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Abstract: Starting from the integro-differential formulation (IDF) [1], [2] of the basic conservation 
equations in wall flows, the authors perform a qualitative analysis of the microscopic-macroscopic 
domain. According to IDF, the kinetical energy presents a mean distribution and a lot of similar terms 
called FLUONS. Their various combinations lead to physical fluctuations and their dynamical 
equilibrium concerns the existence of an associated distribution of the kinetical energy, which is a 
solution of IDF. The global contributions of the fluctuations are, therefore, estimated as analytical 
formulae for the wall flows. The experiments confirm these results. 
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1. INTRODUCTORY REMARKS 

The quantity     22/2/2/
0 eUwvuk  , associated to the mean distribution  in 

wall flows is determined numerically [3] and experimentally [4], [5], [6]. Theoretically, the 
numerical integration of the Navier-Stokes equations, essentially semi-empirical, is very 
laborious and dependent from ad-hoc models and constants. Also, the experiments involve a 
lot of work and high-tech instrumentation, able to give good results in various flows 
conditions (wall roughness, pollution of the fluid, the turbulence of the incident flow etc.). 

 0aU 

 Therefore, it seems interesting to obtain some analytical formulae for , when 

 is provided. It is also interesting to analyse the physical aspects related to these 
formulae. 

 0k

 0aU

 According to figure 1, a quantity of fluid from a boundary layer involves N  molecules 
with their chaotic motion [7], [8], forced to fulfill some macroscopic requirements. In this 
respect the basic idea refers to the continuum hypothesis, which allows to introduce 
arbitrarily selected particles (composed by many molecules) and to assign them quantities 
like velocity, pressure, temperature etc., able to ensure the mathematical conditions for the 
conservation laws. This situation is presented in the figure 2, for the quantity . )(nK

 Our knowledge becomes very obscure in the domain between  and cmicroscopiK

KK cmacroscopi  , indicated by dots in figure 2. The classical statistical physics [7], [8] solves 

this difficult problem by using the probability theory and the concept of molecular 
equilibrium, leading to K  and to the justification of the continuum hypothesis. However, by 
observing the anisotropy of velocity fluctuations in wall flows it seems that the process 

KK cmicroscopi   is much more complicated. 
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Fig. 1 – A volume of fluid in the boundary layer, characterized by the thickness  tz,x,  and the global 

veloci ile  yU , with microscopic (molecular) structure and macroscopic particles (in the continuum ty prof

hypothesis) 

 

Fig. 2 – Th  and  quantities expressed in function of the number of molecules (particles), the probability 

, th abilistic mean

e 1K
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e prob  
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 dKKPK r
K

r  and the fluctuation 
rr 

 The aim of this paper is to present a contribution to this difficult problem by using IDF. 

KK  

Essentially these processes stand for the tendency to some local molecular continuum 
equilibrium, because in the wall flows the molecules belonging to particles having different 
velocities, pressure, temperature etc. interact in a much more complicated way than the usual 
gradient-type transfer. Can we have a look in this complex transition type equilibrium in wall 
flows? Are there some traces of these processes in the conservation laws we are using for 
wall flows? 
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2. QUALITATIV SIS OF THE INTERACTION BETWEEN THE 
MICROSCOPIC AN

E ANALY
D THE MACROSCOPIC DOMAIN IN THE WALL FLOWS 

For a wall flow, let’s  tzyxK ,,,  be a scalar quantity which has to satisfy the general 
conservation equations: 

   or   
Dt

D



1

v


   0

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Dt

DK
K

2  (2) 

where  represents the fluid density, and  kjiv


wvu   is the velocity vector. 
 We used the mathematical operators: 
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 The initial condition and the boundary conditions are: 
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(4) 

 The term  tzyx ,,,  stan  th em tributions due to external fields or 

 For instance, by taking v


K , K , p



1

 we get the usual Navier-Stokes 

for the inco pressible and isothermal wall floequations m ws (for , UK  , K

x

p



1

 we have e x


 th  -d

ilarly, for

irect n io ier-Stokes equation). 

 Sim  

Nav

txK  2 , 0v


 we get the one-dimensional ( x ) Markov 

where  can involve addition  series development of the quantities 

process, 
  n1

and    n
jj

n
jj KK ,,1  , where 

 al terms by 
jj

n
jj KK ,,   

1j , j , 1j  are the usual discrete steps and    nn 1  discrete 

time intervals. By writing molmol v
t

x
x

t

x













 2

 we get an evaluation of the fluid 

viscosity   as the product of the molecular distance mol  and the molecular velocity molv . 
This is considered as a physical property and introduc vier-Stokes equations.  

To solve a ly these equations in con e has to drastically neglect 

many terms (like 0

ed in the Na
nalytical tinuum, on

v


curl  for potential flows and 
22 yx 

 or to 

add arbitrarily some unknown quantities (like 

2 2
  for boundary layers)

/uuu  ) in the perturbative methods. 
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 Is it possible to get some idea about the tendency towards equilibrium in the 
microscopic-macroscopic domain by stating from the macroscopic conservation laws? 
 We try to answe

INCAS BULLETIN, Volume 2, Number 2/ 2010 

r to this question by means of the IDF. For the equation (4) with the 
boundary conditions (4), using the IDF transformation of coordinates - equation (A1) in 
Appendix -, we get:  

 






 


 1

*

r

K
a  

  6

rrf
I

 (5) 

with the corresponding boundary conditions: 
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and the expressions for rf  and r  are given

integration  and the boundary conditions fulfillment lead to 

the relationships: 

 in the Appendix. 
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 The relation (8) and (9) stands for the IDF for the quantities KI  and  . 
 At a first look, one has to point out their complexity by comparison to the relative 
simplicity of the original equations. Ho ev  combiningw er, the idea of  both (8) and (9) leads to 
 qualitatively fruitful result. In order to obtain the equation corresponding to this 

mbination, we eliminate a term, say
a
co  rf ,  6,,2,1 r . We get: 
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that is an expression with very interesting mathematical features. 
 Firstly, we notice the decomposition of the quantity  into a “mean” and a lot of 

similar “differences” 
KI

   1~gf , which we called FLUONS [2]. Because  can be 

arbitrarily chosen, it results that there are  fluons. If  we get  fluons, a 
figure which is similar to the number of molecules per 1 mole of gas. By realizing some 
equilibrium, the physics of microparticles needs a great number of similar elements and the 
interaction between them, like “collision”. The fluons fulfill both these requirements. The 
macroscopic conditions (Reynolds number, viscosity values, wall roughness etc.) lead to the 
appearance or disappearance of some fluons and affect their interaction as microparticles. 
The IDF presents a lot of similar entities (fluons) and their arbitrary combinations in a finite 
space-time domain. Therefore, the IDF presents a fluons chaos, similar to the molecular 
chaos. Both processes are intended to minimize and to uniformly distribute the energy. 

rf
30r2 210r 100 10~2

 Secondly, we have to mention the differences between the probability aspects in the 
fluons chaos and in the molecular chaos. The last one, under normal temperature and 
pressure conditions, is symmetrical in the Maxwell-Boltzmann probability distribution; 
however, the probability distribution of the fluons chaos in wall flows is non-symmetrical. 

Moreover, the IDF points out the quantity  221   yy , which plays the role of 

“fluctuations viscosity”, essentially non-negative.  
 Finally, in a finite space-time domain (finite energy) the IDF for wall layers (boundary, 

channel, pipe flows) points out the existence of two energy distributions,  and , 
related by the transformation  

2U  2*U





0

2

0

2 dyUdyU
y

 (12) 

 These distributions are present alternatively in this finite space-time domain and 
influenced by the imposed conditions to the continuous fluid. Both distributions correspond 
to the particle activityunder the continuum hypothesis and, respectively, to the fluons activity 
in the IDF. By neglecting, ab initio, the fluons activity leads to incomplete and semi-
empirical methods in order to describe the dynamics of wall layers. For instance, the IDF 
points out the importance of the boundary conditions as contribution to the number of fluons 
and, consequently, to their activity.   
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3. THE EVALUATION OF THE GLOBAL INTENSITY OF FLUCTUATIONS IN 
WALL LAYERS FLOWS 

In spite of the mathematical difficulties related to the IDF, we present now some examples 
showing its capacity to provide quantitative results. The physical difficulties are related to 

the meaning of fluctuations, because the splitting /uUU   is arbitrarily made and the 

quantity  /,uUfUU mm   involves a lot of combinations   rmr uU
/ . However, the IDF 

of the 2D incompressible, unsteady wall layer (detailed calculation in Addenda) points out 

two expressions for U , obtained by elimination of m1  2
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. The differences  and 

 stands for the fluons activity. The equilibrium of the fluons’ chaos can be 

evaluated by taking the global quantity  as a measure of their activity. This 

quantity must be zero for the deterministic uniform velocity distribution. However, in real 
wall bounded flows, the measured fluctuations can be related to the fluons activity as a 
sudden change of the kinetical energy around some minimum.  
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 In order to have a quantitative estimation of the kinetical energy involved in the fluons 
activity, we propose the following method: 
 1. By knowing a velocity distribution  yU , where eUU 0 ,  y0 , we use the 

transformation of the transversal y -coordinate into -coordinate, given by (12), in order to 

get the associated distribution  yU * , where 0 , . For instance, for 
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0  y  for 

boundary layers and  for channel and for axi-symmetrical pipe flows. 0
*
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 2. We suppose that fluons activity doesn’t influence the mean convection in a section of 
a wall bounded flows, by writing: 
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 3. We evaluate the variation of the kinetical energy, by writing: 
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 By using the notation  and , we obtain the 

relationships: 
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 For the pipe flow, the integrals  and  are much more 

complicated in a general 
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Table 1. The analytical formulae for . n
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PIPEak ,  - equation (18) 

 For axial-symmetric pipe flow ( , ) we obtain: ee UU * R*
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 In the paper [1], the first application of the IDF leads to the normalized distribution 
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last line in the above table indicate the corresponding formula for . We have to 

remark the great sensitivity of the above formulae against the 
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4. CONCLUDING REMARKS 

Qualitatively, the IDF of the conservation laws points out some features of the microscopic-
macroscopic domain. The great number of the similar entities called fluons mimics the 
molecular dynamics. The physical equilibrium means a uniform distribution of a minimum 
energy as global quantity. The fluons activity explains the tendency toward chaotic structural 
dynamics (quoted as fluctuations in the continuum hypothesis) for every shear flow. The IDF 
shows, for instance, the importance of the macroscopic boundary conditions concerning the 

fluons activity ( , ). In this respect, the perturbative methods 

(

310 10~2 30100 10~2
/fff  ) remain deterministic, and need arbitrary models and constants in order to 

evaluate the fluctuations. As an example, IDF explains the non-negativity of the correlation 
//vu . 
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 Quantitatively, the fluons activity in wall layers, with the velocity distribution , 

points out the existence of an associated distribution 

 yU

 yU * , obtained by the coordinate 

transformation 



0

2

0

2 dyUdyU
y

, where  zxt ,,  stands for the finite thickness of the 

layer. The fluctuations are related to the chaotic change of the instantaneous velocity 

distribution between  yU  and  yU * . This observation leads to the evaluation of the global 
intensity of fluctuations as well as their distribution. For the incompressible and isothermal 
wall layers which have the  0aU  distribution, we can provide analytical formulae for the 

quantity     22/
eU2/2/

0 wvuk  . In the particular case   n
aU 00  , the table 1 

presents the corresponding analytical formulae, strongly depending on the positive  values. 
It seems that the turbulent boundary layers with low intensity of the external flow turbulence 
and low wall roughness can be well represented by the above formulae. As an illustrative 
example, we present in the figure 4 the 

n

 ak  given by the analytical formula and the 
corresponding experimental data for the fully developed turbulent boundary layer [4]. In the 
case of a relaxing perturbed boundary layer [5], when  0aU  is given by experimental data, 
the integrals involved in the analytical formulae are numerically calculated. Both these cases 
present a satisfactory confirmation of the theoretical model. For the case of a slightly 

divergent channel flow [10], the increase of the quantity  is also 

satisfactorily confirmed by the experimental data. 

   
1

0

0kxK  d 0

 

Fig. 4 – The quantity  ak  given by the analytical formula and the corresponding experimental data for the 

fully developed turbulent boundary layer 
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 We conclude that this theoretical approach provides useful qualitative and quantitative 
information in order to check the experimental data concerning the distribution and the 
intensity of fluctuations belonging to the equilibrium turbulent wall layers. 
 A final concluding remark refers to the extended applications of the IDF. By taking the 
general coordinate transformation in a finite space-time domain, we put the new variables , 

,  , 


   as functions of , t x , , . In the addenda we present the expressions for the main 

operators , , 

y z

 2
Dt

D
. We note the symmetry of their expressions which leads to the idea 

that the fluons activity is valid for any direction of a finite space-time domain, where the 
kinetical energy presents a strong variation. In this respect, we present in the figure 5 the 

case of the transitional boundary layer. The kinetic energy , given by 

experiments, manifest a variation along the normalized 

 
 





x

C dyUxE
0

2

La xxx  , quoted as 

 aC max.CEa ,CE xfE  . By the usual rule we get the transformed  *,aCE  distribution and 

the difference between them - the normalized  distribution. The comparison of the 

 with the normalized experimental data  

xae ,

 ax x ae , f
 


 x

dyu
0

2/  is quite satisfactory. We also 

state that the fluons activity in the finite space-time domain can be related to the existence of 
the turbulent spots and can explain their non-physical interaction. 

 
Fig. 5 – The fluons activity in the finite space-time domain for the transitional boundary layer. 

 As a general conclusion, we say that the role played by the IDF in shear flows is similar 
to the role played by the vorticity in potential flows. 
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APPENDIX 

1. We consider the transformation of coordinates: 
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 In the new coordinates we get the mathematical operators: 
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where: 
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 The continuity equation leads to the v  expression: 


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where 
00 

 vv . 

 The equation 
Dt

DK
KK  2  becomes: 
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 2. The terms that appear in equation (5) are given by : 

1f , , 2
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 3. Unsteady 2-D Incompressible Boundary Layer Example 
 Basic equations: 
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 Initial and boundary conditions: 
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 Real flow model: 
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 For , m
aU aUK   we get: 
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 The IDF for   and  becomes: aU 2
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and: 
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