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Abstract: The control of a tethered satellite system pendular motion is done by application of 

Hamiltonian equation of motion on a control design method known as planar H tracking. In this case, 

the reference motion is considered a natural planar motion. The control of the TSS is accomplished by 

using the inside plane control inputs as well as the outside plane control inputs. The designed control 

laws are able to drive the pendular motion to a natural planar trajectory with the required 

characteristics. The control inputs are analyzed using their magnitude ability. The numerical 

simulation results for each control inputs show that the inside of plane input not only has strong 

magnitude, but also effectively controls the pendular motion of the tethered satellite system.  
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1. INTRODUCTION

With a rise in modern technology, cheap, effective and reliable control designs are the main 

focus of research in Tethered Satellite Systems (TSS). Generally, the dynamics and control 

of tethered satellites are very complicated. The tethers are normally susceptible to undergo a 

complicated set of vibrations and librations during satellite operations in a space 

environment [1]. This problem becomes challenging during the deployment and retrieval of 

the TSS as a result of the presence of Coriolis accelerations [2]. Motions with large 

amplitudes may result in high tensional stress that is beyond the stress of the tether which 

may at the end result to the tether failure. From the point of view of tether control, the 

performance requirements in TSS are often quite demanding [3] and therefore the most 

important idea in TSS is how to apply the control action to the system [4, 5]. Any control 

system has to be designed according to the needs of a specified mission. A dump-bell system 

is the simplest model of the TSS. 

It is composed of a group of massive bodies connected by massless tethers with the satellite 

attitude dynamics and the tether flexibility, both being ignored [6]. In a TSS two or more 

satellites are attached to each other to portray high dynamic potential in various applications 

[7]. This is seen from the work of Tsiolkovsky in 1895 [8]. There are other so many 

published literatures on the dynamic and control of TSS [9 - 15]. Belotsky and Levin did a 
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very impressive job [9]. Rupp also proposed a valuable tension control law which is used up 

to date [10]. New authors have come up with their ideas on control of TSS. Krupa et al [16] 

discussed on the dynamics and control of two bodies TSS based on the Finite Element 

Method. Takaechi et al [17] studied about the periodic solution of libration motions of the 

TSS in an elliptic orbit and ended up devising a controller known as “on – off” that could 

drive the system to periodic libration trajectories. 

Another writer by the name of Barko et al [18] discussed on the control of deployed tether 

satellites through the comparison of six different strategies which include: (1) free 

deployment only due to the gravity gradient vector, (2) force braked deployment, (3) Kissel’s 

law using a linear proportional derivative (PD) controller, (4) open-loop time-optimal 

control, (5) pendulum control, and (6) targeting and stabilization following the controlling 

chaos strategy. Steindl et al. [19, 20] come up with the optimal controllers to achieve 

effective controlled deployment and retrieval of a TSS based on the multiple shooting 

method. 

Williams and Trivailo [21] extended their investigations on optimal control to the controlling 

of the librations of a TSS in elliptic orbits by tracking periodic libration trajectories [22]. 

Linear Quadratic (LQ) and proportional integral derivative (PID) control methods were first 

used in flying system formation [23 - 25]. 

In this paper, the description of the system is first made. Then the equations of motion for the 

end body, the tether and the sub-body are derived. The equations that will control the 

pendular motion of the TSS are further achieved. Finally, Hamiltonian equation of the 

pendular motion is used together with a design method referred to as planar H tracking. The 

control laws are first made so that they are used to drive the TSS pendular motion to track a 

natural planar reference trajectory. The control is accomplished using the in-plane control 

inputs and out-plane control inputs. The simulation results for each control inputs are 

obtained in response to the system response for H planar control design and the control 

inputs. The efficiency of control in the two planes is determined by the level of their 

magnitude. 

2. SYSTEM DESCRIPTION 

The system is composed of a centered body (earth), end body (deploy / base satellite), sub –

body (sub satellite) and a cable (tether) as presented in Fig. 1. 
 

Sub-end body
(Sub-satellite)

Tether (Cable)

End body 
(Base satellite)

Central body
(Earth)

 
Fig. 1 - Diagram of Tethered Satellite System 

From the description of the system, modelling assumptions are made in relation to the 

physical environment of the system. The first assumption made is that the central body 

(earth) is sphered shaped and it represents itself as a point mass. The second assumption 
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states that the magnetic field is a tilted di-pole fixed at the center of the central body as it 

keeps on rotating. The final assumption is that the gravitational force of the central body and 

electrodynamic forces are external forces that act on the system. This implies that the gravity 

of the central body and other components such as drag and solar radiations are negligible in 

the system. In TSS, modeling assumptions can be outlined as follows: 

a) The end body and the sub-body are finite rigid bodies. 

b) The tether is an elastic string that can resist axial stretching (it can’t support compression 

and has negligible torsion and bending characteristics). 

3. EQUATION OF MOTION 

A mathematical model of the system is created by using the modelling assumptions that were 

outlined in Section 2. Figures of the central body (CB), end body (E) and the sub-body (S) 

are illustrated together with their frame coordinates in Fig. 2. 

The state of the end body E is used as the orbital motion of the system. It is parameterized by 

osculating classical elements of the orbit [26] as shown below. 

( )Te a    (1) 

The distance from the center O of the central body C to the mass center 
EG of the end body E 

is Er  The distance from the mass center of the end body E to the point of tether 
EN  

attachment is 
EN  whereas dl , is the differential tether length with arc length l  from point 

EN  in the end body E to point 
SN  in the sub–end body S. The point 

SN  relative to mass 

center of the sub-end body S is given as 
SN . The coordinate frames of each body are shown 

in Fig. 2, and Fig. 3. 
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y3
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Fig. 2 - Coordinate diagram of the central body C and the end body E 
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Fig. 3 - Diagram of the end body E and Sub-end body S 

Inertial frame on the central body C with the denotation 
IF  has coordinates yi  and a central 

position O, 3y  axes on the inertial frame lies on the spin axis of the central body C. The 

1 2y y  axis creates a plane that corresponds to the Equatorial plane of C. 

Orbital frame 
OF  of instanteneous Keplerian orbit of 

EG  (end body E) has coordinate 

axes xi . The 3x  axis is derived from the center O of the central body C to 
EG , whereas 2x  

is pointing to the direction of the instantaneous angular momentum of the Keplerian orbit. 

The final axis 1x  completes the right-hand triad. On performing 3-1-3 Euler rotation [27] 

through the angles ,   and     , the inertial frame is changed to orbital frame. The 

directional cosine matrix (DCM) that connects the inertial frame with the orbital frame is 

represented as: 

cos 0 sin

sin sin cos cos sin

sin cos sin cos cos

EOR

 

    

    

 
 

   
 
 

 (2) 

The acceleration and angular velocities of orbital frame 
0F  in relation to the inertial frame 

IF  are presented as: 

/ 3
2O I

E

P
y

r


   (3) 

/ 3

2 sin
2O I

A

x
r

 
   (4) 

  - Gravitational parameter of the central body C 

2(1 )P a e   (5) 

1 cos
A

P
r

e 



 (6) 

P is the orbital parameter whereas Ar  is the instantaneous orbit radius of the mass centre end 

body S. 

3.1 Equations of motion of the end body E 

It consists of the following equations: 
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a) Equation governing the evolution of the instantaneous keplerian orbit of mass center 
EG  

of the end body E 

b) Equations governing the rotation of the fixed body coordinate frame 
EF  in relation to 

OF   

Orbital equations for 
EG  are done by application of Newton’s second law [28] to the end 

body E thus: 

(0, )E E GEm r F T t   (7) 

Em  is Mass of the end body E; 
GEF  is the Gravitational force of the central body acting on 

the end body E whereas (0, )T t  is the Tether tension on the end body E at the point 
EN . 

From the physical assumptions made in Section 1, the central body is treated as appoint 

mass. This implies that: 

3

E
GE E

E

m
F r

r


   (8) 

The Eq. (8) above is known as the Newton’s law of universal gravitation. Applying Eq. (8) 

to Eq. (7), Orbital equation of motion for 
EG  is achieved and presented as: 

3

(0, t)
E E

E E

T
r r

r m


    (9) 

For the rotational equation of the end body E, Euler rotational equation is applied. 

/ / / (0, )E E I E I E E I GE EM P T t            (10) 

E  is the Centroid moment of inertia tensor of the end body E 

/E I is the Angular velocity of a fixed body principal coordinates 
EF  of the end body E in 

relation to the 
IF  

/ / /E I E O O I     (11) 

GEM  is the Gravity gradient torque acting on the end body E at its mass center. 

By using linear approximation of gradient torque [29, 30]: 

EEE

E

GE rr
r

M


 I
3

5


 (12) 

Substituting 
GEM  in Eq. (10) with the results from Eq. (12): 

/ / / 5

3
(0, )E E I E I E E I E E E

E

r r P T t
r


               (13) 

The above Eq. (13) represents the rotational equation of motion of the end body E. 

3.2 Equations of motion of the end body S 

Using Euler’s rotational equation, the attitude equation of the sub-end body S is presented as: 
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/ / / ( , )S S I S I S S I GS SM P T L t            (14) 

S  is the Centroid moment of inertia tensor for the sub-body S; 
/S I  - Angular velocity of 

sub-end body coordinate frame 
SF  in relation to 

IF  and 
GSM  - Gravity gradient torque 

/ / /S I S O O I     (15) 

5

3
GS S S S

S

M r r
r


     (16) 

Substituting gravity gradient torque 
GSM  in Eq. (16) to Eq. (14): 

/ / / 5

3
( , )S S I S I S S I S S S S

S

r r P T L t
r


               (17) 

The above Eq. (17) represents the rotational equation of motion of the sub-end body S 

3.3 Pendular equations of motion 

Using the assumptions from the physical model, it is assumed that in the pendular equation 

of motion the elastic vibration of the tether does not affect the pendular motion of the TSS 

and the tether is a rigid body. The equations that are to control the pendular motion of the 

TSS are achieved by the application of Euler equation of rigid body dynamics. It is a first 

order ordinary differential equation describing the rigid body. 

( )x M         (18) 

M  - Applied rotation;   - Inertia rotation;   - Angular velocity on the principle axis 

For an end body E the Euler’s rotational equitation will be as follows: 

/ / /E E I E I E E I EM         (19) 

E  - Moment of inertia tensor; 
EM  - Total external moment 

The moment of inertia tensor is expressed as follows: 

3 3(1 )E E e e     (20) 

This is because the mass of the system lies on the axis. 

EI  - Scalar moment of inertia; 1- Identity tensor 

By combining the equation of the angular velocity of a tethered fixed coordinate frame  EF  

to the orbital frame  OF  coordinate the following equation is achieved. 

1 2 3/ cos sinE O e e e         (21) 

With angular velocity of the orbital coordinate in place, then it relates to the inertial 

coordinate frame  IF  as: 

/ 2O I AO   (22) 
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A  - Constant angular rate 

The equations of the angular velocity and acceleration of tether fixed coordinate frame in 

relation to inertial frame will be presented as shown below: 

1 2 3

1 3

/

/ 2

( )cos ( )sin

[ cos ( ) sin ] [ sin ( ) cos ]

E I e A e A e

E I e A A ee

     

           

     

       
 (23) 

In this situation 
AM  is as a result of gravity-gradient acting on the system. The length of the 

system appears to be smaller than the orbital radius. Due to this aspect, linear approximation 

for gravity gradient torque method is used [29]. This method is represented as: 

2

3 33A A AM O I O     (24) 

By combining all these formulas together, the equation of pendular motion is achieved, such 

that the equation will appear as represented bellow: 

2

2 2 2

cos 2( ) sin 3 sin cos cos 0

[( ) 3 cos ]sin cos 0

A A

A A

       

    

    

    
 (25) 

This equation is the same as of the dumb-bell satellite, which can also provide a simplified 

solution to the existing problem. 

3.4 Application of Hamiltonian principle 

The equation (25) above, describing the inside plane pendular motion is confined to a non-

dimensional form by defining the non-dimensional time with the boundary conditions as 

represented in the following equations. 

(0, ) ( , t)

v(0, t) v(L, t) 0

u t u L

 
 

A

t





 
(26) 

  - The angle in which the end body moves in the circular orbit; t  - Time; 
A  - Constant 

angular rate 

The pendular equation of motion will be in a non-dimensional form which will appear as: 

2 2

cos 2( 1) sin 3sin cos cos 0

( 1) 3cos sin cos 0

       

    

   

     

 (27) 

The above equations of the pendular motion are linearized such that the nominal pendular 

motion of the tether will appear as a planar spinning on the angles 0    which is 

represented in the form of the equation below. 

2 2

cos 2( 1) sin 3sin cos cos 0

( 1) 3cos sin cos 0

       

    

   

     

 (28) 

The solution for an inside plane motion is obtained by integrating the equation (28), such 

that it will appear as represented bellow: 
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23sinh     (29) 

( )  Systems with positive angular rate; ( ) Systems with negative angular rate; h  

Constant simplified version of the Hamiltonian of the pendular motion [29]. The 

Hamiltonian equation is represented as shown below. 

2 2 2 2 2( 3sin )cos 4sinH          (30) 

Linearizing the above Hamiltonian equation (30) for small out-of- plane angle  , the 

equation of the pendular motion is achieved and presented as follows: 

3cos 2( ) sin 3 sin cos cos 0A A             (31) 

The pendular motion in this case is a planar. These mean that H h . 

The objective of Hamiltonian planar tracking control design [31 - 34] is to drive   and   to 

Zero value, while at the same time driving H  to a certain desired value *h . The final result 

is a natural planar motion in the form of 
*h h  As it appears that the out-of-plane motion is 

driven to zero, then the control law for u  is given as: 

2 2

1 2 ( 1) 3cos sin cosu k k              
 (32) 

2 0k  ; Therefore the closed loop equation will be: 

2 1 0k k       (33) 

Given an assumption that the arbitrary control inputs corresponding to u and u  are 

provided by small thrusters at the sub-body B, then the equation governing the pendular 

motion of the tether will be presented as: 

2 2

cos 2( 1) sin 3sin cos cos

( 1) 3cos sin cos

u

u





       

    

   

     

 (34) 

By differentiating equation (30) using equation (34), it is observed that the time rate of 

change of H will be as follows: 

 2 cosH u u      (35) 

 *

1

cos 2

Hk H h
u u 

 

 
   
  

 (36) 

Eq. (36) shows the control law of u , where: 0Hk   - is the constant control gain. 

Substituting the Eq. (36) into Eq. (35), the closed loop dynamics of H will be: 

*

H Hk h H k H   (37) 
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From equation (36), 
Hk  appears to be positive. The control law in equation (36) drives H  to 

*h  exponentially as the angle in which the body moves ( ) approaches infinity. 

4. NUMERICAL SIMULATION 

The initial conditions used to generate the graphical presentations are; 

0; 2.375; 0.3; 0        

The parameters used are: 
2

1*

2 1

ln(100) ln(100)
20; ; ;

2 4 2
H

k
h k k k



 
 

      
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(a) Inside of plane angle 

0.1
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0.2

0.25

0.3

0

1 2 3 4
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(b) Outside of plane angle 
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-1

-0.8

-0.6

-0.4
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0

1 2 3 4
Number of Orbits









 
(c) Outside of plane angular rate 
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1 2 3 4

2.1

2.2

2.3

2.4

2.5

2.6

2.0

Number of orbits









 

(d) Inside of plane angular rate 

 
(e) Planar H 

Fig. 4 - The above graphs are for the system response for planar H tracking. 

Fig. 4 shows that the control laws applied are successful in driving the pendular motion to a 

desired natural planar trajectory with 
*h h  .This fact is shown in Fig. 4 (b), 4 (c) and 4(e) 

in which the out- of –plane motion and the quantity H do not undergo any amplitude 

oscillations about the desired reference motion. 

1 2 3 4

0

0.05

0.1

0.15

0.2

Number of Orbits

u

 
(a) inside of plane control inputs 

1 2 3 4

0.2

0.3

0.1

Number of Orbits

u

 
(b) Outside of plane control input 

Fig. 5 - The above graphs (a) and (b) represent the Control inputs for planar H control tracking 
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In Fig. 5, u  and u  both do approach zero as the maneuvers are completed. This implies 

that the propellant required in performing the maneuvers decreased significantly as the 

maneuvers approached completion. The magnitude of u  is seen to be significantly smaller 

which is the primary advantage of the H tracking control law. The in plane control input is 

also lower because of the qualitative characteristics of the reference motions. 

5. CONCLUSIONS 

In this work, the application of Hamiltonian principle has been studied to enable the control 

of pendular motion of the TSS in an elliptic orbit. The tether system considered in the study 

is based on the classical dumbbell model. It is assumed that the end-body and the sub- end 

body are finite rigid bodies and that also the tether is an elastic string that could resist axial 

stretching. The mathematical model developed in the paper, assists in the formation of the 

equations of motions for both the end and sub-end bodies. The pendular equations of 

motions are achieved by the application of Euler equation of the rigid bodies using the 

assumptions previously highlighted. The control laws are developed to drive the pendular 

motion to a preferred natural trajectory. Numerical simulations of the controlled pendular 

motion of the tether showed that the control laws used were successful in driving the 

pendular motion of the tether to a natural planar trajectory. It was seen that the magnitude of 

u in the inside plane was significantly smaller than that of u  in the outside plane. The in-

plane control input was also lower because of the qualitative characteristics of the reference 

motion. This became the primary advantage of Hamiltonian Principle in the control of the 

Pendular motion in a TSS. However, the major disadvantage was in tracking a specific time 

history for , that could be needed somewhere else because this method requires a less 

precise control. In that case, some other methods of control must be employed that will 

require more precise control. This idea leads in the development of more precise control 

methods in future that could efficiently control the TSS. 
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