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“As far as the laws of mathematics refer to reality, they are not certain, and as far as they are certain, 
they do not refer to reality.” Albert Einstein 

Abstract: The work starts from the linearization of a nonlinear mathematical model of the 
electrohydraulic servomechanism with structural switching and delayed control. The delay, as well as 
the switching structure, can lead to instability and to the deterioration of the dynamic system 
performance. Between the different approaches to the delay problem, this article considers the 
predictive feedback method. The question of switching structure is herein treated empirically, aiming 
in the numerical simulation not to impose on the system a magnitude of the disturbance of the zero 
equilibrium that leads to switching by changing the sign of the state variable which is the displacement 
of the servovalve spool. Numerical simulations allow to highlight a critical delay, which is attested by 
comparison to an analytical method. 

Key Words: electrohydraulic servomechanism, delayed control, switching structure, state predictive 
feedback, discretization, numerical simulation 

1. INTRODUCTION 
This paper focuses on some aspects associated with the treatment of numerical simulation by 
discretization for a system with delayed control for which the synthesis of control was made 
on the basis of state prediction to compensate for the delay. This results in a closed-loop system 
in which appear the delayed state and an integral term representing the control history. 
Therefore, the integration of the obtained system requires the substitution of the integral with 
a sum by dividing the length h of the integration interval - the length of the delay - into a 
convenient number of k sampling periods T. The dynamic system to which we refer in the 
paper is the linearized mathematical model of an electrohydraulic servomechanism with delay 
on control and with structural switching. The problem is formulated and solved in a wider 
context in the [1] paper, but the discretization procedure was summarized in only a few words. 
Further, this Chapter presents the mathematical model of servomechanism. In Chapter 2, a 
predictive feedback control problem is formulated and solved in order to assess the system 
equilibrium stability and the influence of the delay on this stability. Here, the discretization 
methodology is described in detail. Chapter 3 presents the results of the numerical simulations, 
highlighting a critical delay. The paper ends with a few conclusions. 
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The application refers to the mathematical model of an electrohydraulic servomechanism 
(EHS) which is a combination between an electrohydraulic servovalve and a hydrocylinder. 
EHS is an important part of an aircraft implied in the control of the primary flight surfaces. 
The principal performance of the EHS is to ensure the stability of aircraft. The mathematical 
model with five states and structural switching considered in [2-5] is completed by taking into 
account a leakage coefficient as in [6] and by introducing a time-delayed control. Due to the 
switching structure, the mathematical model of the EHS is split into two subsystems with 
respect to the sign of the state 5x : 

�̇�𝑥1 = 𝑥𝑥2; �̇�𝑥2 = (−𝑘𝑘𝑥𝑥1 − 𝑓𝑓𝑥𝑥2 + 𝑆𝑆𝑥𝑥3 − 𝑆𝑆𝑥𝑥4)/𝑚𝑚 

�̇�𝑥3 = 𝐸𝐸(−𝐶𝐶𝑥𝑥5�𝑝𝑝𝑠𝑠 − 𝑥𝑥3 − 𝑆𝑆𝑥𝑥2 + 𝑘𝑘𝑙𝑙(𝑝𝑝𝑠𝑠 − 2𝑥𝑥3))/(𝑉𝑉0 + 𝑆𝑆𝑥𝑥1)            for 𝑥𝑥5 > 0 

�̇�𝑥4 = 𝐸𝐸(−𝐶𝐶𝑥𝑥5�𝑥𝑥4 + 𝑆𝑆𝑥𝑥2 + 𝑘𝑘𝑙𝑙(𝑝𝑝𝑠𝑠 − 2𝑥𝑥4))/(𝑉𝑉0 − 𝑆𝑆𝑥𝑥1) 

�̇�𝑥5 = (−𝑥𝑥5 + 𝑘𝑘𝑆𝑆𝑆𝑆𝑢𝑢1(𝑥𝑥(𝑡𝑡 − ℎ)))/𝜏𝜏𝑆𝑆𝑆𝑆 

(1) 

�̇�𝑥1 = 𝑥𝑥2; �̇�𝑥2 = (−𝑘𝑘𝑥𝑥1 − 𝑓𝑓𝑥𝑥2 + 𝑆𝑆𝑥𝑥3 − 𝑆𝑆𝑥𝑥4)/𝑚𝑚 

�̇�𝑥3 = 𝐸𝐸(−𝐶𝐶𝑥𝑥5�𝑥𝑥3 − 𝑆𝑆𝑥𝑥2 + 𝑘𝑘𝑙𝑙(𝑝𝑝𝑠𝑠 − 2𝑥𝑥3))/(𝑉𝑉0 + 𝑆𝑆𝑥𝑥1) 

�̇�𝑥4 = 𝐸𝐸(−𝐶𝐶𝑥𝑥5�𝑝𝑝𝑠𝑠 − 𝑥𝑥4 + 𝑆𝑆𝑥𝑥2 + 𝑘𝑘𝑙𝑙(𝑝𝑝𝑠𝑠 − 2𝑥𝑥4))/(𝑉𝑉0 − 𝑆𝑆𝑥𝑥1)             for 𝑥𝑥5 < 0 

�̇�𝑥5 = (−𝑥𝑥5 + 𝑘𝑘𝑆𝑆𝑆𝑆𝑢𝑢2(𝑥𝑥(𝑡𝑡 − ℎ)))/𝜏𝜏𝑆𝑆𝑆𝑆; 𝐶𝐶 ≔ 𝑐𝑐𝑑𝑑𝑤𝑤�2/𝜌𝜌 

(2) 

The initial conditions are 0, 0,( ) ( ), 0, 0, (0) 0, 1,2i i i iu t u t h t h i= − ≤ ≤ > = ≠ =x x . The 

magnitude of the perturbation 0 0,( , ) (0) 0i i ix t xϕ = ϕ = ≠  is conditioned by the norm 

0 0
sup ( )i t h t ih − ≤θ≤ϕ = ϕ θ . Assume that 0 i sx p< < , i = 1, 2, and 1 0 /x V S< . The leakage 

coefficient is a combination of the internal leakage coming from the spool valve and the 
external one which is characteristic to the hydrocylinder. 

 
Fig. 1  Block diagram of the servovalve controlled EHS. HC: hydraulic cylinder with piston; L: load; 

CL: controller; T: transducer; TM: torque motor; EHSV: electrohydraulic servovalve 

The following notations are used in equations (1)-(2) and in Fig. 1: 1x - the load 
displacement, 2x  - the load velocity, 3 4,x x  - the pressures in the hydraulic cylinder chambers, 

5x  - the EHSV valve opening, u - the control variable, ps is the supply pressure, m - the inertial 
load of primary control surface, f - the combined coefficient of the damping and viscous 
friction forces on the load, k - an equivalent aerodynamic elastic force coefficient, lk  -  the 
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cumulative coefficient of leakages, S - the area of the piston, 0V  - the semivolume of the 
hydrocylinder; E- the bulk modulus of hydraulic oil, SVτ - the servovalve time constant, SVk - a 
coefficient of proportionality between the servovalve voltage and the displacement of the 
servovalve spool, dc  - the  discharge coefficient in the servovalve spool, w - the valve port’s 
width, ρ - the hydraulic oil density. 

The Jacobian matrices of the two component systems (1), (2) are calculated. The 
equilibrium point for the subsystem (1) is given by 1,1 0,1ˆ ,x x=  2,1ˆ 0,x =  

3,1 0,1ˆ / 2 / (2 ),sx p kx S= + 4,1 0,1ˆ / 2 / (2 ),sx p kx S= −  the fifth state equilibrium 5,1x̂  will be a 

solution of the equation 5 0,1 0,1( ) 2 0s lCx p kx S k kx S− − = . A similar equilibrium point is 
found for system (2). System (1)-(2) is transformed into a system with zero equilibria in the 
new coordinates system y 

1, 1, 1, 2, 2, 3, 3, 3,

4, 4, 4, 5, 5, 5, ,0

ˆ ˆ, ,
ˆ ˆ, ,

i i i i i i i i

i i i i i i i i i

y x x y x y x x
y x x y x x U u u

= − = = −

= − = − = −
 (3) 

Let A  be the Jacobian matrix calculated in zero in the cases 5 0x >  

3,15

0 1,1 0 1,1 0 1,13,1

4,15,1

0 1,1 0 1,1 0 1,14,1

0 1 0 0 0

0

ˆˆ
0 2 0

ˆ ˆ ˆˆ2

ˆˆ
0 0 2

ˆ ˆ ˆˆ2

10 0 0 0

s
l

s

l

SV

fk S S
m m m m

EC p xCxES E k
V Sx V Sx V Sxp xA

EC xCxES E k
V Sx V Sx V Sxx

 
 
 − − −
 
   −  − − +  + + +− =  
 

   − + −  − − −  
 
 − τ 

 

(4) 

The matrix of control influence B  is a column vector with the first four elements zero 
and the fifth element equal with /SV SVk τ . 

2. PROBLEM FORMULATION. SOLUTION AND DISCRETIZATION 
2.1 Time domain synthesis and discretization 

Consider the linear invariant system with input control delay  

�̇�𝑥(𝑡𝑡) = 𝐴𝐴𝑥𝑥(𝑡𝑡) + 𝐵𝐵𝑢𝑢(𝑡𝑡 − ℎ),𝑥𝑥(0) = 𝑥𝑥0 (5) 

and the control law 

( ) ( ).u t Kx t= −  (6) 

The delay can have different sources, as follows: 
1) in the case when the control law is numerically (discrete) implemented and/or synthesized, 
the time delay h is equal with the sampling period and it refers, in principle, at the necessary 
time to compute the control law 
2) it is considered as a characteristic of the plant. 
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Suppose that the feedback matrix corresponding to the control law (6) was determined 
such that the matrix A-BK to be stable and the closed loop system (with no delay) satisfies 
some performances. 

In this case, ignoring the time delay in the synthesis of the control law could have negative 
effects, as instability or performances degradation. Thus, the following study directions 
appear: 

a) the analysis of the stability of system (5) with the control law (6), i.e. the determination 
of the critical delay ch  which destabilises the system (5) 
b) the synthesis of a feedback control law which counteracts the effects of a given time 
delay h, i.e. for t h>  the closed loop system behaves like the following system 

�̇�𝑥 = (𝐴𝐴 − 𝐵𝐵𝐵𝐵)𝑥𝑥,  𝑥𝑥(ℎ) = 𝑒𝑒𝐴𝐴ℎ𝑥𝑥0.  

Proposition 1. The feedback control law for the linear system (5) which achieves the objective 
b) stated above is the predictive feedback control law 

( )( ) ( ) ( ) ( )
tAh A t
t h

u t Kx t h K e x t K e Bu d−σ
−

= − + = − − σ σ∫  (7) 

with matrix K mentioned above. 

Proof. First, let’s consider that ( ) 0u t h− =  on the time interval [0, ),h  which is a certain 
simplification of the usual approach in the theory of systems with delay [7]. Thus the equation 
(5) becomes �̇�𝑥(𝑡𝑡) = 𝐴𝐴𝑥𝑥(𝑡𝑡), 0(0) .x x=  On the other hand, for t h≥ , the control law is given 

by ( ) ( )u t Kx t h= − +  and the equation (5) becomes �̇�𝑥(𝑡𝑡) = (𝐴𝐴 − 𝐵𝐵𝐵𝐵)𝑥𝑥(𝑡𝑡), 0( ) .Ahx h e x=  
The general solution of equation (5), for the initial time 0 0t ≠  is expressed as 

0

0

( ) ( )
0( ) ( ) .

tA t t A t
t

x t e x e Bu d− −σ= + σ σ∫  (8) 

To determine the state prediction ( ),x t h+  the following substitutions 0 ,t t→  ,t t h→ +  
0 ( ),x x t→  ( ) ( )u u hσ → σ−  are made in relation (8) 

( )( ) ( ) ( ) .
t hAh A t h
t

x t h e x t e Bu h d
+ + −σ+ = + σ − σ∫  (9) 

Using change of variable hτ = σ −  it is obtained 

( )( ) ( ) ( ) .
tAh A t
t h

x t h e x t e Bu d−τ
−

+ = + τ τ∫  (10) 

Thus, the feedback state predictive control law is 

( )( ) ( ) ( )
tAh A t
t h

u t K e x t K e Bu d−σ
−

= − − σ σ∫    q.e.d.  ■ (11) 

As it could be seen in (7), the current state ( )x t  is necessary for control law elaboration as 
well as the control “history” on the interval [ , )t h t− . The following Proposition shows a 
discretization procedure for numerical calculation of the closed loop control, respectively, for 
the numerical calculation of the integral from (7). 

 
 



183 Equilibrium stability analysis by numerical simulations for a linear system with time-delayed control 
 

INCAS BULLETIN, Volume 11, Issue 2/ 2019 

Proposition 2. The feedback control law (7) is computed according to the discretised form 
1

1( ) ( ) ( )
n

k n i
D D D

i n k
u n K A x n K A B u i

−
− −

= −
= − − ∑  

: ,t nT= 0,1, 2, ,n =  ℎ = 𝑘𝑘𝑘𝑘, : ,AT
DA e= 1: [ ]AT

DB A e I B−= −  

(12) 

In the relation above, ( ),u n  ( ),x n  ( )u i  represent the shorten expressions for ( ),u nT  ( ),x nT  
( ),u iT  with T being the sampling period. 

Proof. We are interested to calculate the integral from (7) 

( )( ) ( ) .
t A t
t h

I t e Bu d−σ
−

= σ σ∫  (13) 

For this purpose, the interval [ , )t h t−  is divided in k equal intervals 

[ , ( 1) ], 0,1, 2, , 1t kT jT t kT j T j k− + − + + = −  (14) 

where, obvious h kT= . On each interval (14) it is considered that ( )u σ  is constant, that is 
( ) ( )u u t kT jTσ = − + . Thus we have 

1 ( 1) ( )

0
( ) ( ) .

k t kT j T A t
t kT jT

j
I t e Bu d

− − + + −σ
− +

=
= σ σ∑ ∫  (15) 

Note with 
( 1) ( )( ) ( )

t kT j T A t
t kT jT

J j e d Bu t kT jT
− + + −σ
− +

= σ − +∫  (16) 

and 
( 1) ( ) .

t kT j T A t
t kT jT

J e d
− + + −σ
− +

= σ∫  (17) 

Changing the variable t − σ = λ , we have 
( 1)

( )
,

k j T A
k j T

J e d
− − λ
−

= − λ∫  which is equivalent with 
( )

( 1)
.

k j T A
k j T

J e d
− λ
− −

= λ∫  (18) 

Thus 

( )1 1 ( ) 1 ( 1)
( 1) .k j TA A k j T A k j T
k j TJ A e A e A e−− λ − − − − −
− −= = −   

Therefore, it results 
1 ( ) 1 ( 1)( ) [ ] ( ).A k j T A k j TJ j e A e Bu t kT jT− − − − −= − − +  (19) 

Moreover, taking into account that the matrix 1A−  commutes with the matrix exponentials, 
the following relations is obtained 

( 1) 1( ) ( ) ( ).k j T ATJ j A A e I B u t kT jT− − −= − − +  (20) 

One could observe that (20) can be rewritten as 
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( 1)( ) ( )k j
DDJ j A B u t kT jT− −= − +  (21) 

where AT
DA e=  and 1( )AT

DB A e I B−= −  are the matrices of the discrete system obtained by 
the discretization of the continuous system ( , )A B with the sampling period T and zero order 
hold control. Further (see (15) and (16)) 

1

0
( ) ( ),

k

j
I t J j

−

=
= ∑  i.e. 

1
1

0
( ) ( ).

k
k j

DD
j

I t A B u t kT jT
−

− −

=
= − +∑  (22) 

Considering that h kT=  and including (22), the control law (7) is rewritten as  
1

1

0
( ) ( ) ( ).

k
k jk

D DD
j

u t K A x t K A B u t kT jT
−

− −

=
= − − − +∑  (23) 

For ,t nT=  0,1, 2,n =   the relation (23) is written as 

1
1

0
( ) ( ) (( ) )

k
k jk

D DD
j

u nT K A x nT K A B u n k T jT
−

− −

=
= − − − +∑  (24) 

or, in a shorten form  
1

1

0
( ) ( ) ( ).

k
k jk

D DD
j

u n K A x n K A B u n k j
−

− −

=
= − − − +∑  (25) 

Changing the index ,i n k j= − +  the relation (25) leads to (12) 

1
1( ) ( ) ( )

n
k n i
D D D

i n k
u n K A x n K A B u i

−
− −

= −
= − − ∑ , q.e.d.  ■                                                                                                             

The disadvantage of the control law (25) is that the gain matrix K was synthesized in the 
continuous domain. 

In this case, the discrete implementation, according to (24), implies a sampling period T 
sufficiently small, which make things complicated in terms of computational requirements. 
The alternative is the direct approach of the discrete control synthesis, in which case a 
reasonable sampling period can be chosen. 

2.2 Direct discrete time approach control synthesis 

Consider the continuous linear invariant system 

�̇�𝑥(𝑡𝑡) = 𝐴𝐴𝑥𝑥(𝑡𝑡) + 𝐵𝐵𝑢𝑢(𝑡𝑡), 𝑥𝑥(0) = 𝑥𝑥0. (26) 

The discrete counterpart of the continuous system (26), with the sampling period T and zero-
order hold control is represented by the discrete system [8] 

( 1) ( ) ( ),D Dx n A x n B u n+ = + 0,1, 2,n = K   (27) 

where  

0
: ; : .

TAT A
D DA e B e d Bσ= = σ∫  (28) 

If A is invertible, then 
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1( ) .AT
DB A e I B−= −  (29) 

Let 

0( 1) ( ) ( ), (0) ,x n Ax n Bu n k x x+ = + − =  (30) 

be the discrete correspondent of the continuous system (5) with the sampling period T, h=kT, 
where for the notation simplicity the matrices corresponding to the discrete system where 
noted the same as for the continuous system. 
It is noteworthy that the solution of the finite difference equation ( 1) ( ) ( ),x n Ax n Bu n+ = +

0,1, 2,n = K  is  

1
1

0
0

( ) ( ).
n

n n i

i
x n A x A Bu i

−
− −

=
= +∑  (31) 

Let also 

𝑢𝑢�(𝑛𝑛) = −𝐵𝐵𝑥𝑥(𝑛𝑛) (32) 

be a control law synthesized in discrete domain ignoring the delay of k steps of control, i.e.   
A-BK is stable and the dynamics 0( 1) ( ) ( ), (0)x n A BK x n x x+ = − =  satisfies some 
requirements. The proposed objective is the synthesis of a feedback control law which 
counteracts the effects of a k steps delay of the control, precisely, for n>k the closed loop 
system is acting as the following system 0( 1) ( ) ( ), ( ) .kx n A BK x n x k A x+ = − =  
Proposition 3. The feedback control law for the system (29) is given by 

1
1( ) ( ) ( ) ( ).

n
k n j

j n k
u n K x n k K A x n K A B u j

−
− −

= −
= − + = − − ∑  

(33) 

Proof. For n k≤  equation (30) becomes ( 1) ( ),x n Ax n+ = 0(0) ,x x=  and for n k≥ , the same 
equation (30), considering the control law ( ) ( )u n Kx n k= − + , becomes

( 1) ( ) ( ),x n A BK x n+ = −  0( ) .kx k A x=  
The state prediction with k step of the state, ( ),x n k+ is calculated based on equation (30) 

and utilizing (31) in which ,n n k→ +  ( ) ( ).u i u i k→ −  As a result, we get 

1
1

0
0

1 1
1 1

0
0

1 1
1 1

0
0

1 1
1 1

0
0

( ) ( )

( ) ( )

( ) ( )

[ ( )] ( )

n k
n k n k i

i
n n k

n k n k i n k i

i n
n n k

k n k n i n k i

i n
n n k

k n n i n k i

i n

x n k A x A Bu i k

A x A Bu i k A Bu i k

A A x A A Bu i k A Bu i k

A A x A Bu i k A Bu i k

+ −
+ + − −

=
− + −

+ + − − + − −

=
− + −

− − + − −

=
− + −

− − + − −

=

+ = + − =

= + − + − =

= + − + − =

= + − + −

∑

∑ ∑

∑ ∑

∑ ∑ .

  

Thus, 
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1
1( ) ( ) ( ).

n k
k n k i

n
x n k A x n A Bu i k

+ −
+ − −+ = + −∑  (34) 

Making the index change j i k= −  in (34), it is obtained 

1
1( ) ( ) ( ).

n
k n j

j n k
x n k A x n A Bu j

−
− −

= −
+ = + ∑  (35) 

Therefore,  
1

1( ) ( ) ( ) ( ),
n

k n j

j n k
u n K x n k K A x n K A B u j

−
− −

= −
= − + = − − ∑  q.e.d.  ■                                                                                                             

 

We emphasize that the relation (35) gives the k-state prediction for the discrete system 
(30) just as for the continuous system (5) the prediction is given by the relation (8). 

As can be seen from (33), the control at step “n” is a function of the current state ( )x n  as 
well as the “history” of control over previous k steps with respect to 

( 1), ( 2), ... , ( ).u n u n u n k− − −  Relation (33) is rewritten as 

2 1

( 1)
( 2)

( ) ( ) [ ] .

( )

k k

u n
u n

u n KA x n K B AB A B A B

u n k

−

− 
 − = − −
 
 

− 

K
M

 (36) 

The following control law is obtained 

( )
( ) ( ) ( ) [ ]

( )
x n

u n F x n F x n F F
x n
 

= − − = −  
 

 (37) 

or 
𝑢𝑢(𝑛𝑛) = −𝐹𝐹�𝑥𝑥�(𝑛𝑛) 

(38) 

where 

𝐹𝐹 ≔ 𝐵𝐵𝐴𝐴𝑘𝑘 ,𝐹𝐹� ≔ 𝐵𝐵[𝐵𝐵 𝐴𝐴𝐵𝐵 𝐴𝐴2𝐵𝐵… 𝐴𝐴𝑘𝑘−1𝐵𝐵], 𝐹𝐹� = [𝐹𝐹 𝐹𝐹�]; 𝑥𝑥�(𝑛𝑛) = �𝑥𝑥(𝑛𝑛)
�̅�𝑥(𝑛𝑛)� 

�̅�𝑥(𝑛𝑛) = [𝑢𝑢(𝑛𝑛 − 1) 𝑢𝑢(𝑛𝑛 − 2) …𝑢𝑢(𝑛𝑛 − 𝑘𝑘)]𝑇𝑇 . 
(39) 

The delay with k step of the control is described by the system: 

( 1) ( ) ( )
( ) ( )

x n A x n Bu n
u n C x n
+ = +

=
 (40) 

where 

�̅�𝐴 ≔

⎣
⎢
⎢
⎢
⎡
0 0 … 0 0
1 0 … 0 0
0 1 … 0 0
⋮ ⋮ ⋮
0 0 … 1 0⎦

⎥
⎥
⎥
⎤
; 𝐵𝐵� ≔

⎣
⎢
⎢
⎢
⎡
1
0
0
⋮
0⎦
⎥
⎥
⎥
⎤
; �̅�𝐶 ≔ [0 0 … 1]. (41) 
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dim( ) ; dim( ) 1; dim( ) 1 .A k k B k C k= × = × = ×   

From (30) and (40) one obtains the extended system  

�𝑥𝑥(𝑛𝑛 + 1)
�̅�𝑥(𝑛𝑛 + 1)��������
𝑥𝑥�(𝑛𝑛+1)

= � 𝐴𝐴 𝐵𝐵𝐶𝐶̅
0𝑘𝑘×𝑚𝑚 �̅�𝐴 �
���������

𝐴𝐴�

�𝑥𝑥(𝑛𝑛)
�̅�𝑥(𝑛𝑛)����
𝑥𝑥�(𝑛𝑛)

+ �0𝑛𝑛+1
𝐵𝐵�

����
𝐵𝐵�

𝑢𝑢(𝑛𝑛) 
(42) 

or 

𝑥𝑥�(𝑛𝑛 + 1) = �̃�𝐴𝑥𝑥�(𝑛𝑛) + 𝐵𝐵�𝑢𝑢(𝑛𝑛), 𝑥𝑥�0 = �
𝑥𝑥0

0𝑘𝑘×1
�. (43) 

System (42) or (43) represents the open loop system which includes the k steps delay of 
the control. 

In contrast to the continuous case, the discrete approach allows to include the delay into 
an extended linear (finite) system.  

The equation of the closed loop system is obtained from (43) and (38)  

𝑥𝑥�(𝑛𝑛 + 1) = ��̃�𝐴 − 𝐵𝐵�𝐹𝐹��𝑥𝑥�(𝑛𝑛), 𝑥𝑥�(0) = 𝑥𝑥�0. (44) 

which is rewritten with respect to the previous notations  

0( 1) ( ) (0)
, .

( 1) ( ) (0) 0
x n x n x xA BC
x n x n xBF A BF

+         
= =        + − −        

 (45) 

Proposition 4. Consider the matrix A0 of the closed loop system,  

𝐴𝐴0 ≔ � 𝐴𝐴 𝐵𝐵𝐶𝐶̅
−𝐵𝐵�𝐹𝐹 �̅�𝐴 − 𝐵𝐵�𝐹𝐹�

�. (46) 

The spectrum of this matrix consists in the eigenvalues of the matrix A BK−  plus k 
eigenvalues placed in the origin of the complex plane (i.e. a null eigenvalue with k order of 
multiplicity). 
Proof. We resume the equation (30) 

( 1) ( ) ( )x n Ax n Bu n k+ = + −  (47) 

as well the control law (33) modified by the presence of the reference ( )rx n  

( ) ( ( ) ( )).ru n K x n k x n= − + −  (48) 

Applying the z transformation [9] from equations (47), (48) we obtain  

( ) ( ) ( )kzX z AX z Bz U z−= +  (49) 

( ) ( ( ) ( )).k
rU z K z X z X z= − −  (50) 

Introducing (50) in (49) we get successively 

( ) ( ) ( ) ( )

( ( )) ( ) ( )

k
r

k
r

zX z AX z BKX z BKz X z

zI A BK X z BKz X z

−

−

= − +

⇒ − − =
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1( ) ( ( )) ( )k
rX z zI A BK BKz X z− −= − −  

 

*( ( ))( ) ( )
det( ( )) rk

zI A BK BKX z X z
z zI A BK

− −
=

− −
 (51) 

which ends the demonstration.     ■ 
As it could be seen from (51) the predictive control moves the delay term outside the 

feedback loop and removes it from the design process.  
For the particulare case k =1, Proposition 3 can be proved as follows: 

from (41) it results that 

0, 1, 1A B C= = =  (52) 

and from (39) 

, .F KA F KB= =  (53) 

Consequently, 

𝐴𝐴0 = � 𝐴𝐴 𝐵𝐵
−𝐵𝐵𝐴𝐴 −𝐵𝐵𝐵𝐵�. (54) 

We choose as a transformation of similarity the matrix  

0 01;
1 1

I Im mS S
K K

   −= =   −   
 

⟹ 𝑆𝑆−1𝐴𝐴0𝑆𝑆 = �𝐴𝐴 − 𝐵𝐵𝐵𝐵 0𝑚𝑚×1
01×𝑚𝑚 0 � 

⟹ det(𝑧𝑧𝑧𝑧 − 𝑆𝑆−1𝐴𝐴0𝑆𝑆) = det(𝑧𝑧𝑧𝑧 − (𝐴𝐴 − 𝐵𝐵𝐵𝐵))𝑧𝑧.   ■ 

 

Note. Consider system (5) with ( , )A B  a controllable, or, at least, stabilizable pair. By 

considering a state predictor 
0

( ) : ( ) ( ) ( )h As
p h

x t x t h e x t e B t s ds−
−

= + = + +∫A , the system with 

control delay (5) can be replaced with the following non-homogeneous system with state delay 
[1] 

�̇�𝑥(𝑡𝑡) = 𝐴𝐴𝑥𝑥(𝑡𝑡) + 𝐴𝐴𝑑𝑑𝑥𝑥(𝑡𝑡 − ℎ) + 𝐵𝐵𝑐𝑐𝐵𝐵 ∫ 𝑒𝑒−𝐴𝐴𝑠𝑠𝐵𝐵𝑐𝑐𝑢𝑢(𝑡𝑡 + 𝑠𝑠 − ℎ)𝑑𝑑𝑠𝑠0
−ℎ , .Ah

dA := BKe  (55) 

3. RESULTS. NUMERICAL SIMULATIONS 
The main objective of the numerical simulations is the synthesis of the control law by the 
predictive feedback method. 

The following real design data, characteristic for the EHS integrated in the aileron control 
chain of the jet fighter IAR99 [2, 3, 10, 11], were used: m = 30kg, f = 3000Ns/m, k = 3x105N/m, 
S = 10−3m2, cd = 0.63, V0 = 3×10−5 m3, sp  = 210x105N/m2, B = 13x108N/m2, ρ  = 850kg/m3, 

SVk  = 2x10−4 m/V (maximal opening length of rectangular valve port 5max 2x =  mm at a 
maximal valve input voltage max 10 V,u = with an equivalent valve port width 0.85w = mm), 
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110.1 10lk −= × m5/(Ns) and 37.62 10SV
−τ = × . As indicated in the Matlab subroutines, the 

pairs ( , ),A B  i =1, 2, are not completely controllable, but are stabilizable, inclusively in 

0 0x =  the most vulnerable equilibrium point of a EHS [12]. 

Table 1. The existence of the solution of the transcendental equation ( )( ) ( )0 0A+P h
de P = A  

# h solution checking conclusion   
1 0.005 101.73 10−×  there is a solution   
2 0.01 92.18 10−×  there is a solution   
3 0.015 101.99 10−×  there is a solution   
4 0.02 7.52  there is no solution   
5 0.09 42.74 10×  there is no solution   

The introduction of predictive control led directly to the discrete form (35), distinct from 
the form (55). A point of interest for numerical applications, described below, could be the 
asymptotic stability assessment of the homogeneous linear state delay system 

�̇�𝑥(𝑡𝑡) = 𝐴𝐴𝑥𝑥(𝑡𝑡) + 𝐴𝐴𝑑𝑑𝑥𝑥(𝑡𝑡 − ℎ), Ah
dA := BKe  (56) 

For the case 5 0,x > choosing 3
1,1ˆ 5 10 mx −= × , the following equilibrium vector point is 

obtained: 3
1,1ˆ 5 10 mx −= × , 2,1ˆ 0 m/sx = , 5

3,1ˆ 112.5 10x = × N/m2, 5
4,1ˆ 97.5 10x = × N/m2, 

3
5,1ˆ 0.0018 10x −= × m, with 1 0.0925u = . 

The corresponding eigenvalues of the matrix A  (4) are: 1,2 97.4 1726. 5iλ = − ± , 

3 40.3, 90,λ = − λ = − and 5 131.2λ = − . The control law is obtained as example by a simple 
LQR synthesis. Taking the weighting matrices JQ , as zero matrix excepting JQ  (1,1) = 1 and 

0.0025JR = ,  thus  K1 = [6.1005    0.0002    0.0008   −0.0006    3.6293] is the feedback gain. 
In closed loop, the eigenvalues of matrix A  are changing accordingly 1,2 97.4 1726. 5 ,iλ = − ±  

3 4 510.2, 90, 130.8λ = − λ = − λ = − . 
The stability is ensured if all the zeros of the transcendental characteristic equation 
det( ) 0Ish

dsI A A e−− − =  fulfil the condition Re 0s >  (see also [13]). To avoid tedious 
calculations for analyzing the solutions of this transcendent equation, a result from [14] is used 
in [1] saying that the asymptotic stability of the equation (54) occurs if there exists at least one 
solution for the nonlinear algebraic matrix equation ( )( ) ( )0 0 .A+P h

de P = A  A simple numerical 
investigation of this equation is done by using Matlab fsolve subroutine and is summarized 
in Table 2, thus showing the method efficiency as compared to more laborious approaches in 
[15] in which is used the Lambert function. The result in the Table says something about the 
risk of loss of the stability for the system �̇�𝑥(𝑡𝑡) = 𝐴𝐴𝑥𝑥(𝑡𝑡) + 𝐴𝐴𝑑𝑑𝑥𝑥(𝑡𝑡 − ℎ). Unfortunately, it is all 
about sufficient stability conditions, which can also be very conservative. However, the results 
from Table 2 can be exploited in the sense that the stability threshold can climb up to h = 0.1s, 
if we take into account that in the analyzed equation (56) lacks the compensating term 

( )0 As
c-h

BK e B u t + s h ds− −∫ . 
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Fig. 2  History of system variables, the case of EHS without delay 

Synoptic graphs in Figs. 2-4 give a perspective on the equilibrium stability of the system (5) 
obtained by numerical simulation. The predictive feedback was synthesized according to 
Proposition 3 and 4 in which the feedback matrix K was obtained using LQR synthesis in 
discrete time. In Fig. 2 we have the behavior in the presence of equilibrium perturbation with 

1 0.5cmx =  and with the corresponding values for the other variables, values given above. 
Notice that the system does not switch to 5 0x > , so we do not have to deal with the switching 
system paradigm. 
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Fig. 3  History of system variables, the case of EHS with 0.075 s delay, without predictive control  

In Fig. 3, the performance of the system  significantly deteriorates for  a delay of 0.075 s. The 
system is satisfactorily compensated with predictive feedback, as shown in Fig. 4. At a value 
of approx. 0.1 s a harmful chattering is shown in Fig. 5, which denotes that 0.1 sh =  is a 
critical delay for the system, as is expected from the analysis summarized in Table 1.  

   

 
Fig. 4  History of system variables, the case of EHS with 0.075 s delay and predictive feedback 
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Fig. 5  History of system variables, the case of EHS with 0.1 s delay, without predictive control  

4. CONCLUSIONS 
The inherent delay in automated systems is a challenge, being a topical field in the literature.In 
this paper we presented a thorough analysis performed on the mathematical model of electro-
hydraulic servomechanism. It was highlighted by analysis and numerical simulations that a 
delay of 0.1 s on control is a threshold to be avoided, as it can destabilize the system and 
worsen its stabilization performance even in the presence of a predictive feedback. 
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