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Abstract: The automotive disc braking system is based on the friction between a disc and two pads 

and this friction determines their wear. The theoretical study proposed in this paper aims to model 

this wear process. It is based on a simplified geometrical model (approximation of the curvilinear 

trapezium with a rectangle of the same area) and considering the brake pad as a viscoelastic 

material, while the disc is elastic. With the help of this model we can determine the relative 

displacements of the pad and of the disc during the braking process. Also, when the process is 

stabilized, the pressure distribution can be determined. In the paper, both the relative displacements 

and the pressure distribution are exemplified for the inner edge, the middle and the outer edge of the 

brake pad. 
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1. INTRODUCTION 

The braking system is one of the most important safety systems of the vehicle [1]-[3]. 

Automotive disc brakes are based on the friction between a stator (brake pad) and a rotor 

(brake disc) in order to transform the kinetic energy transmitted to the wheels in thermal 

energy. Thus, the tribological study of the brake systems is of utmost importance in their 

analysis [1], [4-6]. 

The brake pads are an essential element in the operation of the brake system. They are 

subjected to very high compressive and shear stresses and pressures of up to 10 MPa. Also, 

they are subjected to cyclical mechanical and thermal stresses, thus being exposed to fatigue. 

All these stresses that brake pads are subjected to determine the wear of the pad friction 

material. 

Brake pads wear is normal because they are designed to wear out more quickly than 

discs. Pad wear is influenced by the contact pressure, the relative sliding speed between the 

disc and the pads and by the temperature of the surfaces in contact [7]. The wear mechanism 

of the brake pad friction material is a complex phenomenon, being composed of many types 

of wear: abrasive, adhesive, superficial fatigue and thermal fatigue [6], [8]. 

Like brake pads, the brake discs are designed to be taken out of use when they have 

reached the wear limit and will have a thickness below that prescribed by the manufacturers. 
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Taking these into consideration, for the automotive manufacturers it is very important to 

predict the wear behavior of the brake pads and discs [9]. The current paper aims to 

theoretically model the wear process of the automotive brake pad and disc. 

2. GEOMETRIC MODEL 

The geometry (Fig. 1), the angular speed (𝜔), the friction regime (the friction coefficient 𝜇 

and its variation with speed, contact pressure and temperature), the wear parameters of the 

brake pads (𝑘𝑤1
) and the brake disc (𝑘𝑤2

) for the contact between the brake disc and the two 

brake pads are considered to be known [9]. 

 

Fig. 1 – Brake system geometry at the contact area between the disc and the brake pads 

 The geometric particularities of the disc brake impose the following specific measures 

of the friction and wear processes: 

a) friction areas 

- for the brake pad: 

𝐴1  =
1

2
 𝛾 (𝑅𝑖 + 𝑅𝑒)(𝑅𝑒 − 𝑅𝑖) =

1

2
 𝛾 (𝑅𝑒

2 − 𝑅𝑖
2) , (1) 

where 𝛾 is the mutual coverage angle of the brake pad and disc and can be approximated 

based on the mean semi-width of the pad (𝑎𝑝), 

𝛾 ≈
8𝑎𝑝

𝐷𝑒(1 + 𝑟𝑎)
=

8𝑎𝑎𝑝

1 + 𝑟𝑎
 , (2) 

where 𝑎𝑎𝑝 = 𝑎𝑝 𝐷𝑒⁄  is the dimensionless semi-width of the pad and 𝑟𝑎 = 𝐷𝑖 𝐷𝑒⁄  is the 

radius. 

Thus, the friction area for the pad (𝐴1) coincides with the contact area, 

𝐴1 ≈ 𝐷𝑒
2 𝑎𝑎𝑝 (1 − 𝑟𝑎) , (3.1) 

 - for the brake disc: 
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𝐴2 = 𝜋(𝑅𝑒
2 − 𝑅𝑖

2) =
𝜋

4
 𝐷𝑒

2 (1 − 𝑟2) . (3.2) 

b) the wear time for a work period 𝑡: 

- for the brake pad: 

𝑡1 = 𝑡 ;  (4.1) 

 - for the brake disc: 

𝑡2 =

1
2

(𝑅𝑖 + 𝑅𝑒) ∙ 𝛾

1
2

 𝜋 (𝑅𝑖 + 𝑅𝑒)
𝑡 =

𝛾

𝜋
≈

8 𝑎𝑎𝑝

𝜋(1 + 𝑟𝑎)
 . (4.2) 

 The wear rates for the brake pad (𝑣𝑢1
) and disc (𝑣𝑢2

) materials are defined: 

𝑣𝑢1
= (

𝑑𝑢

𝑑𝑡
)

1
=

∆𝑣𝑢1

𝐴1 ∙ 𝑡1
=

2 ∙ ∆𝑣𝑢1

𝛾 ∙ 𝑡 (𝑅𝑒
2 − 𝑅𝑖

2)
 ; (5.1) 

𝑣𝑢2
= (

𝑑𝑢

𝑑𝑡
)

2
 =

∆𝑣𝑢2

𝐴2 ∙ 𝑡2
=

∆𝑣𝑢2
∙ 𝜋

𝜋 (𝑅𝑒
2 − 𝑅𝑖

2) ∙ 𝛾𝑡
=

∆𝑣𝑢2

𝛾 ∙ 𝑡 (𝑅𝑒
2 − 𝑅𝑖

2)
 . (5.2) 

where ∆𝑣𝑢1
 is the volume of the worn and removed material from the pad and ∆𝑣𝑢2

 is the 

volume of the worn and removed material from the disc. 

 The wear rates can be determined from the analysis of the experimental results directly 

on the brake or from the laboratory tests.  

 For the material pair used for the modern disc brakes, for the movement type between 

the disc and pads (variable speed sliding) and for the initial surface contact form (plane-

plane), the wear is complex (adhesion and abrasion). The friction material of the pad is a 

composite material with a viscoelastic matrix and elastic components. The disc material is 

gray cast iron, considered as an elastic material. 

For these conditions, the wear rates of the two brake materials are considered to have 

dependences as following: 

𝑣𝑢1,2
= 𝑘𝑢1,2

(
𝑝

𝐻
)

𝛼

 ∙ (
𝑣

𝑣𝑐𝑟
)

𝛽

=  𝑘𝑢1,2
 𝑝𝑎

𝛼  ∙  𝑣𝑎
𝛽

 , (6) 

where 𝑘𝑢1,2
 are the wear coefficients of the pad (1) and the disc (2); 𝑝 – contact pressure; 𝐻 

– the parameter that characterizes the wear penetration (hardness for the disc material, 

compliance for the pad material), 𝑣 – sliding speed; 𝑣𝑐𝑟 – critical speed – the speed at which 

the pad material has maximum damping; 𝑝𝑎 = 𝑝 𝐻⁄ ; 𝑣𝑎 = 𝑣 𝑣𝑐𝑟⁄ ; 𝛼 and 𝛽 – coefficients 

which depend on material properties, friction conditions, temperature etc. (in many situations 

𝛼 = 𝛽 ≈ 1). The product (𝑝 ∙ 𝑣) is a parameter of the energy flux generated by the friction 

process and characterizes the thermic regime of the brake. 

3. THE CONTACT CONDITION IN THE WEAR PROCESS 

In the wear process the form of the contact surfaces modifies continuously, thus the aspects 

regarding the mathematical formulation of the contact pressure and of the displacements 

become important. It is considered that the dimensions of the pad and the disc modify only in 

the direction perpendicular to the contact surface. 
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 In each point 𝑀(𝜌, 𝜓) (Fig. 1.) on the contact surface the linear wear is 𝑢1,2(𝜌, 𝜓) and it 

depends on the contact pressure 𝑝(𝜌, 𝜓) and on the sliding speed𝑣(𝜌). The system of 

cylindrical coordinates (Fig. 1) has the origin in the center of the disc (𝑂), current radius 𝜌 

and angle 𝜓, mesured from the vertical axis of the disc in the direction of angular 

speed. To find the correlation between the contact pressure 𝑝 and the viscoelastic 

displacement of the pad (𝑤1) and elastic displacement of the disc (𝑤2), in the terms of the 

linear wear 𝑢1,2, Goryacheva’s [10] solution is adapted for the case of a rectangular plane 

surface with pure elastic deformation. 

 In the hypothesis that the wear (𝑢) is small as compared to the radius (𝜌), but 

comparable to the displacement (𝑤) at the same radius (𝜌), the limit conditions are those for 

the undistorted surfaces, neglecting the elastic or viscoelastic displacement (𝑤(𝜌, 𝜓)) and 

the wear 𝑢(𝜌, 𝜓). The contact condition in the wear process of the pad at a given moment is: 

𝑤1(𝜌, 𝜓, 𝑡) + 𝑢1(𝜌, 𝜓, 𝑡) +  𝑤2(𝜌, 𝜓, 𝑡) +  𝑢2 (𝜌, 𝜓, 𝑡)  = 𝐷(𝑡) , (7.1) 

where 𝐷(𝑡) is the proximity (penetrations) of the pad to the disc. 

 The contact condition in the wear process of the disc is: 

𝑤1(𝜌, 𝜓, 0) + 𝑤2(𝜌, 𝜓, 0) = 𝐷(0) , (7.2) 

because the relative displacement of the disc is allowed by the friction process at any 

moment (𝑡) and thus at the initial moment 𝑡 = 0. 

 The wears 𝑢1 and 𝑢2 can be deducted from (5.1), (5.2) and (6): 

𝑢1,2 = 𝑘𝑢1,2
 ∫ 𝑝𝑎

𝛼  (𝜌, 𝜓, 𝑡′)
𝑡

0

∙ 𝑣𝑎
𝛽(𝜌, 𝜓, 𝑡′) 𝑑𝑡′ . (8) 

4. THE CONTACT PRESSURE BETWEEN THE DISC AND THE PAD 

To determine the pressure variation in time, it is necessary to know the dependence of the 

displacements (𝑤1) and (𝑤2) on the pressure. 

 Thus, for the brake pad material, considered a viscoelastic modified Voigt material, the 

pressure (𝑝) has the expression [11]: 

𝑝 = 𝐸𝑎𝜀 + 𝑖𝜔𝜂𝑎 ∙ 𝜀 = 𝐸𝑎(1 + 𝑖 tan 𝛾𝑎)
𝛿

𝑠
=

𝑤1

𝑠
𝐸𝑎(1 + 𝑖 tan 𝛾𝑎) , (9) 

where 𝐸𝑎 is the apparent elasticity modulus; 𝜀 – the specific deformation; 𝛿 – the 

displacement of the pad in the direction of the normal load; 𝑠 – the pad thickness; 𝜂𝑎 – 

apparent viscosity (characterizes the internal friction of the material); 𝛾𝑎 – the angle of the 

hysteretic losses. 

tan 𝛾𝑎 =
𝜂𝑎

𝐸𝑎
∙ 𝜔  , (10) 

where 𝜔 is the pd pulsation to the direction of the normal force. 

 The apparent elasticity modulus (𝐸𝑎) takes into consideration that the pad material 

deforms sideways when compressed. Moore’s [11] relation is considered: 

𝐸𝑎 = 𝐸(1 + 2 𝑆𝑓
2) , (11) 

in which 𝐸 is the elasticity modulus and 𝑆𝑓 is form factor of the section, defined as the ratio 

between the loaded area (𝐴𝑝) and the unloaded area (𝐴𝑒) (the free surface). 
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𝑆𝑓 =
𝐴𝑝

𝐴𝑒
 . (12) 

 For the brake pad, 

𝐴𝑝 = 𝐴1 =
𝛾

2
(𝑅𝑒

2 − 𝑅𝑖
2) = 𝐷𝑒

2 𝑎𝑎𝑝 (1 − 𝑟𝑎) , (13) 

𝐴𝑒 = 𝑠[𝑅𝑒𝛾 + 𝑅𝑖𝛾 + 2(𝑅𝑒 − 𝑅𝑖)] ≈ 𝐷𝑒
2𝑠𝑎(4 𝑎𝑎𝑝 + 1 − 𝑟𝑎) , (14) 

where 𝑠𝑎 = 𝑠 𝐷𝑒⁄  is the dimensionless thickness of the pad. 

 Thus, the form factor has the expression: 

𝑆𝑓 =
0.5 𝛾 𝑅𝑒(1 − 𝑟𝑎

2)

𝑠(𝛾 + 𝛾𝑟𝑎 + 2 − 2𝑟𝑎)
=

𝑅𝑒

𝑠
∙

0.5 𝛾 (1 − 𝑟𝑎
2)

𝛾(1 + 𝑟𝑎) + 2(1 − 𝑟𝑎)
=

=
𝛾

4𝑠𝑎
∙

1 − 𝑟𝑎
2

𝛾(1 + 𝑟𝑎) + 2(1 − 𝑟𝑎)
≈

𝑎𝑎𝑝
2

𝑠𝑎
∙

1 − 𝑟𝑎

4𝑎𝑎𝑝 + 1 − 𝑟𝑎
 . 

(15) 

 The pressure 𝑝 is nondimensionalized from expression (9) in relation to the hardness of 

the disc (𝐻2) (𝑝𝑎 = 𝑝/𝐻2), the disc thickness (𝑠) in relation to the exterior diameter 
(𝑠𝑎 = 𝑠/𝐷𝑒) and the displacement 𝑤1 in relation to the exterior diameter (𝑤1𝑎 = 𝑤1/𝐷𝑒). 

Thus, the dimensionless contact pressure between the pad and the disc is: 

𝑝𝑎 =
𝑝

𝐻2
=

𝑤1𝑎

𝑠𝑎
∙

𝐸1

𝐻1
(1 + 2𝑆𝑓

2)|1 + 𝑖 tan 𝛾𝑎| . (16) 

 The displacement (𝑤1𝑎) of any point of the viscoelastic surface is determined from (16): 

𝑤1𝑎 =
𝐻1 ∙ 𝑠𝑎

𝐸1(1 + 2𝑆𝑓
2)|1 + 𝑖 tan 𝛾𝑎|

𝑝𝑎  . (17) 

 The case concerning the constant pressure on the contact surface is analyzed. 

 If it is considered that at a given time the contact pressure is constant on the pad, the 

different points of the perfect elastic disc will displace differently, depending on the position 

of the points related to the loaded area (Fig. 2). 

 

Fig. 2 – Approximation of the curvilinear trapezium with a rectangle of the same area 
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 The curvilinear trapezium 𝐴𝐵𝐶𝐷 (exterior radius 𝑅𝑒, interior radius 𝑅𝑖, center angle 𝛾 

(Fig. 1)) is approximated with  rectangle 𝐴′𝐵′𝐶′𝐷′ with the sides 2𝑎𝑝 = 𝛾𝐷𝑒 (1 + 𝑟𝑎) 2⁄  and 

2𝑏𝑝 = 𝑅𝑒 − 𝑅𝑖 = 𝐷𝑒(1 − 𝑟𝑎)/2 or by nondimensionalizing in relation to the exterior 

diameter 𝐷𝑒, 𝑎𝑎𝑝 = 𝛾 (1 + 𝑟𝑎) 4⁄ ; 𝑏𝑎𝑝 = (1 − 𝑟𝑎) 4⁄ . 

The correlation of the coordinates of points 𝐴, 𝐵, 𝐶, 𝐷 in the system of cylindrical 

coordinates (𝑂𝜓𝜌) with the coordinates of points 𝐴′, 𝐵′, 𝐶′, 𝐷′ in the cartesian system 𝑥 ∘ 𝑦 

(Fig. 2.a, Fig. 2.b) is: 𝐴(𝑅𝑒 , − 𝛾 2⁄ );  𝐵(𝑅𝑒 , 𝛾 2⁄ );  𝐶(𝑅𝑖 , 𝛾 2⁄ );  𝐷(𝑅𝑖, − 𝛾 2⁄ );  𝐴′(−𝑎𝑝, 𝑅𝑒);  

𝐵′(𝑎𝑝, 𝑅𝑒); 𝐶′(𝑎𝑝, 𝑅𝑖); 𝐷′(−𝑎𝑝, 𝑅𝑖). 

A current point 𝑀(𝑥, 𝑦) is placed in the system 𝑥 ∘ 𝑦 with 𝑥 = 𝜌 sin 𝜓, 𝑦 = 𝜌 cos 𝜓, 

𝜌 = √𝑥2 + 𝑦2. 

The dimensionless coordinates of points 𝐴′𝐵′𝐶′𝐷′ are: 

𝐴′ (−1,
0.5

𝑎𝑎𝑝
) ; 𝐵′ (1,

0.5

𝑎𝑎𝑝
) ; 𝐶′ (1,

0.5𝑟𝑎

𝑎𝑎𝑝
) ; 𝐷′ (−1,

0.5𝑟𝑎

𝑎𝑎𝑝
) . 

 The displacement in direction 𝑧 (direction of the pressure) (𝑤2), determined by Love in 

1929, for a constant pressure (𝑝) which acts in the rectangle (2𝑎 𝑥 2𝑏) is: 

𝜙(𝑥, 𝑦) =
𝜋𝐸𝑟

1 − 𝜐2
2 ∙

𝑤2

𝑝
= (𝑥 + 𝑎) ln [

(𝑦 + 𝑏) + {(𝑦 + 𝑏)2 + (𝑥 + 𝑎)2}
1

2⁄

(𝑦 − 𝑏) + {(𝑦 − 𝑏)2 + (𝑥 + 𝑎)2}
1

2⁄
] + 

+(𝑦 + 𝑏) ln [
(𝑥 + 𝑎) + {(𝑦 + 𝑏)2 + (𝑥 + 𝑎)2}

1
2⁄

(𝑥 − 𝑎) + {(𝑦 + 𝑏)2 + (𝑥 − 𝑎)2}
1

2⁄
] + 

+(𝑥 − 𝑎) ln [
(𝑦 − 𝑏) + {(𝑦 − 𝑏)2 + (𝑥 − 𝑎)2}

1
2⁄

(𝑦 + 𝑏) + {(𝑦 + 𝑏)2 + (𝑥 − 𝑎)2}
1

2⁄
] + 

+(𝑦 − 𝑏) ln [
(𝑥 − 𝑎) + {(𝑦 − 𝑏)2 + (𝑥 − 𝑎)2}

1
2⁄

(𝑥 + 𝑎) + {(𝑦 − 𝑏)2 + (𝑥 + 𝑎)2}
1

2⁄
]  . 

(18) 

The dimensionless pressure will be noted as 𝑝𝑎 = 𝑝 𝐻2⁄ , while 𝑤2𝑎 = 𝑤2 𝐷2⁄ , 𝑎𝑎𝑝 =

𝑎 𝐷𝑒⁄  and 𝑏𝑎 = 𝑏 𝑎⁄ .  

Thus, we will get the contact pressure with which the pad acts on the disc: 

𝑝𝑎 =
𝑝

𝐻2
=

𝜋𝐸2

(1 − 𝜐2
2)𝐻2

∙
𝑤2𝑎

𝑎𝑎𝑝
∙

1

𝜙𝑤(𝑥𝑎, 𝑦𝑎 , 𝑏𝑎)
 , (19) 

where 

𝜙𝑤(𝑥𝑎, 𝑦𝑎 , 𝑏𝑎) =
𝜙(𝑥, 𝑦)

𝑎𝑝
=

𝜙(𝑥, 𝑦)

𝑎𝑝 ∙ 𝐷𝑒
 . 

In the case of the brake pad, if the pressure is constant, then we can apply Love’s 

relation for a viscoelastic material, characterized by the apparent elasticity modulus 𝐸𝑎1. 

𝐸𝑎1 = 𝐸1(1 + 2𝑆𝑓
2) |1 + 𝑖 tan 𝛾𝑎| (20) 

 In this case, the contact pressure 𝑝𝑎 is the same, while displacements 𝑤1 are different 

and depend on the coordinates of the contact points: 
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𝑤1𝑎(𝑥𝑎, 𝑦𝑎) =
𝑤1

𝐷𝑒
=

𝐻2(1 − 𝜐1
2)

𝜋𝐸𝑎1
∙ 𝑎𝑎𝑝 ∙ 𝜙𝑧(𝑥𝑎, 𝑦𝑎) ∙ 𝑝𝑎 = 𝑘1𝜙𝑤(𝑥𝑎, 𝑦𝑎)𝑎𝑎𝑝 . (21) 

 The expression of the dimensionless displacement 𝑤2𝑎 in any point on the disc (Fig. 

2.b) at constant pressure is: 

𝑤2𝑎(𝑥𝑎, 𝑦𝑎) =
𝐻2(1 − 𝜐1

2)

𝜋𝐸2
∙ 𝑎𝑎𝑝 ∙ 𝜙𝑤(𝑥𝑎, 𝑦𝑎) ∙ 𝑝𝑎 = 𝑘2𝜙𝑤(𝑥𝑎, 𝑦𝑎)𝑝𝑎  . (22) 

 The total displacement (𝑤𝑡) of the points from the contact area is: 

𝑤𝑡 = 𝑤1 + 𝑤2  or  𝑤𝑡𝑎 = 𝑤1𝑎 + 𝑤2𝑎. (23) 

 In Fig. 3, Fig. 4 and Fig. 5, the variation of the dimensionless displacements 

𝑤1𝑎, 𝑤2𝑎 and 𝑤𝑡𝑎 is exemplified for sides 𝐴′𝐵′, 𝑅′𝑄′ and 𝐷′𝐶′ of rectangle 𝐴′, 𝐵′, 𝐶′, 𝐷′ 

(Fig. 2.b) dimensionless pressure 𝑝𝑎 = 10−5 and loss coefficients 𝛾𝑎1 = 0.1 and 𝛾𝑎2 =
0.15. It can be observed that, the relative displacement rises in the radial direction form 

exterior to interior, both for the pad and the disc. Also, it can be observed that the relative 

displacement is influenced by the histeretic loss coefficient 𝛾𝑎, an increase in its value 

determining a slight increase of the relative displacements. 

 
Fig. 3 – The relative displacement of the viscoelastic brake pad 

 

Fig. 4 – The relative displacement of the elastic brake disc 
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Fig. 5 – The total relative displacement of the brake pad and disc 

5. THE WEAR OF THE PAD AND THE DISC 

The contact condition in the wear process of the brake pad (7.1) in the 𝑥 ∘ 𝑦 coordinate 

system (Fig. 2.b) and for the elastic displacements form expressions (21) and (22) is: 

(𝑘1 + 𝑘2)𝜙𝑤(𝑥𝑎, 𝑦𝑎)𝑝𝑎(𝑥𝑎, 𝑦𝑎 , 𝑡) + 

+(𝑘𝑢1
+ 𝑘𝑢2) ∫ 𝑝𝑎

𝛼(𝑥𝑎, 𝑦𝑎 , 𝑡′)𝑣𝑎
𝛽(𝑥𝑎, 𝑦𝑎 , 𝑡′)

𝑡

0

𝑑𝑡′ = 𝐷𝑎(𝑡) . 
(24) 

where 𝐷𝑎(𝑡) = 𝐷(𝑡)/𝐷𝑒 is the dimensionless penetration; 

𝑘1 =
𝐻2(1 − 𝜐1

2)

𝜋𝐸𝑎1
  ;    𝑘2 =

𝐻2(1 − 𝜐1
2)

𝜋𝐸2
 . 

 The expression of the contact condition (24) is derived in relation to time 𝑡 and the 

differential equation of dimensionless pressure distribution will result: 

𝑎𝑝(𝑘1 + 𝑘2)𝜙𝑤  𝑝𝑎(̇ 𝑡) + (𝑘𝑢1
+ 𝑘𝑢2) 𝑝𝑎

𝛼(𝑡) 𝑣𝑎
𝛽

= 𝐷𝑎̇(𝑡) . (25) 

 In a stable wear regime, the wear rate (surface proximity) is: 

𝑣𝑢1
+ 𝑣𝑢2

= (
𝑑𝑢

𝑑𝑡
)

1
+ (

𝑑𝑢

𝑑𝑡
)

2
=

𝑑𝐷(𝑡)

𝑑𝑡
= 𝐷𝑠 = constant . (26) 

 Thus, equation (25) becomes a differential equation with separable variables (𝑝𝑎 , 𝑡): 

𝑑𝑝𝑎

𝐴𝑝𝑎
𝛼 + 𝐵

= 𝑑𝑡 , (27) 

where 𝐴 and 𝐵 are functions only of 𝑥𝑎 , 𝑦𝑎 and are independent of time 𝑡. 

𝐴 =
−(𝑘𝑢1

+ 𝑘𝑢2
)𝑣𝑎

𝛽

𝑎𝑎𝑝(𝑘1 + 𝑘2)𝜙𝑤
 ;  𝐵 =

𝐷𝑜𝑎

𝑎𝑎𝑝(𝑘1 + 𝑘2)𝜙𝑤
 ; 𝐷𝑜𝑎 = 𝐷𝑜 𝐷𝑒⁄  . (28) 

 The speed parameter 𝑣𝑎 varies in the contact zone: 
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𝑣𝑎 =
𝑣

𝑣𝑐𝑟
=

𝜔𝑚𝑟

𝑣𝑐𝑟
=

𝜔𝑚√𝑥2 + 𝑦2

𝑣𝑐𝑟
=

𝜔𝑚√(𝑥𝑐𝐷𝑒𝑎𝑎𝑝)
2

+ (𝑦𝑐𝐷𝑒𝑎𝑎𝑝)
2

𝑣𝑐𝑟
= 

=
(𝑣0 + 𝑣𝑓) ∙ 𝐷𝑒 ∙ 𝑎𝑎𝑝

2 𝑅𝑝𝑛 ∙ 3.6 ∙ 𝑣𝑐𝑟
 √𝑥𝑐

2 + 𝑦𝑐
2 . 

(29) 

where 𝑣𝑜 and 𝑣𝑓 are the vehicle’s speeds before and after the braking (km/h); 𝑅𝑝𝑛 – wheel 

radius with the tire inflated normally (m); 𝜔𝑚 – average angular speed of the disc while 

braking (rad/s); 𝑎𝑎𝑝, 𝑟𝑎, 𝑏𝑎 – notations corresponding to Fig. 2. 

𝑥𝑐 =
𝑥

𝐷𝑒 ∙ 𝑎𝑎𝑝
;          𝑦𝑐 =

𝑦

𝐷𝑒 ∙ 𝑎𝑎𝑝
 . 

 When the wear process is stabilized, the contact pressure will not vary with time 

anymore, thus, the stationary pressure 𝑝𝑎𝑠(𝑥𝑎 , 𝑦𝑎) will be determined from (25): 

𝑝𝑎𝑠(𝑥, 𝑦, 𝐷𝑠) = [
𝐷𝑠

(𝑘𝑢1
+ 𝑘𝑢2)𝑣𝑎(𝑥, 𝑦)𝛽

]

1
𝛼

. (30) 

 The displacement (𝐷𝑠) in stationary regime is determined form the mechanical 

equilibrium condition: 

∫ ∫ 𝑝𝑎𝑠(𝑥𝑐𝑦𝑐𝐷𝑠)𝑑𝑥𝑐𝑑𝑦𝑐 = 4𝑝𝑎𝑜 ∙ 𝑏𝑎 

1

−1

1
2𝑎𝑎𝑝

𝑟𝑎
2𝑎𝑎𝑝

, (31) 

where 𝑏𝑎 = 𝑏 𝑎⁄  – the ratio between the pad dimensions; 𝑝𝑎𝑜 = 𝑝𝑜 𝐻2⁄ , where 𝑝𝑜 is the 

initial contact pressure considered constant. 

 Thus, Fig. 6 shows the dependence of this dimensionless displacement (𝐷𝑠) on the 

dimensionless contact pressure (𝑝𝑎𝑜) numerically determined. 

 

Fig. 6 – Pad displacement function of load in stationary regime 

 For a know initial pressure (𝑝𝑎𝑜), when the process is stabilized the pressure distribution 

on the pad depends on the sliding speed spectrum 𝑣𝑎(𝑥, 𝑦). 

Fig. 7 exemplifies the pressure distribution on the exterior, central and interior sides of 

the pad. 
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Fig. 7 – Circumferential pressure distribution on the pad surface 

 From Fig. 7 it can be observed that maximum value of the pressure is on the interior side 

of the pad 𝑦 = 𝑟𝑎 (2𝑎𝑎𝑝)⁄ , at its center 𝑥 = 0. 

The contact pressure in stationary regime of friction and wear decreases from the 

interior of the pad to its exterior, in the hypothesis that the initial pressure is constant. 

 The wear of the pad in stable regime (24) has a linear dependence of time: 

 𝑢𝑧1(𝑡) = 𝑘𝑢1 ∫ (𝑝𝑎𝑠
𝛼 (𝑡′) ∙ 𝑣𝑎

𝛽(𝑡′)) 𝑑𝑡′ = 𝑘𝑢1
𝑝𝑎𝑠

𝛼 ∙ 𝑣𝑎
𝛽

∙ 𝑡
𝑡

0
= 𝑘𝑢1

𝜋𝑢𝑧 ∙ 𝑡 , (32) 

where 𝜋𝑢𝑧 = 𝑝𝑎𝑠
𝛼 ∙ 𝑣𝑎

𝛽
 is constant throughout the stationary friction and wear process 

(dimensionless wear parameter). 

For example, for 𝑝𝑎𝑠 = 10−5, 𝑘𝑢1
= 5 ∙ 10−7 m/s, 𝑘𝑢2

= 5 ∙ 10−8 m/s, 𝛼 = 1.5, 𝛽 =

1.5, results 𝜋𝑢𝑧 = 1.82 ∙ 10−9 and 𝑢𝑧1(𝑡) = 0.91 ∙ 10−15 ∙ 𝑡 [m], where 𝑡 is the braking time 

in seconds. 

 The wear of the disc in stable regime is obtained similarly to that of the pad: 

𝑢𝑧2(𝑡) = 𝑘𝑢2
∫ (𝑝𝑎𝑠

𝛼 (𝑡′) ∙ 𝑣𝑎
𝛽(𝑡′)) 𝑑𝑡′ = 𝑘𝑢2

𝑝𝑎𝑠
𝛼 ∙ 𝑣𝑎

𝛽
∙ 𝑡

𝑡

0

= 𝑘𝑢2
𝜋𝑢𝑧 ∙ 𝑡 . (33) 

 For the given example, 𝑢𝑧2(𝑡) = 0.091 ∙ 10−15 ∙ 𝑡 [m]. 

6. CONCLUSIONS 

The current theoretical study, that models the wear process of the brake pad friction material 

and the brake disc, allows the estimation of the relative deformations of the viscoelastic 

brake pad in the normal direction with respect to the contact surface and the brake disk. 

 Thus, it has been observed that the relative deformations of the brake pad and disc are 

higher around the inner diameter than around the outer diameter. 

This can be explained by the fact that the pressure is higher on the inner edge than on 

the outer edge of the pad, its maximum value being in the central area of the inner edge. 

 It has been demonstrated that in a stable regime the wear of the pad and of the disc has a 

linear dependence of time and its value can be calculated when the friction coefficients of the 

pad and of the disc are known. 
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