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Section 7 – ATS and full Automation ATM 

Abstract: This paper is dedicated to the study and analysis of a successfully designed control system 

in ATM. The aircraft's motion is affected by other factors, besides the pilot controls in the form of 

external disturbances, such as wind, and internal errors, due to unmodelled dynamics, tracking error 

and system noise. Navigation equipment tracks the exact real-time location of the aircraft in 4D space 

and provides feedback to both the pilot in the cockpit and ATC via ADS-B. ATM was expressed as a 

large, decentralized, dynamic, variable size, infinite horizon, multi-parameter, constrained, nonlinear, 

non-causal, non-convex, multi-objective, high-dimensionality, hybrid (continuous and combinatorial), 

optimal control problem. Rapidly increasing growth and demand in CNS/ATM, the advanced scheme 

for ATM, ADS-B system which is based on digital communication is being implemented in the field of 

surveillance. ADS-B is a radically new technology that is redefining the paradigm of CNS in ATM 

today. Automatic Dependent Surveillance-Broadcast (ADS-B) is the next generation air surveillance 

system which supplants and complements the limitations of conventional radar, since conventional 

ATM radar systems will reach their limits soon due to the increases in air traffic. 

Key Words: ATM Automation, ATC, ADS-B 

1. INTRODUCTION 

Air Traffic Management ensures the safety of flight by optimizing flows and maintaining 

separation between aircraft. Aircraft trajectory is one of the most fundamental objects within 

the frame of ATM. However, partly due to the fact that aircraft positions are most of the time 

represented as radar plots, the time dependence is generally overlooked so that many 

trajectory statistics conducted in ATM are spatial only. Even in the most favorable setting, 

with time explicitly taken into account, the trajectory data are expressed as an ordered list of 

plots labeled with a time stamp, forgetting the underlying aircraft dynamics. [1-5] 

Furthermore, the collection of radar plots describing the same trajectory can have tenths 

more samples, nearly all of them being redundant. From the trajectory design point of view, 
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this redundancy is a real handicap for the optimization process. In this survey, alternative 

trajectory representations are presented with a description of their advantages and limits. 

Currently those trajectories are represented by the mean of plot lists which are manipulated 

by ATM software. [1-5] 

Every day, all aircraft trajectories are registered into large database for which a huge 

capacity is needed. Based on this new trajectory representation for which redundancy has 

been removed, the trajectories database may be strongly improved from the capacity point of 

view. This compressed trajectory format may also be used for improving the trajectories 

transmission between ATM entities. A key issue in the performance evaluation of ATM 

decision support tools (DST) is the distance metric that determines the similarity of 

trajectories. Some proposed representation may be used to enhance the trajectory distance 

computation. Control input includes condition and model parameters. The model refinement 

(and computational complexity) ranges from tabular to many degrees of freedom. [1-5] 

2. OPTIMAL CONTROL FOR AIRCRAFT TRAJECTORY DESIGN 

To improve the Air Traffic Management, projects have been initialized in order to compel 

the aircraft in position and in time (4D trajectory) so as to avoid potential conflict and allow 

for some optimality with respect to a given user cost index and environmental criteria (noise 

abatement, pollutant emission). When trajectories samples are available (from radar for 

instance), one can build a dedicated base which will minimize the number of coefficients for 

the trajectory reconstruction. [1] 

 Principal Component Analysis (PCA) is a mathematical procedure that uses an 

orthogonal transformation to convert a set of observations of possibly correlated variables 

into a set of values of linearly uncorrelated variables called principal components. The 

number of principal components is less than or equal to the number of original variables. In 

the physical space, a trajectory is occasionally represented as a four-dimensional flight path, 

following the tradition of Air Traffic Control, with time as the fourth dimension, in addition 

to the normally used three-dimensional representation of a path. [6-8] 

 The objective of the optimal control theory is to determine the control input(s) that will 

cause a process (i.e., the response of a dynamical system) to satisfy the physical constraints, 

while minimizing (or maximizing) some performance criterion. The feasibility of the 

trajectories is automatically ensured using this approach. [6-8] 

 The typical Optimal Control Problem (OCP) can be stated as follows: - Given the initial 

conditions, the final conditions, and an initial time, determine the final time, the control input 

and the corresponding state history 𝑥(𝑡) for 𝑡 ∈ [𝑡0, 𝑡𝑓] which minimize the cost function [7] 

J(x, u) = ∫ L(x(t), u(t))dt
tf
t0

  (1) 

Where 𝑥(𝑡) and u(𝑡) satisfies differential and algebraic constraints, for all 𝑡 ∈ [𝑡0, 𝑡𝑓]: 

 {
�̇� − 𝑓(𝑥(𝑡), 𝑢(𝑡)) = 0

    𝐶(𝑥(𝑡), 𝑢(𝑡)) ≤ 0
  (2) 

𝑢𝑜𝑝𝑡 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑢∈𝑈𝐻(𝑡, 𝑥, 𝜆, 𝑢)   (3) 

𝐻(𝑡, 𝑥, 𝜆, 𝑢) = L(x, u) + 𝜆𝑇 𝑓(𝑥, 𝑢)  (4) 
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𝜆  ̇ (𝑡) = −
𝜕𝐻

𝜕𝑥
(𝑥(𝑡), 𝜆(𝑡), 𝑢(𝑡)) (5) 

 During the terminal landing phase, commercial airliners are required to follow strict Air 

Traffic Control (ATC) rules, which guide the airplanes to follow 'virtual' three-dimensional 

corridors all the way to the landing strip. Furthermore, since our approach leads to very fast 

computation of feasible trajectories, one can use the approach over new, locally modified 

paths repeatedly till a satisfactory path is found. [6-8] 

 A major issue with almost all current trajectory optimization solvers (direct or indirect) 

is the fact that their computational complexity is high and their convergence strongly 

dependents on the initial conditions, unless certain rather stringent convexity conditions 

hold. As a result, the solution of trajectory optimization problem in real-time is still elusive. 

[7] A common line of attack for solving trajectory optimization problem in real time (or near 

real time) is to divide the problem into two phases: an offline phase and an online phase. The 

offline phase consists of solving the optimal control problem for various reference 

trajectories and storing these reference trajectories onboard for later online use. 

 These reference trajectories are used to compute the actual trajectory online via a 

neighboring optimal feedback control strategy typically based on the linearized dynamics. 

Another strategy for computing near-optimal trajectories in real-time is to use a receding 

horizon (RH) approach. [6-8] In a receding horizon approach a trajectory that optimizes the 

cost function over a period of time, called the planning horizon, is designed first. The 

trajectory is implemented over the shorter execution time and the optimization is performed 

again starting from the state that is reached at the end of the execution time. [1] 

 A third approach is to use a two-layer architecture, where first an acceptable path (in 

terms of length, safety, etc) is computed using common path-planning techniques, and then 

an optimal time-parameterization is imposed on this path to yield a feasible trajectory. 

 However, when successful, such an approach is numerically very efficient and can be 

implemented in real-time with current computer hardware. [6-8] 

 Aircraft maneuvering was one of the first areas where the optimal control theory was 

used to generate optimal trajectories. 

 The main objective is to find a time-parameterization along the path, i.e., a 

function 𝑠(𝑡), where 𝑡 ∈ [0, 𝑡𝑓]), such that the corresponding time-parameterized 

trajectory (𝑥(𝑠(𝑡)), 𝑦(𝑠(𝑡)), 𝑧(𝑠(𝑡)))  minimizes either the flight time 𝑡𝑓 (emergency 

landing case) or fuel (terminal landing operation). [6-8] 

 As shown in [1-5] all control (thrust, angle of attack, load factor, etc) constraints can be 

mapped into constraints involving the specific kinetic energy of the aircraft, 𝐸 =
𝑣2

2
  where v 

is the aircraft velocity of the form [6-8] 

 𝑔𝑤(𝑠) ≤ 𝐸(𝑠) ≤ 𝑔𝑤  (𝑠) (6) 

min𝑇   ∫
𝑑𝑠

√2𝐸(𝑠)

𝑠𝑓
𝑠0

  (7) 

𝐸′(𝑠) =
𝑇(𝑠)

𝑚
− 𝐷(𝐸(𝑠), 𝑠) − 𝑔 ∙ 𝑠𝑖𝑛𝛾(𝑠)  (8) 

𝑇𝑚𝑖𝑛 ≤ 𝑇(𝑠) ≤ 𝑇𝑚𝑎𝑥 (9) 
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min𝑇   ∫ 𝑇(𝑠)𝑑𝑠
𝑠𝑓
𝑠0

 ;   𝐸′(𝑠) =
𝑇(𝑠)

𝑚
− 𝐷(𝐸(𝑠), 𝑠) − 𝑔 ∙ 𝑠𝑖𝑛𝛾(𝑠) (10) 

𝑡′(𝑠) =
1

√2𝐸(𝑠)
 ;  𝑔𝑤(𝑠) ≤ 𝐸(𝑠) ≤ 𝑔𝑤  (𝑠); 𝑇𝑚𝑖𝑛 ≤ 𝑇(𝑠) ≤ 𝑇𝑚𝑎𝑥 (11) 

𝐷(𝐸(𝑠), 𝑠) is the drag, T is the thrust, 𝛾 is the flight-path angle, and where prime denotes 

differentiation with respect to path length s. 

 The main advantage of these problem formulations is the reduction of the problem 

dimensionality that can be leveraged to solve both of these problems very efficiently and 

reliably. In fact, these OCPs (Optimal Control Problem) are simple enough so that the 

optimal switching structure of the optimal solution can be unraveled using the necessary 

conditions from PMP (Pontryagin’s Maximum Principle). For the minimum-fuel problem the 

switching structure varies depending on the given TOA (Time-of-Arrival). However, for a 

given path and a fixed TOA, the structure is uniquely determined. This helps tremendously 

the convergence properties of the algorithm. [12-14] 

 Aircraft trajectory planning has reached enough maturity to shift the trajectory planning 

problem from the mathematical optimization of the aircraft trajectory to the automated 

parsing and understanding of desired trajectory goals, followed by their re-formulation in 

terms of a mathematical optimization program. [1-5] 

 At the operator level, the information is presented to the operator in the form of 

sentences expressed in natural language (e.g. that used by Air Traffic Control phraseology). 

At the level of trajectory planning automation, the information is presented as a mix of 

continuous parameters (aircraft position and speed), and discrete parameters describing 

mission status (completed tasks, tasks remaining to be completed). [1-5] 

 A natural language interpreter and task scheduler transforms the operator’s requirements 

into tractable mathematical optimization programs that may be executed by the aircraft 

through its Flight Control Computer. [1-5] 

 The aircraft’s innermost dynamics (that consist of raw aircraft dynamics and SAS-

Stability Augmentation System), although critical to vehicle stability, is not shown. The 

main goal of using a Natural Language Interface (NLI) for interacting with a computer-based 

system is to minimize the workload on the operator. After the Natural Language Interface 

and Flight Planning and Scheduling components have converted the flight plan into a series 

of tasks for the aircraft to perform, the Trajectory Generation Module guides the vehicle 

from one task to the next, i.e. from an initial state to a desired one, through an obstacle field 

while optimizing a certain objective. The latter can be to minimize time, fuel or a 

combination of both. [6-8] 

 By introducing a cost function over the T time steps, the general trajectory optimization 

problem can be formulated as to [13-14] 

Minimize  𝑿𝒊,𝒖𝒊    𝐽𝑇 = ∑  𝑓𝑖
𝑇
𝑖=1   (𝑋𝑖 , 𝑢𝑖,  𝑋𝑓   ) +  𝑓𝑇(𝑋𝑇 ,  𝑋𝑓   )   (12) 

{
 
 

 
 
𝑋𝑖+1 = 𝐴𝑋𝑖 + 𝐵𝑢𝑖,   𝑖 = 0,… , 𝑇 − 1

𝑋0 = 𝑋𝑒𝑠𝑡𝑖𝑚.
𝑋𝑖 ∈  𝒳0,   𝑖 = 1,… , 𝑇

𝑢𝑖 ∈  𝒰0,   𝑖 = 0,… , 𝑇 − 1
(𝑥𝑖 , 𝑦𝑖) ∈  𝒟0, 𝑖 = 1,… , 𝑇  
(𝑥𝑖 , 𝑦𝑖) ∉  𝒪0, 𝑖 = 1,… , 𝑇 

   (13) 
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 The objective function consists of stage costs 𝑓𝑖  (𝑋𝑖 , 𝑢𝑖,  𝑋𝑓  ) corresponding to each 

time step- i, and a terminal cost term  𝑓𝑇(𝑋𝑇 ,  𝑋𝑓  ) that accounts for an estimate of the cost-

to-go from the last state 𝑋𝑇 in the planning horizon to the goal state 𝑋𝑓. [13-14] 

 The sets 𝒳0 and 𝒰0 represent the (possibly non-convex) constraints on the aircraft 

dynamics and kinematics, such as bounds on velocity, acceleration and turn rate. Here, the 0- 

subscript denotes the fact that these constraints can be dependent on the initial state. [15] 

 Lastly, the expressions (𝑥𝑖, 𝑦𝑖) ∈  𝒟0 and (𝑥𝑖, 𝑦𝑖) ∉  𝒪0 capture the requirement that 

the planned trajectory points should lie inside the known region 𝒟0, but outside the obstacles 

𝒪0 as given at the current time step i = 0. [16] 

 At the center of the CNS/ATM system there is the ADS-B system, which is based on 

digital communications. Traditional surveillance methods include voice reporting, visual 

checks, and primary and secondary surveillance radars. 

However, in CNS/ATM, these methods are replaced by ADS-B, a radically new 

technology that is currently redefining the paradigm of communications, navigation, and 

surveillance in Air Traffic Management. [18] 

 

Fig. 1 Controller display for Automated Airspace Sector  

[H. Erzberger, Senior Scientist NASA Ames Research Center] [18] 

 Already proven and certified as a viable low-cost replacement for conventional radar, 

ADS-B allows pilots and Air Traffic Controllers to see and control aircraft with more 

precision over a far larger percentage of the Earth’s surface than has ever been possible 

before. ADS-B is a next-generation air surveillance system that will supplant and 

complement conventional radar, since conventional Air Traffic Management radar systems 

will reach their limits soon owing to the increases in air traffic. 

According to recent studies, the position accuracy of conventional radar is 200 m. 

However, ADS-B achieves a position accuracy of 33 m. Nevertheless, although ADS-B has 

better position accuracy, it includes errors from the GNSS since the position information of 

the aircraft relies completely on the GNSS. [18] 

 GPS-based TCAS equipment which is capable of processing ADS-B messages may use 

this information to enhance the performance of TCAS, using techniques known as hybrid 

surveillance. [18] 
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3. MODELS OF TRAJECTORY CONTROL 

Flying aircraft are controlled by pilots or autopilots to follow commanded trajectories. The 

horizontal part of the commanded trajectory can then be constructed from [12-16] 

𝑥�̇� = 𝑉𝑐(𝑡) sin𝛹𝑐  (𝑡) + �̂�𝑥  (𝑡)  (14) 

𝑦�̇� = 𝑉𝑐(𝑡) cos𝛹𝑐  (𝑡) + �̂�𝑦 (𝑡)  (15) 

�̂�𝑥  (𝑡) and �̂�𝑦 (𝑡) are estimated wind components available to the aircraft.  

The idea of feedback linearization is to derive the necessary control functions from a 

specification of desired closed-loop response dynamics. For example, the normalized lift 

may be used to control the aircraft altitude, and the resulting trajectory control is of second-

order. The desired altitude response dynamics can be stated as [12-16] 

(ℎ̈  − ℎ̈𝑐) + 𝐾𝑉1 (ℎ̇ − ℎ̇𝑐) + 𝐾𝑉2 (ℎ − ℎ𝑐) = 0   (16) 

where 𝐾𝑉1 > 0,    𝐾𝑉2 > 0 are feedback control gains. Assuming in consistence with 

commercial flights �̅�  ≪  �̅� , | 𝛾 |  ≪ 1 and for most of the times during a flight | 𝜙 |  ≪ 1. 

ℎ̈ = 𝑉 ̇ sin 𝛾 + 𝛾 ̇  𝑉𝑐𝑜𝑠𝛾 + �̇�ℎ ≈ 𝑔(�̅� − 1) (17) 

�̅� = 1 −
𝐾𝑉1
𝑔
(ℎ̂̇  −  ℎ̇𝑐) −

𝐾𝑉2
𝑔
(ℎ̂  − ℎ𝑐) (18) 

ℎ̂̇ = ℎ̇ + 𝑛ℎ̇ (19) 

ℎ̂ = ℎ + 𝑛ℎ (20) 

where 𝑛ℎ̇ and 𝑛ℎ are the corresponding navigation / estimation errors. [12-16] 

𝐾𝑉1 = 2𝜁𝑉𝜔𝑉 (21) 

𝐾𝑉2 = 𝜔𝑉
2  (22) 

[
𝜉
𝜂
] = [

sinΨ𝑐 cosΨ𝑐
cosΨ𝑐 −sinΨ𝑐

] [
𝑥 − 𝑥𝑐
𝑦 − 𝑦𝑐

] (23) 

𝜂 = (𝑥 − 𝑥𝑐) cosΨ𝑐 − (𝑦 − 𝑦𝑐) sinΨ𝑐 (24) 

𝜉 = (𝑥 − 𝑥𝑐) sinΨ𝑐 + (𝑦 − 𝑦𝑐) cosΨ𝑐 (25) 

|Ψ − Ψ𝑐| ≪ 1   ;    | 𝛾 |  ≪ 1 ;   �̅�   ≈ 1  ;  𝑇 ̅ ≪  �̅� (26) 

sinϕ ≈
Vc
g
Ψ̇𝑐 − 

𝐾𝐿1𝑉𝑐
𝑔

ΔΨ̂ − 
𝐾𝐿2
𝑔
�̂� 

ΔΨ̂ = Ψ−Ψ𝑐+ 𝑛Ψ  ;  �̂� = 𝜂 + 𝑛𝜂   

(27) 

𝑇𝐶̅̅ ̅ = sin 𝛾 + 
𝑉�̇�
𝑔
− 
𝐾𝑠1
𝑔
[�̂� − 𝑉𝑐] (28) 

𝑇𝐶̅̅ ̅ = sin 𝛾 + 
𝑉�̇�
𝑔
− 
𝐾𝑠1
𝑔
[𝑉�̂� − 𝑉𝑐] −

𝐾𝑠2
𝑔
𝜉 (29) 

�̂� = 𝑉 + 𝑛𝑉  ;   𝑉�̂�  =  𝑉𝑔 + 𝑛𝑉   ;   𝜉  =  𝜉 + 𝑛𝜉 (30) 
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Mathematically, the surveilled aircraft state may be expressed as [9-11] 

𝑥𝑛,0 = 𝑥0 +Δ𝑥𝑠   ;   𝑦𝑛,0 = 𝑦0 +Δ𝑦𝑠   ;   ℎ𝑛,0 = ℎ0 +  Δ ℎ𝑠 (31) 

𝑉𝑛,0 = 𝑉𝑐(0) +  Δ𝑉𝑠     ;   Ψ𝑛,0 = Ψ𝑐(0) +  ΔΨs (32) 

Δ𝑅𝑠 = √(Δ𝑥𝑠)
2 + (Δ𝑦𝑠)

2  (33) 

𝑉�̇� = 𝑉�̇�(0) +  ΔVṡ  ;    Ψ�̇� = Ψ𝑐̇ (0) +  ΔΨṡ    ;    ℎ�̇� = ℎ�̇�(0) +  Δhṡ (34) 

𝑉𝑛(𝑡) = 𝑉𝑛,0 + 𝑉�̇�𝑡 (35) 

Ψ𝑛(𝑡) = Ψ𝑛,0 + Ψ�̇�𝑡 (36) 

𝑥𝑛(𝑡) = 𝑥𝑛,0 +𝑊𝑥,𝑛𝑡 +
𝑉𝑛,0

Ψ�̇�
cosΨ𝑛,0 −

𝑉�̇�

(Ψ�̇�)
2 sinΨ𝑛,0 −

𝑉𝑛,0 + 𝑉�̇�𝑡

Ψ�̇�
cosΨ𝑛(𝑡) +  

+
𝑉�̇�

(Ψ�̇�)
2 sinΨ𝑛(𝑡) (37) 

𝑦𝑛(𝑡) = 𝑦𝑛,0 +𝑊𝑦,𝑛𝑡 +
𝑉𝑛,0 + �̇�𝑛𝑡

Ψ�̇�
sinΨ𝑛(𝑡) −

𝑉𝑛,0

Ψ�̇�
sinΨ𝑛,0 +  

+
𝑉�̇�

(Ψ�̇�)
2 [cosΨ𝑛(𝑡) − cosΨ𝑛,0]  (38) 

ℎ𝑛(𝑡) = ℎ𝑛,0 + ℎ̇𝑛𝑡  (39) 

𝑊𝑥,𝑛 = 𝑊�̂�    ;    𝑊𝑦,𝑛 = 𝑊�̂� (40) 

𝑥𝑛(𝑡) = 𝑥𝑛,0 + (𝑉𝑛,0 sinΨ𝑛,0 +𝑊𝑥,𝑛)𝑡 +
1

2
(𝑉�̇� sinΨ𝑛,0)𝑡

2;  Ψ̇𝑛 = 0 (41) 

𝑦𝑛(𝑡) = 𝑦𝑛,0 + (𝑉𝑛,0 cosΨ𝑛,0 +𝑊𝑦,𝑛)𝑡 +
1

2
(𝑉�̇� cosΨ𝑛,0)𝑡

2 ;  Ψ̇𝑛 = 0 (42) 

𝑎(𝑡) = (𝑥 − 𝑥𝑛) sinΨ𝑛 + (𝑦 − 𝑦𝑛) cosΨ𝑛 (43) 

𝑏(𝑡) = (𝑥 − 𝑥𝑛) cosΨ𝑛 − (𝑦 − 𝑦𝑛) sinΨ𝑛 (44) 

𝛥ℎ = ℎ − ℎ𝑛(𝑡) = ℎ − ℎ𝑐(𝑡) + ℎ𝑐 − ℎ𝑛 =  Δℎ𝑐(𝑡) + Δℎ𝑠 + Δℎ̇𝑠𝑡 (45) 

Where Δℎ𝑐(𝑡) reflects deviations of actual aircraft altitudes from commanded altitudes. 

 In the case of constant heading flights with small heading angle measurement errors, a 

simplified solution can be found. [12-16] 

𝑥 − 𝑥𝑐 = 𝜉𝑠𝑖𝑛Ψ𝑐 + 𝜂𝑐𝑜𝑠Ψ𝑐 (46) 

𝑦 − 𝑦𝑐 = 𝜉𝑐𝑜𝑠Ψ𝑐 − 𝜂𝑠𝑖𝑛Ψ𝑐 (47) 

𝑎(𝑡) = 𝜉𝑐𝑜𝑠(Ψ𝑛 −Ψ𝑐)+𝜂sin(Ψ𝑛 −Ψ𝑐) + (𝑥𝑐 − 𝑥𝑛)sinΨ𝑛 + (𝑦𝑐 − 𝑦𝑛) cosΨ𝑛 (48) 

𝑏(𝑡) = −𝜉𝑠𝑖𝑛(Ψ𝑛 −Ψ𝑐)+𝜂𝑐𝑜𝑠(Ψ𝑛 −Ψ𝑐) + (𝑥𝑐 − 𝑥𝑛)cosΨ𝑛 − (𝑦𝑐 − 𝑦𝑛) sinΨ𝑛 (49) 

𝑎𝑚𝑎𝑥 ≤ 𝜉𝑚𝑎𝑥 +ΔRS,max + 𝑡𝑓ΔVS,max (50) 
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𝑏𝑚𝑎𝑥 ≤ 𝜂𝑚𝑎𝑥 +ΔRS,max + 𝑡𝑓ΔVn,0ΔΨ𝑆,𝑚𝑎𝑥 (51) 

𝛥ℎ𝑚𝑎𝑥 ≤  Δℎ𝑐,𝑚𝑎𝑥 + Δℎ𝑠,𝑚𝑎𝑥 (52) 

 The protected zone represents a region around a given aircraft that no other aircraft 

should penetrate for the safety of both aircraft, and defines the minimum separation 

requirements. 

However, in fact, inaccuracies of aircraft surveillance create uncertainties in the 

knowledge of aircraft state information for ground ATC and other aircraft. In order for air 

traffic controllers and other pilots to maintain sufficient inter-aircraft separations, they need 

to identify a region in which each aircraft is located over a certain time frame. [17] 

 On the other hand to determine practical required action ranges for the current ATC 

system many factors must be considered that include relative aircraft geometry, aircraft 

performance limits, radar sweep times, controller reaction times, communication times, and 

pilot response times. [17] 

4. NUMERICAL SIMULATION AND CONCLUSIONS 

Consider first the radar in use by Air Traffic Control. The range estimation by radar is quite 

accurate. But, the error in azimuth can be significant. The resulting error region would then 

be an ellipse with a major axis perpendicular to the line of sight to the radar. [19] 

 In practical implementation it is most convenient to assume a spherically shaped error 

region with the major axis as the diameter. For the altitude measurement Air Traffic Control 

uses Secondary Surveillance Radar (SSR). 

 Assuming a Mode C transponder, the altitude quantization error is about 100 feet. GPS 

receivers are now used onboard aircraft to provide accurate aircraft state measurements, and 

these measurements may be broadcast to the ground and other aircraft in the concept of 

Automatic Dependent Surveillance-Broadcast, ADS-B. 

 Surveillance accuracy would then depend on the onboard GPS system accuracy, and the 

frequency as well as effective number of digits in the broadcast. 

The demonstrated dependence of the protected zone on surveillance accuracy is highly 

consistent with the discussions in Reynolds & Hansman [17], in which the required 

horizontal separation is 5 nm for controlled aircraft more than 40 nm from the radar site and 

3 nm over the terminal area. 

 In current ATC practice, the protected zone is a standard for all aircraft and aircraft 

geometries with the possible exceptions of aircraft takeoffs and landings. The protected zone 

can most likely be reduced through improved surveillance accuracy. 

If the position of an aircraft is known to a greater degree of certainty, the state-

uncertainty region will be smaller. This is the same conclusion arrived at by Reynolds and 

Hansman [17]. 

 The desired performance index is a probability of detection- Pd and probability of false 

alarm- Pfa. Since coherent detection requires phase information and, therefore is more 

computationally expensive, we adopt a noncoherent detection scheme. The desired range 

resolution determines the bandwidth of the waveform, which determines the pulse width, in 

the case of a rectangular waveform. Another important parameter of a pulse waveform is the 

Pulse Repetition Frequency (PRF). The PRF is determined by the maximum unambiguous 

range. The receiver's noise bandwidth is set to be the same as the bandwidth of the 

waveform. This is often the case in real systems. 
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Fig. 2 Sample aircraft paths & the corresponding location estimation errors as a function of time  

 

Fig. 3 Radar Tracking Simulation - Standard deviation of location estimate error 

 

Fig. 4 Radar Tracking Simulation - 17-Jul-2016 
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Fig. 5 Air Traffic Controller Radar Simulation Results 

 

Fig. 6 Implementing the RADAR MODEL 

 

Fig. 7 Nonfluctuating Noncoherent Receiver Operating Characteristic (ROC) Curves. 
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Fig. 8 Nonfluctuating Noncoherent Receiver Operating Characteristic (ROC) Curves. 

 

Fig. 9 Detection Threshold-the noise is white Gaussian & the detection is noncoherent 

 

Fig. 10 The matched filter offers a processing gain which improves the Detection Threshold 
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Fig. 11 Detection Threshold - after the range normalization 

 

Fig. 12 The SNR by noncoherently integrating (video integration) the received pulses 

 

Fig. 13 Fast time sequences using a uniform PRF 

 

Fig. 14 Frequency response of the three - pulse canceller 
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Fig. 15 Frequency response of the three-pulse canceller-blue is uniform PRF 

 

Fig. 16 Probability of False Alarm- SRN for Pd=0.78 (N=1) 

 

Fig. 17 Receiver Operating Characteristic (ROC) Curves 
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 If the surveillance errors can be made small enough and become comparable to the total 

onboard system errors, reduction of the total onboard system errors can further reduce the 

protected zone. This may be achieved by using path feedback control modes and obtaining 

more accurate onboard measurements of wind components and aircraft states. 

 Furthermore, the protected zone for each aircraft and pilot can be unique. As shown, the 

definition of the protected zone depends upon the dynamics of the aircraft and the 

characteristics of the pilot. The effective dimensions of the vortex region would also depend 

upon the relative characteristics of the aircraft behind a given aircraft. 

 For example, a heavy aircraft can follow a light aircraft at a closer distance than a light 

aircraft can follow a heavy aircraft due to the differing capacities of roll control. Therefore, 

further reductions of minimum separation requirements may be achieved through 

individually designed and dynamically-varying protected zones. Three distinct components 

of the protected zone are identified as the vortex region, the safety buffer region, and the 

state-uncertainty region. The safety buffer region and the vortex region are essentially added 

to one another. These two regions must then be considered at all locations in the state-

uncertainty region. A systematic procedure is presented for the analysis of the state-

uncertainty region, which is defined as the contour of likely worse-case deviations of actual 

trajectories from nominal surveillance trajectories over a certain period of time. These 

deviations can be decomposed into position surveillance errors, propagation of velocity 

surveillance errors, and total onboard system errors consisting of flight technical errors and 

navigation system errors. After the surveillance errors become sufficiently small, reduction 

of total onboard system errors becomes important for the reduction of the protected zone. 

 The idea of feedback linearization is to derive necessary control functions from a 

specification of desired closed-loop response dynamics. For example, the normalized lift 

may be used to control the aircraft altitude, and the resulting trajectory control is of second-

order. For estimating nominal surveillance trajectories over a long term such as for oceanic 

flights, the acceleration intents and the estimated wind components can vary with time. 

Numerical integrations can be used to obtain nominal surveillance trajectories. 

 The relation between Pd, Pfa and SNR can be best represented by a receiver operating 

characteristics (ROC) curve. To make the radar system more feasible, we can use a pulse 

integration technique to reduce the required SNR. Further reduction of SNR can be achieved 

by integrating more pulses, but the number of pulses available for integration is normally 

limited due to the motion of the target or the heterogeneity of the environment. For the 

noncoherent detection scheme, the calculation of the required SNR is, in theory, quite 

complex. Fortunately, there are good approximations available, such as Albersheim's 

equation. The synthesized signal is a data matrix with the fast time (time within each pulse) 

along each column and the slow time (time between pulses) along each row. The detector 

compares the signal power to a given threshold. In radar applications, the threshold is often 

chosen so that the Pfa is below a certain level. In this case, we assume the noise is white 

Gaussian and the detection is noncoherent. The matched filter offers a processing gain which 

improves the detection threshold. It convolves the received signal with a local, time-

reversed, and conjugated copy of transmitted waveform. Therefore, we must specify the 

transmitted waveform when creating our matched filter. The received pulses are first passed 

through a matched filter to improve the SNR before doing pulse integration and threshold 

detection. The matched filter introduces an intrinsic filter delay so that the locations of the 

peak (the maximum SNR output sample) are no longer aligned with the true target locations. 

After the matched filter stage, the SNR is improved. To ensure the threshold is fair to all the 

targets within the detectable range, we can use a time varying gain to compensate for the 
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range dependent loss in the received echo. We need to perform pulse integration to ensure 

the power of returned echoes from the targets can surpass the threshold while leaving the 

noise floor below the bar. This is expected since it is the pulse integration which allows us to 

use the lower power pulse train. We can further improve the SNR by noncoherently 

integrating (video integration) the received pulses. After the video integration stage, the data 

is ready for the final detection stage. The detection scheme identifies the peaks and then 

translates their positions into the ranges of the targets. For a radar system, clutter refers to the 

received echoes from environmental scatters other than targets, such as land, sea or rain. 

 Clutter echoes can be many orders of magnitude larger than target echoes. An MTI-

Moving Target Indication Radar exploits the relatively high Doppler frequencies of moving 

targets to suppress clutter echoes, which usually have zero or very low Doppler frequencies. 

 Typical MTI radar uses a high pass filter to remove energy at low Doppler frequencies. 

Since the frequency response of an FIR high pass filter is periodic, some energy at high 

Doppler frequencies is also removed. Targets at those high Doppler frequencies thus will not 

be detectable by the radar. This is called the blind speed problem. In many MTI systems, 

especially low end ones, the transmitter's power source is a magnetron. Because of this, the 

transmitter adds a random phase to each transmitted pulse. MTI processing uses MTI filters 

to remove low frequency components in slow time sequences. Because land clutter usually is 

not moving, removing low frequency components can effectively suppress it. Use 

noncoherent pulse integration to combine the slow time sequences. Exclude the first two 

pulses because they are in the transient period of the MTI filter. In the case before MTI 

filtering, both targets are buried in clutter returns. After MTI filtering, we see that most 

clutter returns are removed except for the direct path peak. 

 The noise floor is now no longer a function of range, so the noise is now receiver noise 

rather than clutter noise. This shows the clutter suppression capability of the three-pulse 

canceller. This is because the three-pulse canceller suppresses the second target because of 

its blind speed. 

 We notice recurring nulls in the frequency response. The nulls correspond to the 

Doppler frequencies of the blind speeds. Targets with these Doppler frequencies are 

cancelled by the three-pulse canceller. 

 One solution to the blind speed problem is to use a nonuniform PRF, or staggered PRFs. 

Adjacent pulses are transmitted at different pulse repetition frequencies which push the 

lower bound of blind speeds to a much higher value. To illustrate this, we use a two-

staggered PRF- Pulse Repetition Frequency, and plot the frequency response of the three-

pulse canceller. 

 A detector's performance is measured by its ability to achieve a certain probability of 

detection and probability of false alarm for a given SNR- Signal-to-Noise Ratio. Examining 

a detector's ROC curves provides insight into its performance. However, in real scenarios, 

targets can accelerate and decelerate as well as roll and pitch. 

 These factors cause the target's radar cross section (RCS) to vary over time. A set of 

statistical models called Swerling models are often used to describe the random variation in 

target RCS. Because the target RCS is varying, the ROC curves for fluctuating targets are 

not the same as the nonfluctuating ones. 

 In addition, because Swerling targets add random phase into the received signal, it is 

harder to use a coherent detector for a Swerling target. Therefore, noncoherent detection 

techniques are often used for Swerling targets. ROC curves are useful for analyzing detector 

performance, both for coherent and noncoherent systems. 
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