) is determined. In particular the RVE (Fig. 2) of the microstructure 

can be a single unit cell member [3-10], or a particular assembly of unity cells [11-15]. From 

the solution of the micro-problem the global constitutive properties are derived. These 

http://creativecommons.org/licenses/by-nc-nd/4.0/
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properties are then used in the second problem (macro-problem) in order to analyze the 

behaviour of the macroscopic structure subjected to given loads. 

 Usually, in a Finite Element Analysis (FEA), the macroscopic model of a panel, like the 

one presented in Fig. 1, can be modelled as a layered composite Shell with sandwich option 

or as a solid structure in which the core is discretized with orthotropic brick elements [4,16]. 

 

Fig. 1 – Honeycomb panel 

 

Fig. 2 – Part of the core model - periodic cell, that is sometimes analyzed using FEA to obtain the equivalent 

elastic properties and RVE considered in this paper 

 Explicit modeling of the complete core can increase very much the total number of finite 

elements and of course the number of Degrees Of Freedom (DOFs) which must be solved, 

increasing the computation effort without real benefits for some practical problems. 

 In this paper, the same RVE is considered for all developed finite element models. Such 

an assumption requires the analysis of the RVE composed by an optimal assembly of unit 

cells. Usually, the RVE is subjected to an enforced displacement path on its boundary [16]. 

The RVE boundary conditions influence the FEA evaluations [4, 11] and careful choice of 

the displacements must be considered according to the real deformations for each load case. 

 Some analytical relations for equivalent mechanical properties estimations [1, 2, 17, 18] 

are also considered in the literature. Gibson and Ashby [1] summarized the analytical 
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formulas for relative density and the in-plane and out-of-plane properties of some 

honeycombs. The considered honeycombs are the classical ones, in which the thickness of 

the all walls is constant, but also for hexagonal honeycombs with double walls attached by 

gluing along the ribbon direction, which are called sometimes commercial honeycombs. All 

these formulas are obtained principally by using the beam model theory. Currently, 

analytical models of elements composing honeycombs assemblies are being refined to 

include axial and shear deformations, in addition to bending deformations, on which all first 

studies have been based. Such refinements provide an additional insight into the mechanical 

behaviour of honeycomb assemblies and may suggest additional, unexplored applications. 

 The resulting fundamental deformation mechanisms associated with such deformations 

can be determined easier if some finite element models are developed based on a large 

number of cells from the analyzed structure (see Fig. 2) because, according to the Saint 

Venant's principle, the approximations in the boundary conditions may lightly affect the 

response of a cell in the middle of the analyzed model. Such methodologies were used in 

many papers [11, 12-14], and even if not presented, they were also developed and used in the 

present paper for verification purposes. In this way it was confirmed that the displacements, 

reactions, strain energy and also stresses in RVE analysis were identical to those observed in 

numerical studies involving a full similar lattice with more than ten cells multiplied on each 

direction. The parametric conceptual model developed and analyzed in this paper is 

presented in Fig. 3. It may represent classical and commercial honeycombs, but also re-

entrant honeycombs if 0  . 

  

Fig. 3 – Notation of geometrical parameters of RVE Fig. 4 – Faces notation of RVE 

2. ANALYTICAL BACKGROUND 

Using the beam theory [1, 2] the equivalent mechanical properties of honeycombs can be 

obtained starting with isotropic constants of the core material: s - mass density, Es - Young's 

modulus and νs - Poisson's ratio. The shear modulus is obtained from  / 2 1s s sG E     . 

 For an equivalent orthotropic material, with the principal directions along the axes of 

the system OXYZ (Fig. 3), according to the generalized Hooke’s law, it yields  C , 

where   and   are the strain and respectively the stress vector of the homogenized region 

of the RVE. The compliance matrix, which includes the equivalent mechanical elastic 

properties, is [16, 19] 
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 Owing to the symmetry, the following equations must exist: 
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 First, we present the derived relationships for classical honeycombs, i.e. for 1 2t t t   

(Fig. 3) and then, for commercial honeycombs, i.e. for 1t t  and 2 2t t  [1, 20, 21]. 

2.1 Classical honeycombs. The relative density of the equivalent core is 
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2.1.1 In plane elastic properties. The Young's moduli parallel to OX and OY are 
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 The in plane Poisson's ratios can be calculated using 
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The in plane shear modulus is  
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 The coefficients, or correction factors, k1, k2, k12, c12 and c21 become equal to 1 if the 

axial and shearing force contributions to the total strain energy are neglected. 

2.1.2 Out of plane elastic properties. The Young's modulus parallel to OZ, and 

Poisson's ratios due to a load along OZ axis are simply set to 
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 The following relationships, obtained also in the beam theory hypotheses, are valid only 

for t  , and b   because of supplementary hypotheses as the shear stresses are 

uniform within the cell walls. The two out of plane shear moduli can be obtained from 
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 The last relation in (12) was deduced by Grediac [20] using the method proposed by 

Kelsey [21] and FEA in some particular hypothesis ( /t = 0.08, /h = 1 and 0 30   ) 

for which  = 0.787. The upper and lower bounds of shear moduli are obtained from 
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2.2 Commercial honeycombs. Some relationships obtained for classical honeycombs 

are also valid for commercial honeycombs [1], so only the modified relations are further 

presented. The relative density is described by 

1
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 The in plane shear modulus (without correction for axial and shearing forces [1]), was 

demonstrated by the authors of this paper and its corrected form is 
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 The out of plane G23 modulus can be also obtained from the second part of Eq. (12), 

with the same α = 0.787 according to [1], in which the lower and upper bounds of shear 

modulus are obtained from 
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3. FINITE ELEMENT HOMOGENIZATION 

The aim of the homogenization techniques is to evaluate the global behaviour of a 

heterogeneous material by studying the response of its RVE, which contains all the 

geometric and constitutive information of the microstructure. The homogenization consists 

of replacing the honeycomb structure by an equivalent homogenized orthotropic solid. In 

fact, the energetic homogenization method is used to determine the elastic properties of the 

solid [22], but slightly different methods are presented in the literature [3, 7, 16]. The RVE 

shown in Fig. 2 is used to calculate the equivalent homogenized medium compliance matrix 

C. The homogenization approach is typical for periodic structures that are modelled using 

finite elements [23]. In a periodic medium, the generalized displacement u can be expressed 

as 0u x u   ,where   is an applied constant strain field, and u0 is a slowly fluctuating 

periodic function of u. This condition is used in the proposed finite element models by 

means of the couplings between adequate offset of the DOFs on the boundaries [5, 24]. 

 The macroscopic or mean stress and strain vectors  and   are defined by the spatial 

averages of the stresses and strains in RVE, i.e. [23] 

1

V
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 Because the stresses and strains are numerically obtained only in some points (Gauss 

points) and the used commercial finite element code ANSYS does not permit a direct and 

accurate calculation of the integrals in (17), instead of volume stress averaging (which 

equivalently can also be transformed into area stress averaging on boundaries), the more 
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exact method, by dividing the sum of the reaction force to proper cross section area of the 

homogenized zone is used. Also the macroscopic strain is obtained directly from the 

displacements of the boundaries, by simple algebra [14, 22, 24]. 

 In computations of materials characterized by a periodic structure and subjected to some 

load cases, the RVE may be made by an adequate number of unit cells. In this paper the 

RVE is presented in Figs. 2 - 4 and was thus chosen because the boundary conditions are 

easier to be identified directly in DOFs defined in the Cartesian global system of coordinates. 

 The periodic boundary conditions, for each load case, considered in turn to obtain only 

one nonzero mean stress component, are developed and checked by authors, and are 

presented in Table 1. Because there are six stress components in the mean stress vector, there 

were considered six different load cases [22]. It must be noted that faces 5 and 6 are leaved 

uncoupled and, for example, the displacements and rotations difference of disguised DOFs 

are defined according to the relations of this form:    1 2| , , 0, ,xDiff x x xu u L y z u y z   , for 

displacements from faces 1 and 2 along OX direction and    3 4| , , ,0,xDiff x y xx L z x z      

for rotations from faces 3 and 4 around the same OX axis. If a model does not include 

rotational DOFs, the periodic boundary conditions from columns six to eight in Table 1 must 

be neglected. The same rules are applied also for supplementary DOFs of two dimensional 

models. 

Table 1 – Periodic boundary conditions applied to pair faces of the RVE 

Load Case Pair faces uxDiff uyDiff uzDiff xDiff yDiff zDiff 

1 

Axial X 

1-2 - 0 0 0 0 0 

3-4 0 - 0 0 0 0 

2 

Axial Y 

1-2 - 0 0 0 0 0 

3-4 0 - 0 0 0 0 

3 

Axial Z 

1-2 - 0 0 0 0 0 

3-4 0 - 0 0 0 0 

4 

Shear XY 

1-2 0 0 0 0 0 0 

3-4 - 0 0 0 0 0 

5 

Shear YZ 

1-2 0 0 0 0 0 0 

3-4 0 0 0 0 0 0 

6 

Shear XZ 

1-2 0 0 0 0 0 0 

3-4 0 0 0 0 0 0 
 

 In the presented finite element models, for each load case, the conditions that only one 

component of mean stress is nonzero are guaranteed if the supplementary boundary 

conditions from Table 2 are fulfilled. In this table ux, uy and uz are displacement DOFs and 

x, y and z are rotation DOFs. 

“Coupled” means that all DOFs in a face are enforced to be equal, due to the symmetry 

of a load case. “Free” means that the DOFs are leaved free for motion. “B1” means that only 

one arbitrary DOF on corresponding face and direction, usually, if possible, from a plane of 

symmetry, is blocked to remove rigid body motion. 

The symbol “-“ means that the DOFs are already in relations from Table 1 and no more 

conditions are necessary. The imposed non-zero displacements, as for example 0 xL , 

correspond to an arbitrary user choice of strain 0 , imposed on a direction to ensure the 

desired symmetry deformations. 
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 It is noted that for all load cases, when possible, the relations (2) and the conditions that 

only one mean stress component is non-zero, are numerically checked. Moreover, 

supplementary non-uniform displacements of the deformed free faces are averaged to 

improve the mean strain deformations used for Poisson's ratios calculation according to their 

definition [22]. 

Table 2 – Supplementary displacement boundary conditions for the six load cases used in simulations 

Load Case Face ux uy uz x y z 

1 

Axial X 

1 0 B1 B1 - - - 

2 0 xL  - - - - - 

3 - Coupled - - - - 

4 - Coupled - - - - 

5 Free Free Free Free Free Free 

6 Free Free Free Free Free Free 

2 

Axial Y 

1 Coupled - - - - - 

2 Coupled - - - - - 

3 B1 0 B1 - - - 

4 - 0 yL  - - - - 

5 Free Free Free Free Free Free 

6 Free Free Free Free Free Free 

3 

Axial Z 

1 Coupled Coupled Coupled Coupled Coupled Coupled 

2 Coupled Coupled Coupled Coupled Coupled Coupled 

3 Coupled Coupled Coupled Coupled Coupled Coupled 

4 Coupled Coupled Coupled Coupled Coupled Coupled 

5 B1 B1 0 Free Free Free 

6 - - 0b  Free Free Free 

4 

Shear XY 

1 - - - - - - 

2 - - - - - - 

3 0 B1 B1 - - - 

4 0 yL  - - - - - 

5 Free Free Free Free Free Free 

6 Free Free Free Free Free Free 

5 

Shear YZ 

1 - - - - - - 

2 - - - - - - 

3 B1 - B1 - - - 

4 - - - - - - 

5 Free 0 Free Free Free Free 

6 Free 0b  Free Free Free Free 

6 

Shear XZ 

1 - - - - - - 

2 - - - - - - 

3 - B1 B1 - - - 

4 - - - - - - 

5 0 Free Free Free Free Free 

6 0b  Free Free Free Free Free 
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4. DEVELOPED FINITE ELEMENT MODELS 

In this paper we analyze the in plane, and if possible, the out of plane deformations of 

honeycombs using FEAs with more than a single finite element model. In order to study the 

equivalent mechanical properties of honeycombs, four different parametric finite element 

models were developed in ANSYS, using Ansys Programming Design Language (APDL). 

 The first model is a simple 2D model which can be used in plane stress or plane strain 

conditions and can use plane quadrilateral linear or quadratic displacement finite elements 

with only two DOFs per node (Plane182 or Plane183). 

 The second one is a simple 3D beam model which can use also linear or quadratic 

elements with seven DOFs per node, three translations, three rotations and warping as a 

supplementary DOF (Beam188 or Beam189). In this paper the warping effect was neglected. 

 The third, is a model developed only with Shell elements; it can use linear elements, 

with four nodes or quadratic one, with eight nodes. Each node has six DOFs, three 

translations and three rotations, even the normal rotation is approximately introduced 

(Shell181 or Shell281). 

 The last finite element model is a 3D solid model which can use linear - eight nodes, or 

quadratic - 20 nodes, of brick element types (Solid185 or Solid186). The 3D solid finite 

elements have only three translations per node as DOFs. 

 It must be pointed out that each model includes the behaviour characteristics of the main 

hypotheses in which the finite element type was developed. The most accurate and complete 

models are Shell and Solid 3D models because these models can capture all the nine 

independent constants from (1). Depending of the aim of the analysis, the model with beams 

or Solid 2D can also successfully be used in practice usually only for in plane properties of 

honeycombs or similar chiral or anti-chiral structures [6, 14, 15]. 

5. MODELS VALIDATION 

Case 1: Commercial honeycomb type. In order to validate the proposed models, first an 

aluminium alloy commercial honeycomb type is considered. The dimensions are: t = 0.1 

mm; =10 mm; h =15 mm; b = 100 mm and   = 30º and material properties: Es = 70000 

MPa; νs = 0.33 and s = 2700 kg/m
3
. For this very thin honeycomb the correction factors in 

the analytical calculation may be considered to be one. 

 In order to establish a proper level of discretization of the RVE, a convergence study is 

carried out. Similar to other works [16, 25] it was found that around of eight linear finite 

element types per length , h and b are enough to obtain correct results, but if there are large 

difference between these dimensions, a good rule of thumb is to consider uniform mesh with 

mean length of the elements min{ , b, h}/8 for shells and t/2 for solid elements in the 

thickness direction. If the finite element is quadratic the element size may be two times 

larger. In this case the element types for all models were quadratic and the total number of 

elements was 4000 for 2D models, 86 for the beam model, 8600 for the shell model and 

22848 for the solid 3D model. The obtained results for this honeycomb are presented in 

Table 3, for all proposed finite element models. "NA" in this table means not applicable. 

 It can be observed that almost all FEA results are very close to the analytical ones but 

there are small discrepancies for some results due to aspects discussed also in the following 

examples of analysis, where these discrepancies are more accentuated. 

Case 2: classical regular honeycomb. The second test case is for a classical regular 

honeycomb with the following dimensions: t1 = t2 = t = 1 mm; = h = 10 mm; b = 15 mm 
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and  = 30º and material properties: Es = 1000 MPa; νs = 0.3 and s = 1000 kg/m
3
. The 

thickness of the cells is no more very thin and the analytical relations used for mechanical 

properties calculation include also the correction coefficients. The mesh of the cross section 

for all different models is presented in Fig. 5, and the results for quadratic element types are 

shown in Table 4. 

Table 3 – Results for validation of developed models for Case 1 

Mechanical 

property 
Analytical 

Finite element results 

2D Models 3D Models 

Plane stress Plane strain Beam Shell Solid 

 [ kg/m
3
] 38.971 38.881 38.881 38.971 38.971 38.881 

E1 [MPa] 0.12124 0.12379 0.13892 0.12117 0.13573 0.14369 

E2 [MPa] 0.21554 0.22015 0.24707 0.21543 0.24132 0.25555 

E3 [MPa] 1010.4 NA NA NA 1010.4 1008.0 

G12 [MPa] 0.052253 0.053280 0.059793 0.052226 0.058485 0.061371 

G23 [MPa] 244.89 NA NA 202.35 238.75 240.01 

G13 [MPa] 113.95 NA NA 94.673 101.16 104.71 

ν12 0.75000 0.74959 0.74959 0.7497 0.74967 0.74953 

ν21 1.3333 1.3331 1.3331 1.3329 1.3328 1.3330 

ν23 7.04e-05 NA NA NA 7.77e-05 8.39e-05 

ν32 0.33 NA NA NA 0.33 0.33 

ν13 3.96e-05 NA NA NA 4.58e-05 4.68e-05 

ν31 0.33 NA NA NA 0.33 0.33 
 

 
Plane2D Beam3D Shell3D Solid3D 

Fig. 5 – Discretization of RVE used for results given in Table 4 (only the cross-sections are shown) 

 The relative density obtained from accurate FEA (solid models) is almost 3% smaller 

than the relative density obtained from approximated beam model due to the geometric 

overlaps at the connection nodes (see marked circles in Fig. 5). Because the hexagon cell is 

regular and the cell walls are all the same thickness, according to [1] the in plane properties 

are isotropic (they do not depend on direction): E = E1 = E2; ν = ν12 = ν21 and G12=E/2/(1+ν). 

It can be observed that such relations are obtained also from FEA. The out of plane shear 

moduli obtained from FEA are no more equal and do not respect the relations (12) which are 
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also approximate or valid for different geometric aspect ratios. It must be mentioned that the 

vertical beams and shells on laterals (Fig. 5) must be of half thickness and offset to placed 

nodes exactly on the boundaries of RVE. All the Poisson's ratios are accurately computed 

using FEA and their values correspond to the analytical ones. 

Table 4 – Results for validation of developed models for Case 2 

Mechanical 

property 
Analytical 

Finite element results 

2D Models 3D Models 

Plane stress Plane strain Beam Shell Solid 

 [ kg/m
3
] 115.47 112.14 112.14 115.47 115.47 112.14 

E1 [MPa] 2.1818 2.3491 2.583 2.1767 2.3395 2.583 

E2 [MPa] 2.1818 2.3487 2.5825 2.1767 2.3395 2.5791 

E3 [MPa] 115.47 NA NA NA 115.47 112.14 

G12 [MPa] 0.55610 0.59951 0.65924 0.55463 0.59698 0.65107 

G23 [MPa] 22.2058 NA NA 17.670 19.936 20.603 

G13 [MPa] 22.2058 NA NA 16.238 15.256 16.793 

ν12 0.9622 0.9609 0.96118 0.9623 0.95948 0.95774 

ν21 0.9622 0.96074 0.96102 0.9623 0.95948 0.95632 

ν23 0.0060 NA NA NA 0.006084 0.006835 

ν32 0.3000 NA NA NA 0.3000 0.3000 

ν13 0.0060 NA NA NA 0.006073 0.006976 

ν31 0.3000 NA NA NA 0.3000 0.3000 
 

Case 3: re-entrant classical honeycomb. The third test case is for a re-entrant classical 

honeycomb with dimensions: t1 = t2 = t = 1 mm; = 10 mm; h = 30 mm; b = 15 mm and 

negative internal angle  = -30º. Material properties are: Es = 1000 MPa; νs = 0.3 and           

s = 1000 kg/m
3
. The analytical relations used for mechanical properties calculation include 

also the correction coefficients. The mesh of the cross section for all different models is 

presented in Fig. 6, and the results for quadratic element types are shown in Table 5. 

 
Plane2D Beam3D Shell3D Solid3D 

Fig. 6 – Discretization of RVE used for results given in Table 5 (only the cross-sections are shown) 
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 Again the relative density obtained from accurate FEA (solid models) is almost 3% 

smaller than the relative density obtained from approximated beam model due to the 

geometric overlaps or gaps at the connection nodes (Fig. 6). 

 The best FEA corresponds to the solid 3D model, so the comparison of the analytical 

results is done with this model. Because the hexagon cell is re-entrant, the behaviour of the 

honeycombs corresponds to an auxetic structure and the in plane Poison's ratios ν12 and ν21 

are negative and correctly obtained using FEA. The Young's modulus E1, obtained from FEA 

is 48% larger than the analytical one, E2 is 40% larger than the analytical one and G12 is 23% 

larger than the analytical one. These discrepancies are the most probably obtained due to the 

smaller stiffness in the analytical beam model in the connection points and the effect of small 

value of b parameter which were also reported in the paper of Chen and Ozaki [24], but for 

regular honeycombs. The out of plane shear moduli G23 and G13 obtained from FEA are 32% 

and 22%, respectively, smaller than the analytical ones which also are approximate or valid 

for different geometric aspect ratios. All the Poisson's ratios are accurately computed using 

FEAs and their values are close to the analytical ones. 

Table 5 – Results for validation of developed models for Case 3 

Mechanical 

property 
Analytical 

Finite element results 

2D Models 3D Models 

Plane stress Plane strain Beam Shell Solid 

 [ kg/m
3
] 115.47 112.14 112.14 115.47 115.47 112.14 

E1 [MPa] 1.3091 1.7663 1.9409 1.3060 1.4044 1.9365 

E2 [MPa] 3.4619 4.4433 4.8827 3.4542 3.6998 4.837 

E3 [MPa] 115.47 NA NA NA 115.47 112.14 

G12 [MPa] 0.04554 0.052029 0.057178 0.045484 0.048399 0.055979 

G23 [MPa] 23.85 NA NA 12.956 15.127 16.131 

G13 [MPa] 13.323 NA NA 9.7429 8.5635 10.422 

ν12 -0.57733 -0.58176 -0.58152 -0.57738 -0.57654 -0.58031 

ν21 -1.5268 -1.4635 -1.4629 -1.5271 -1.5189 -1.4495 

ν23 0.0100 NA NA NA 0.00941 0.01291 

ν32 0.3000 NA NA NA 0.3000 0.3000 

ν13 0.0036 NA NA NA 0.00356 0.00517 

ν31 0.3000 NA NA NA 0.3000 0.3000 

6. NUMERICAL SIMULATIONS 

6.1 Effect of internal cell angle  variation. For this study we considered a honeycomb 

with constant dimensions: t1 = t2 = t = 1 mm; = 10 mm; h = 20 mm; b = 10 mm and only  

(internal cell angle) was varied between -45º and 45º. The material properties of the cell 

walls were chosen as before: Es = 1000 MPa; νs = 0.3 and s = 1000 kg/m
3
. Using the 

analytical relations (3) - (13), and the solid 3D finite element model for RVE, the obtained 

results are presented in Figs. 7 – 10. 

 From Fig. 7, it can be observed that the equivalent density of the honeycombs has a 

minimum for   around 21.5º and the analytical estimations are a little bit larger that the FEA 

results due to the overlaps (see Fig. 5 and Fig. 6) obtained using beam theory for mass 

density estimations. This variation in the density is responsible for the same perturbation in 
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the analytical results as it can be observed very clear for E3 in Fig. 8, where the FEA results 

are smaller than the analytical results (more accentuated for negative  values). 

 The FEA results for in-plane Young's moduli E1 and E2 (Fig. 8) are larger than the 

analytical results because the cell height b is relatively small (see the results and 

explanations for the next simulation), but they keep the same variation as the analytical 

results. The errors decrease with cell angle  increasing. The same observations are also 

valid for in-plane shear modulus G12 (Fig. 9). 

  

Fig. 7 – Equivalent mass density of the analyzed 

honeycombs function of internal cell angle 
Fig. 8 – Young's moduli of the analyzed honeycombs 

function of internal cell angle 

 The FEA results for the out of plane shear modulus G13 (Fig. 9) are in excellent 

agreement (for the considered parameters) with the analytical results only for  around to 

zero degrees. Generally, G13 is smaller than the analytical result because the cell height b is 

small and the faces 5 and 6 of the RVE (see Fig. 4) are considered free. The FEA shear 

modulus G23 is relatively close to the analytical result only for 0   (Fig. 9), because the 

analytical relation (12) is valid only for some particular ratios of geometric parameters - not 

valid in this case, and positive internal cell angle . The upper and lower bounds of G23 are 

plotted with dashed lines and large difference between them appears for large negative 

internal cell angles. The FEA results of G23 for 0   and these particular geometries are 

more close to the lower bound of G23. 

 The FEA results for all Poisson's ratios (ν31 and ν32 which are both 0.3 and are not 

plotted) are in good agreement with the analytical results (Fig. 10). The largest errors are for 

very small values of ν23 which is very sensitive to E2 (not very close to the analytical result in 

this case), according to Eq. (11). 
 

6.2 Effect of cell height b variation. This study was developed for the same data as in 

paragraph 6.1, but for  = 30º and the cell height b was varied between 2 mm and 100 mm. 

The FEA results with significant variation, compared to the analytical ones, are presented in 

Fig. 11 and Fig. 12, for a finite element model of RVE meshed with four node Shell 

elements. 

 All the in plane moduli obtained by using FEA for  = 30º (Fig. 11) have a tendency to 

be around 10% larger than the analytical results when b tends to infinite (plane strain 

condition). This aspect was also reported in [24] but only for E2 and was concluded that this 

effect occurs due to the cells wall deformation in the height direction as νs is nonzero. Based 

on this observation it is now possible to explain the different FEA results compared to the 



Stefan SOROHAN, Marin SANDU, Dan Mihai CONSTANTINESCU, Adriana Georgeta SANDU 148 
 

INCAS BULLETIN, Volume 7, Issue 3/ 2015 

analytical one for in plane modulus reported in Tables 3-5 and in the previous simulation. It 

was checked, using FEA, that for νs = 0 the effect of increasing the plane moduli disappears. 

  

Fig. 9 – Shear moduli of the analyzed honeycombs as 

functions of internal cell angle 
Fig. 10 – Poisson's ratios of the analyzed 

honeycombs as functions of internal cell angle 

 Also for the analysed configuration 23 23 23
L UG G G  , it was observed (Fig. 12) that G23 

shear modulus obtained with FEA tends to the analytical result if b tends to infinite. For 

small values of b this shear modulus gives large errors by using the analytical relation which 

is developed in the hypothesis that almost all the elastic strain energy is stored in the shear 

displacements of the cell walls, as the bending stiffnesses and the energies associated with 

bending are much smaller [1]. This hypothesis is not true for small cell height as it can be 

observed in Fig. 13, where the von Mises stress distribution is presented for four different 

cell heights in the same loading condition, load case 5 with 0 = 0.026 rad, which 

corresponds to a maximum shear stress of 10 MPa (around 17.3 MPa von Mises maximum 

stress). It can be observed that the deformation for a small cell height (b = 5 mm) is different 

from deformation at an elevated cell height (b = 50 mm) and also the stresses become more 

uniform and closer to the imposed displacement condition. 

  

Fig. 11 – The in plane moduli function of cell height 

variation 
Fig. 12 – The out of plane moduli function of cell 

height variation 

 For the analyzed configuration, the shear modulus G13 have the same, but with a slower 

tendency on-coming to the analytical result when b tends to infinite because of the same 
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previous hypothesis used in the analytical formulation of G13. The out of plane Young's 

modulus E3 is independent of b in the FEA results and practically coincides with the 

analytical result. No important variations of Poisson's ratios were observed in the FEA 

results. 

 

Fig. 13 – Von Mises stress distribution [MPa] for four different cell heights obtained from load case 5, 

corresponding to G23 computation at an imposed shear strain 0 =0.026 rad. Scaling of displacement 20X 

7. CONCLUSIONS 

The results of numerical investigations confirm the validity of all models proposed in this 

paper for the computation of mechanical properties of honeycombs. These models can be 

used for parametric or sensitivity analyses as they were presented in two paragraphs. The 

proposed models can be also used with minor corrections for the analysis of real commercial 

honeycombs including the curved and perforated cell walls. 

 The analytical relation (15) was corrected by the authors of this paper and then 

confirmed using FEAs, as it wasn't adequately presented in [1]. 

 The developed APDL codes for the proposed models can be effortless adapted to new 

honeycomb types as those proposed in [9, 25, 26], and can include special composite 

materials by considering the wall thickness or can include the thickness of the adhesive layer 

in the finite element model. 

 Further on, the reduction of RVE to the base unit cell member or even to a half of it, 

depending on the symmetry or anti-symmetry of the load cases, as in [5, 8, 16], especially 

for the 3D solid model, will get the authors' attention in order to reduce the computational 

effort. 
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