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Abstract: In this paper, we present a new numerical treatment of the lifting surface integral equation 

(LSIE) in the case of rectangular wing planform. The kernel of this equation possesses a strong 

singularity in Hadamard sense. First the equation is transformed into one containing weaker 

singularities, of Cauchy-type, and then the 2D singular integral is discretized by the aid of the Gauss-

type quadrature formulae. 

Thus the problem is reduced to a finite system of linear algebraic equations. The numerical simulation 

reveals a very good agreement, in terms of jump pressure over the wing and aerodynamic coefficients, 

with the exact solution in the case of the low aspect ratio wing and also with other numerical 

solutions. 
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1. INTRODUCTION

In the Multhopp’s paper [7] we are led to the lifting surface integral equation (LSIE) in 

subsonic flow for the unknown dimensionless jump pressure over a wing which is supposed 

to be infinitely thin: 
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where D is the wing planform namely projection of the wing on XOY plane, 

)0,,()0,,(),(  yxpyxpyxf  is unknown, 21  M  is the compressibility 

coefficient, 2
M  is the Mach number of the undisturbed flow and ),( yxhz   is the equation of 

the mean surface of the wing such that '
xh << 1. 

In the case of the flat plate at uniform angle of attack 1 , xyxh ),( . 

The leading and trailing edges of the wing planform are described by the equations 

)(yxx   and )(yxx   respectively. 

The wing's geometry is shown in the Figure 1 below. 
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   a)  Side view     b)  Top view 

Fig. 1 The wing’s geometry 

The integral contains a strong singularity at y , the asterisk standing for “Finite Part” 

integral in Hadamard sense defined by 
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This integral must be solved taking into account the boundary behavior of the jump 

pressure:  

xyxyxf   )(),(  at the trailing edge 

)(

1
),(

yxx
yxf


  at the leading edge 

byyxf ),(  at the lateral edges y = b  

(3) 

There are numerous papers devoted to solving numerical LSIE. We mention here 

Multhopp’s method [7],[9], Vortex Lattice Method (VLM) [4] or Gauss-type quadrature 

formulae method [2]. In the present paper we deal with a method of the latter type for 

integrals with Cauchy-type singularities that are weaker than those of Hadamard-type and 

hence the quadrature formulae for spanwise integral are more accurate. 

2. NEW FORM OF THE  LSIE 

In reference [5] is given an equivalent form of the LSIE, containing only Cauchy-type 

singularities. 
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where the mark # stands for the integral in the sense of Cauchy Principal Value: 
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where 
2,1 D is the area D  from which two bands centered at ),( yx  parallel to X-axis of 

width 12  and Y-axis of width 22 respectively, where removed (Figure 2). 

 
 

 

 

 

 

 

 
 

 

 

      Fig. 2                Fig. 3 

In what follows we make the following assumptions: 

i) the wing planform D  is a convex set 

ii) the X-axis is symmetry line of the set D 

If the first assumption is not fulfilled for some wing configurations we set 0f  

beyond the trailing edge (Figure 3). 

Integrating the equation (4) with respect to y  we get 
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where )(x  is an arbitrary function of integration. We shall prove that 0)( x  for any 

arbitrary )1,1(x . 

Indeed, from the first assumption it follows that the functions )(yxy   and 

),( yxfy  are even whence the function 
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Hence, if we set 0y  in (7) it follows that 0)(  x . Using this approach we obtained a 

new form of the LSIE under the aforementioned assumptions: 

0f

D
21 ,D
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3. DISCRETIZATION IN THE CASE OF THE RECTANGULAR 

PLANFORM 

If D  is a the rectangle    bb,1,1   then the above assumptions are met. We perform the 

change of variables ',',','  bbyyxx  but for the sake of simplicity  we shall 

denote the new variables by the same notations as the old. Taking into account the boundary 

behavior of the jump pressure we seek the solution in the form 
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In the new variables the equation (8) is written 
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In paper [6] is given a general Gauss-type quadrature formula for singular integrals 

which is particularized in [3] for various weights. Thus 
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where 
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Using the formulae (12) the following discretized form of the equation (11) is obtained: 
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where ),( lkkl bFF  are the unknowns, 
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4. NUMERICAL RESULTS AND COMPARISONS 

The linear system (13) has )1( nm  equations and mn unknowns. In order to fit the number 

of equations with the number of unknowns we introduce a set of n  fictitious unknowns 
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Solving this square linear system numerically we get miCi ,1,0   showing that the 

system (13) is consistent. The consistency is proved also if we solve the linear system (13) 

using the NSolve function from MATHEMATICA Package. Due to the spanwise symmetry 

only half of the unknowns are used, hence the time consumption is halved. Once klF  

determined it is easy to evaluate the lift and moment coefficients by means of formulae (11). 
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where A  is the area of the wing planform  and 0a  is the wing chord (dimensionless). 

In order to study the efficiency of the present numerical method we consider the 

incompressible flow past a rectangular wing planform at uniform angle of attack   and 

aspect ratio 1 bAR . We choose the same number n  of collocation points along the span 

and along the chord. The values of the lift slope coefficient /LC  in terms of n  are shown 

in Table 1. 

Fitting this set of data we obtain an asymptotic behavior of the form 
5.3/1169319.04602265.1/ nCL  . Thus we predict that for the square wing 

460227.1/ LC  correct to 6 decimal places. This value is the same with that obtained by 

Tuck in [8] up to the 6th decimal digit. 

A second example is the incompressible flow past a low aspect ratio )1( b  

rectangular wing at uniform angle of attack  . The distribution of the jump pressure over the 

wing in the considered cases are shown in Figure 4 and Figure 5 respectively. 
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In reference [1] is given the analytical expression (in the frame of the theory of  the wings of 

low aspect ratio) of the lift slope coefficient as 2// bCL  . For 1.0b  Dragos’ exact 

solution gives 15708.0/ LC  whilst our method provides 15702.0/ LC . 

These two examples show a very good agreement between analytical or numerical 

solutions and our method fact which validates the latter one. 

Table 1 Convergence rate with number n of spanwise collocation points 

m=n /Lc  

10 1.4601313 

20 1.4602118 

30 1.4602224 

40 1.4602244 

50 1.4602254 

60 1.4602259 

80 1.4602263 

100 1.4602264 

 

    
 

               Fig. 4 (square wing)                  Fig. 5 (low aspect ratio wing 1.0b ) 
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