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Abstract: This paper is based on a consistent family of experimental data obtained in a national 

research project. More accurate, specimens representing spacecraft structures, accomplished from 

aluminum circular plates with PWAS bonded on them were subjected to extreme temperature variations 

and radiations, both specific to space applications. The structure itself is affected by mechanical 

damages caused by fatigue and aging. These mechanical damages were simulated by laser fabricated 

slit cuts. The signature of structure’s health is seen as the real part of electromechanical impedance 

(EMI) curves of a PWAS bonded on structure. Whatever the EMI signature (recorded via special 

devices) changes, it is important that it be signaled online. It is shown that a neural network (NN) has 

the willingness to “learn”, thus identifying a function more or less complicated, as it is the case with 

the real part of EMI characteristic. In view of NN preparation for in-situ installing, at least the following 

aspects must be elucidated: setting the number of iterations to learning; evaluation of common damages 

that can appear in the structure; investigations on their evolution time; investigations on the possible 

values of learning errors; the default value of error to stop the learning process. 

Key Words: spacecraft structures, structural health monitoring, piezoelectric wafer active sensors, 

electromechanical impedance, online identification, neural networks. 

1. INTRODUCTION 

A quick foray into technical literature reveales that only very few references are dedicated to 

Space applications of SHM technologies (e.g., [1], [2], [3], [4]), even if the Space Shuttle 

Challenger disaster (January 28, 1986) [5] and, some time ago, Columbia Space Shuttle 

disaster (February 1, 2003) (see [6] and Fig. 1) have raised several questions about the 

possible, just required, use of sensors for in-space SHM. So, after the Columbia Accident 

Investigation Board issued its Report [6] in August 2003, NASA decided to add sensors to the 

Space Shuttle to detect any blows from debris and to produce alerts if leading edges of the 

wings were hit. However, these sensors were not sufficiently advanced to determine the degree 

of damage, and the extent of damage would still have to be determined by an inspection by 

astronauts in orbit using an extension boom equipped with cameras and lasers. A natural 

question might be “assuming that a vehicle health management system could have been in 

operation, could the Columbia mission have been saved?” [7]. Of course, the question is 

rhetorical. As can see from the few materials available, space SHM technology is very recent 

[3]. These issues still persist, but the integration of SHM technology into space vehicles design 

process still faces skepticism. 

However, it is expected that the interest in space SHM technologies will grow in direct 

proportion to the interest on reusable space vehicles in state-sponsored, commercial, or 

private-public space enterprises. Thus, it is estimated (meetings of the SAE Aerospace 
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Industry Steering Committee on SHM, http://www.sae.org/standardsdev/news/P91616.pdf) 

that the use of SHM technologies in the aircraft and ground vehicle may increase ten-fold in 

the coming decades.) 

The development of real-time SHM techniques involves among others the design of an 

in-situ damage detection methodology and also the off-line study of the damage severity based 

on the evaluation of damage metrics [8]). 

The present paper is backed by a database consisting on a large amount of experimental 

data obtained in the STAR project code ID 188/2012 “Structural health monitoring in 

spacecraft structures using piezoelectric wafer active sensors (PWAS) multimodal guided 

waves”, supported by National Authority for Scientific Research−ANCS, UEFISCSU [4], [9], 

[10]. The experimental part of the project addresses a problem specific to space applications, 

namely the effect on the PWAS EMI method of the extreme temperature variations and space 

radiations. Some aspects of these tests are given in Section 2. 

The problem selected to be widely exposed in article is that of "online identification of 

faults", and is based on the property of universal approximator of a neural network (NN). In 

other words, theoretically speaking, a (NN) can be trained "to learn" the current shape of the 

graph, defined over a set of frequencies, which represents (electromechanical impedance) EMI 

recording of a healthy structure. The occurrence of a fault would mean changing the graph, 

and will be ratified by the occurrence of an error, which is the difference between healthy 

structure and "the sick" structure. Therefore, imagine the following scenario. Suppose that 

there is an on-line impedance analyzer, which provides the EMI shape of healthy structure; 

the same device will catch the moment when the structure becomes damaged. In parallel with 

this hard system, there is a software package based on NNs, which will indicate and quantify 

the occurrence of a problem. Theoretical problem is formulated and solved on a case by case 

basis depending on the physical problem. The latter will take into account the given structure 

and the type of common faults (cracks, delaminations, typical damage of PZT material, of 

adhesive etc.; in fact, many electronics failures are really mechanical failures). Ultimately, to 

establish criteria for monitoring the NN structure will count the rate of evolution of these faults 

[11]. 

2. TESTS, RECORDS AND DATA PROCESSING IN THE PROJECT 

“SPACE SHM” 

A considerable amount of testing stages, EMI records, data processing and analytical 

assessments on damage identification, in order to qualify PWAS transducers, and, more 

generally, SHM methodology, for use in space operations were performed in INCAS “Elie 

Carafoli” (see www.incas.ro) and IFIN-HH (see www.nipne.ro) labs in the years 2013, 2014. 

The records refer to either PWASs or specimens with bonded PWAS, without and with 

simulated defects. PWAS purchased from the company STEMINC (http://www.steminc.com/) 

were glued with glue M-Bond 610 Vishay [12] on the aluminum circular plate of 100 mm 

diameter and 0.2 mm thick. Mechanical damages were simulated as laser fabricated narrow 

through-the-thickness slit cuts (Fig. 1). 

The following conditions, simulating space conditions, were provided at IFIN-HH lab: a) 

absorbed doses: 100 Gy ... 20 kGy (1Gy = 1J/1kg); b) dose rate: 20Gy/h ... 100Gy/h; c) vacuum 

pressure <10-1Pa; d) extreme temperatures: between   1500C (77K) and + 1750C. 

The definition of extreme temperature cycles: from 1960C (77K, liquid nitrogen 

temperature) to + 1500C (the temperature for which the tests were carried out at INCAS in 

2013); number of cycles: minimum 10 (low temperatureback to room temperaturehigh 

http://www.sae.org/standardsdev/news/P91616.pdf
http://www.incas.ro/
http://www.steminc.com/
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temperature); cycle length: ~ 10h, each area of extreme temperature and 2 hours for recovery 

and storage at room temperature. Thus a complete cycle was performed in 24 hours. 

   

Fig. 1 – STEMINC PWASs # 4, 5. 6. 8, 9 and circular specimens S91, S 118, with central bonded PWAS, with 

and, respectively, without simulated mechanical damage 

Extreme temperature and radiations were applied simultaneously at IFIN-HH to the 

pristine and “damaged” samples. EMI signatures were raised, as appropriate, on line (i.e., 

during the submission of proof at harsh conditions), or offline (after submission, i.e. at room 

temperature and without radiation), see an example in Fig. 2. It is to emphasize that getting a 

consistent database for statistical interpretation of the results was envisaged during the project 

implementation. 

Based on these EMI records, damage metrics were calculated as root mean square 

deviation (RMSD) [13], [8] from healthy to damaged specimen (see Tables 1-3). Since the 

EMI signature does not always clarify the origin of the defects – mechanical or electronic, 

generated by fatigue and the aging of the structure, or by deficiencies of sensors bonding on 

the specimen etc. – , special investigative means were added. For example, during testing in 

harsh conditions (of temperature and irradiation), reversible changes in EMI signatures can 

occur, in the sense that these changes will disappear when the conditions will disappear. These 

changes should somehow be monitored, and a damage indicator (DI) should be recalculated 

based on some compensation techniques [14] in order to not trigger false alarms. Such 

compensation techniques have also been used in the project, see the representative values 

given in Fig. 3, assessed on the basis of two different methods. 

Other putative causes of EMI signature changes were a) unfulfilment of an adequate 

bonding of PWAS to the specimen, and b) damage of PWAS itself. To this end, a research 

travel was done at Laboratory for Active Materials and Smart Structures (LAMSS), University 

of South Carolina, which resulted in a large volume of measurements and recordings of 

microscopy and vibration applied to a number of PWASs and disk specimens. A state of the 

art specialized equipment for performing active materials and smart structures research was 

used. First of all, Polytec PSV-400 Scanning Vibrometer (Fig. 4, left) for non-contact 

measurement, visualization and analysis of structural vibrations. This is a measurement tool 

for non-contact measurement, visualization and analysis of structural vibrations. It determines 

the operational deflection shapes and eigen modes as easily as taking a photograph. Entire 

surfaces can be scanned and probed automatically using flexible and interactive measurement 

grids. Measurements can be made over a wide frequency bandwidth. 

Designed for resolving noise and vibration issues in R&D and manufacturing, the system 

is versatile and easy to use. At the heart of every Polytec PSV-400 system is the laser-Doppler 

vibrometer – a precision optical transducer used for determining vibration velocity and 
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displacement at a fixed point. The technology is based on the Doppler-effect; sensing the 

frequency shift of back scattered light from a moving surface. More details of this technology 

on: www.polytec.com/vib-universit. 

 
Fig. 2 – EMI signature for specimen disk # 76 with defect of arc type, before and after subjecting to radiations   

and extreme temperatures cycling 

  

Table 1 – room temperature       Table 2 – high temperature         Table 3 – room temperature 

      (150° C)                                      (after 150° C) 

   
 

# PZT 
RMSD before 

compensation 

RMSD after 

compensation 

200 0.4308 0.2097 

201 0.4026 0.2523 

203 0.1889 0.1447 

204 0.1586 0.1584 

209 0.2778 0.2082 

210 0.2825 0.2005 

215 0.4781 0.2090 

218 0.2332 0.2246 

2220 0.2921 0.2816 

Fig. 3 – Some results on the RMSD size induced as reversible effects of harsh conditions 
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Fig. 4 – LAMSS, UofSC equipment used in the project; left: Scanning Laser Doppler Vibrometer (SLDV; 

Polytec PSV-400); middle: SAM 300 scanning acoustic microscope (http://www.pva-analyticalsystems.com); 

right: digital microscope VHX 5000 (www.keyence.co.uk/) 

Fig. 5 shows one of the multiple recordings done in time domain with SLDV. The 

specimen disk # 138 (with arc type defect at 15 mm) is scanned at a frequency of 2738 Hz, 

see a 3D representation. One can see the position of the defect as red peak. Next to the  picture 

is the color scale. The red bar indicates when the image is selected: at 0.0723 ms. The 

displacement is given in [nm], depending on time [ms] (vibration measured in the z-direction, 

perpendicular to the disk, takes also negative values). The graph refers to a vibration of a 

specific point on the surface of the disk otherwise indicated in the picture. 

Fig. 6 shows the use of SLDV for records in the frequency domain. For the same specimen 

# 138, a 3D image of the vibration at a frequency of 49.56 kHz is shown. The displacement 

graph is associated to a certain point on the disk, and indicates the vibration of this point 

depending on the frequency. 
Of course, EMI signatures were made at LAMSS, but these are current also at INCAS, 

Mechatronics Lab, by using the HP 4194 impedance analyzer. 

Another tool used was the SAM 300 scanning acoustic microscope. This is mainly 

dedicated to high throughput, non-destructive analysis for quality control and research 

applications. The system enables detailed acoustic investigations through new radio frequency 

and transducer technologies of up to 400 MHz. Built to industry standards around a core 

platform that utilizes the latest production and research technology, the SAM 300 series has 

an ultrasound frequency range up to 500 MHz with transducers in the range 5 MHz – 400 

MHz. Scanning range: x=250 µm-320 mm, y=250 µm-320 mm, z=100mm. 

Fig. 7 shows images obtained with this device, at investigating the disk #122, particularly 

chosen wrong, for study. One can see: cracks in PZT (red circles); a piece of PZT is broken 

(green rectangle); areas without glue (yellow rhombs). 

Finally, a third device used was the digital microscope VHX 5000. The VHX is an all-in-

one microscope that incorporates observation, image capture, and measurement capabilities. 

Fig.8 shows two images of the disk # 106 obtained with this device. The picture on the right 

is an enlarged image of the left side; a crack is shown in PZT. 

3. ONLINE IDENTIFICATION OF DAMAGES 

The original formalism of artificial neural networks (ANN, in short, NN) derived from 

modeling of cognitive processes. Any NN must have two characteristics: a) to contain a 

learning algorithm, based on tuning sets of adaptive weights and b) to be capable of 

http://www.pva-analyticalsystems.com/
http://www.keyence.co.uk/
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approximating  nonlinear  functions [15], [16]. Both properties are  exploited in the proposed 

method online identification of defects. 
 

   
 

 

 

Fig. 5 – Recordings in time domain done with SLDV on specimen disk #138 (the registration below indicates a 

certain stabilization of vibration) 

For better understanding of the ideas let's remember some words about the second property. 

In the mathematical theory of NN, the universal approximation theorem states that a feed-

forward network with a single hidden layer containing a finite number of neurons (i.e., a 

multilayer perceptron), can approximate continuous functions on compact subsets of Rn, under 

assumptions on the activation function (non-constant, bounded, and monotonically-increasing 

continuous function, the so called sigmoid function; e. g.,     1
e1

 xxf ). One of the first 

versions of the theorem is given for sigmoid activation functions [17]. 

NNs often have multilayer structures. For instance, the sigmoid model 

http://en.wikipedia.org/wiki/Mathematics
http://en.wikipedia.org/wiki/Feedforward_neural_network
http://en.wikipedia.org/wiki/Feedforward_neural_network
http://en.wikipedia.org/wiki/Neuron
http://en.wikipedia.org/wiki/Multilayer_perceptron
http://en.wikipedia.org/wiki/Continuous_functions
http://en.wikipedia.org/wiki/Compact_space
http://en.wikipedia.org/wiki/Euclidean_space
http://en.wikipedia.org/wiki/Bounded_function
http://en.wikipedia.org/wiki/Monotonic_function
http://en.wikipedia.org/wiki/Continuous_function
http://en.wikipedia.org/wiki/Theorem
http://en.wikipedia.org/wiki/Sigmoid_function
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Fig. 6 – Recordings in frequency domain done with SLDV on specimen disk #138 (below is given the EMI 

signature of the disk) 
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Fig. 7 – Images obtained with SAM 300 scanning acoustic microscope, at investigating the disk #122 

  

Fig. 8 – Images obtained with digital microscope VHX 5000, disk #106 

Concerning first property of NN, lately the literature of domain distinguishes between two 

concepts: learning and training functions. The training function is the overall algorithm that is 

used to train NN to recognize a certain input and map it to an output. A common example is 

backpropagation [15], [19], [20], [21] and its many variations and weight/bias training. A 

learning function deals with individual weights and thresholds and decides how those would 

be manipulated. These usually (but not always) employ some form of gradient descent [15], 

[19]. 

“Backpropagation” is the abbreviation for “backward propagation of errors”, and is a 

common method of training used in conjunction with an optimization method such as gradient 

descent. 

The method calculates the gradient of a loss function with respects to all the weights in 

the network. The gradient is fed to the optimization method which in turn uses it to update the 

weights, in an attempt to minimize the loss function. 

Gradient descent is based on the observation that if the multivariable function  f x  is 

defined and differentiable in a neighborhood of a point a , then  f x  decreases fastest if one 

goes from a  in the direction of the negative gradient  f x  at ,a    f a . 

http://en.wikipedia.org/wiki/Backpropagation
http://en.wikipedia.org/wiki/Gradient_descent
http://en.wikipedia.org/wiki/Mathematical_optimization
http://en.wikipedia.org/wiki/Gradient_descent
http://en.wikipedia.org/wiki/Gradient_descent
http://en.wikipedia.org/wiki/Loss_function
http://en.wikipedia.org/wiki/Defined_and_undefined
http://en.wikipedia.org/wiki/Differentiable_function
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Consider the problem of approximation of a function given by samples 

 1 1 2 2, ; , ;...; ,Q Qx y x y x y using a multilayer feed-forward NN. To illustrate the architecture, the 

mathematical model and the NN operation, we refer to the detailed scheme from Fig. 9. 

Generally, the number of nodes in the input and output layers can be determined by the 

dimensionality of the problem. However, determining the number of hidden nodes is not 

straightforward. It requires first the determination of the number of hidden lavers. There is a 

number of theoretical results concerning the number of hidden layers in a network. 

Specifically, in [20] it has shown that a network with two hidden layers can approximate any 

arbitrary nonlinear function and generate any complex decision region for classification 

problems.     

Thus, a three-layers NN with 5, 10 and 1 “neuron”, is defined and trained to approximate 

the EMI of a monitored structure. Specifically, NN will approximate the real part of the EMI 

and the training effort will quantify the damage level of the structure. The outputs of the three 

layers are denoted as 

 

Fig. 9 – Detailed diagram of a three-layer NN  

   1 1 1 1 2 2 2 1 2 3 2 3, ,a F W x b a F W a b z W a b       (3) 

x R  is the NN input and z R  is NN output. 1 1
1

nW R  , 2 1
2

nW R  , 21
3

nW R  are the 

weight matrices. 

The output of the neuron layers are 
1 11 2

1 2,
n n

a R a R
 

  respectively; 1 2,n n  and 3n  are 

the numbers of neurons in the input, “hidden” and output layers, respectively. We have noted 

so-called activation functions    
T T

1 1 2 5 2 1 2 10: , ,..., , : , ,...,F f f f F f f f  , 3 3:F f  with the 

observation that all components will be considered identical with    f x x  


1
1

e . Further it 

is described a sketch of the training algorithm based on steepest descent method. 
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The approximation problem is thus transformed into an optimization problem defining a 

function as half of the squared approximation error 

     
2

1 1 2 2 3 3

1
, , , , ,

2

q
k kkE W B W B W B y q z q     (4) 

1, ,q Q , 1, ,k K  where Q  is the number of the input-output pairs in the training 

process and K is the number of the epochs (number of sweeps of the input-output pairs). The 

gradient descent method involves the weights updating in the opposite direction of the gradient 

of the function E which is to be minimized 

   1 1 2 2 3 3 1 1 2 2 3 3, , , , , , , , , , ,
q qnew old new old

i i i ik k
i i
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 
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 
 (5) 

with 1,2,3i   and   a so-called positive learning rate. The backpropagation method will 

provide recurrent relations for the weights update starting from initial guess (usually, the 

algorithm selects random numbers) 
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Let's remark the updating in “inverse” sense, from output to input, of the first relationship 

(6), and then remark the updating in “direct” sense, input-output, the vectors of weights and 

biases (the last two relations in (6)). As an example of operation of the algorithm for the 

proposed NN, consider the approximation of the function      sin 2 2cos 2y x x x   

 

on 

the interval. In this interval 402 sampling points, including the interval heads, were considered 

and now the weights and biases are updated according to the result of (6). Let’s move forward, 

with the second pair,    2 2, : 0,2 .x y   Other updating schemes could be applied, for example, 

the weights to be taken after completing all 402 points. The procedure will be repeated for a 

convenient number of iterations (epochs) to ensure a suitable error of approximation. 

It seems that NN made a good and relatively fast approximation according to the following 

relationships and Fig. 10  
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Fig 10 – Working of backpropagation algorithm. Case study 

It is well known the peculiar sensitivity of back stepping to the initial choice of weights 

and biases [19]. Also, the algorithm has a slow convergence, because its step sizes should be 

adequate to the gradients. The method still remains one of the most significant breakthroughs 

for training NN. The backpropagation algorithm was greatly improved by the Gauss-Newton 

algorithm and, further, by the Levenberg-Marquardt (LM) algorithm. The later interpolates 

between the two algorithms. As the second-order derivatives of the total error function E , 

Hessian matrix H gives more proper evaluation on the change of gradient vector. As can be 

seen from the relationship below, the well-matched step sizes are given by the inverted Hessian 

matrix 

2
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In the basic assumption of Gauss-Newton method, the relationship between Hessian H

and Jacobian matrix J  is  
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In order to make sure that the approximated Hessian matrix in (11) is invertible, the LM 

algorithm introduces another approximation to Hessian matrix 

, 0, the identity matrixTH J J I I      (12) 

In the following, to apply the proposed online identification scheme, was used the LM 

algorithm from Matlab, Neural Network Toolbox package. Figs. 11 and 12 show that working 

of the online identification scheme is made in two steps. 

In a first, offline step, based on knowledge and thorough analysis of the structure being 

monitored, a frequency band is selected, that which is the most sensitive to changes produced 

by the appearance of damages in the spectrum of EMI recording. 
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NN learning algorithm will be trained to recognize the healthy form of the EMI spectrum 

in the specified frequency band. The second step is an online one. 

In the case of significant changes occurrence in the spectrum, the algorithm will notify 

this as a significant error. 
 

a) b) 
 

c) d) 
 

e)  f) 

Fig 11 – Online damage identification, over four resonance peaks, based on LM training of NN: a) EMI recording 

based on tests; b) focus on the first four resonance peaks; c) algorithm training on the window of four resonance 

peaks representing healthy structure; d) learning validation, use of mean square error criterion; e) online 

identification of damaged structure; f) damage identification, using mean square error criterion 

The notified error is important to be recorded and communicated in real time as a warning 

to the general SHM system. Then, the NN adapts and learns in principle the new EMI form, 

assuming that the event is not a catastrophic one. 
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NN algorithm with healthy EMI characteristic learned is introduced in the online SHM 

system. In numerical simulations, the proof of damage detection is as follows: after the NN 

has learned healthy EMI form, insert a form that resulted from tests representing damaged 

system. At this time, the algorithm is initialized with the last weights corrected representing 

the healthy system, thus mimicking a real situation. 

Algorithm will give at output a quickly increased of the error, which in fact will mark the 

appearance of the damage. 
 

a) b) 
 

c) d) 
 

e) f) 

Fig. 12 – Online damage identification, over one resonance peaks, based on LM training of NN: a) EMI recording 

based on tests; b) focus on the first four resonance peaks; c) algorithm training on the window of four resonance 

peaks representing healthy structure; d) learning validation, use of mean square error criterion; e) online 

identification of damaged structure; f) damage identification, using mean square error criterion 
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4. RESULTS, DISCUSSION AND CONCLUSIONS 

One of the major ambitions of modern engineering is to perform SHM in real time in 

components of high cost and reliability. Thus, the creation or improvement of techniques that 

enhance the accuracy and reliability of the SHM in Space applications is highly desirable [23].  

A preliminary conclusion of the complex tests to validate SHM technology in harsh 

conditions: EMI signature shows that some specimens were taken out of service, after 

completing tests in harsh conditions. Careful diagnosis of these faults is in the process of 

being made, but we can already say that a leading cause for the specimen decommissioning is 

the lack of a standardized procedure for bonding the sensor on structure. Tables 1-3 constitute 

an argument for the validity and utility of statistical indicators RMSD and CC in identifying 

defects offline. Thus, the indicator RMSD varies almost monotonically decreasing with 

distance from the piezo sensor to defect, what is an intuitive fact. Also, it can be seen that the 

higher the defect edge makes a larger angle to sensor center, the impact of the increasing 

deviation from healthy structure, quantified by the indicator RMSD, is higher. 

The main result of Section 3 is the proposal of a strategy for online identification of 

structural damages, using NN in his quality of universal approximator of the nonlinear 

functions. It is shown that a NN, trained on a LM algorithm, has the willingness to “learn”, 

thus identifying a function more or less complicated, as is the case with the real part of EMI 

characteristic. Figures 11and 12 illustrate this on a frequency band comprising four peaks or 

one peak resonance, respectively, for two EMI recordings. NN used to identify the occurrence 

of the damage in Figs. 11, 12 has three layers: (10, 10, 1) neurons. 1851 or 801 points ix  were 

considered in the domains of definition of the real parts of some EMI records in the two Figs. 

Error criterion for training and identification of damage is the mean square error criterion 

   
2

1

1
Q

q

E y q z q
N 

      (13) 

Here's an example for the weights 3W  obtained at the automatic stopping of the learning 

process for damage identifying, considering a default value for E  

    0.0106   -0.9789   -0.0312    0.6531   -0.0630    0.5186   -0.3754    0.5924    1.6549    0.2788 

   -0.5009    0.2721    0.7401   -0.2801   -0.8083    0.6027    0.9455   -0.9659   -0.0462    0.2830 

   -0.5341   -0.9522   -0.5465   -0.3506    0.7530   -0.5543    0.6431    0.3854   -0.0864    0.5013 

    0.2348    0.0115   -0.6683   -0.0763    0.4225   -0.2366   -4.0795   -0.6530   -1.8344   -0.2328 

   -0.4505    0.6797   -0.7645    0.1253   -0.1322   -1.2936    2.6575    0.6704   -0.3747    0.0993 

    0.0242    0.4690   -0.8721   -0.5533   -0.0883   -0.5888    3.5430   -0.8349    0.1804    1.5009 

    0.0259   -0.8812    0.8620   -0.5824   -0.1766    1.1087    2.7861    0.4143   -0.0396    1.1322 

    0.3425    0.0470    0.0550   -0.6418    0.7408    0.9628    0.4769     0.1718   -0.0780    0.0100 

   -0.6213   -0.8678    0.5371   -0.9527   -1.0573    1.1338    0.8713   -2.2384    0.9984    0.7846 

   -0.3600    0.6632   -0.9232   -0.2491   -0.9082   -0.6109   -0.2733   -0.4737    0.3541    0.0224 

In view of NN preparation for in-situ installing, at least the following aspects must be 

elucidated: setting the number of learning iterations; evaluation of common damages that can 

appear in the structure; investigations on their evolution time; investigations on the possible 

values of learning errors; the default value of error to stop the learning process. 

The Larson-Miller parameter is a means of predicting the lifetime of material vs. time 

and temperature using a correlative approach based on the Arrhenius rate equation. The value 

of the parameter is usually expressed as L=T(C + log t) where C is a material specific constant 

often approximated as 20, t is the time in hours and T is the temperature in Kelvin. The Larson-

Miller parameter describes the equivalence of time at temperature for steel under the thermally 

http://en.wikipedia.org/wiki/Arrhenius_equation


79 New Advances in Space SHM Project 
 

INCAS BULLETIN, Volume 7, Issue 1/ 2015 

activated creep process of stress rupture. It permits the calculation of the equivalent times 

necessary for stress rupture to occur at different temperatures. It has the general form 

 0.001 20 logL T t   (14) 

L is the Larson-Miller parameter; T is the temperature in degrees Rankine (°F + 460); t is the 

time in hours for an isothermal condition. 
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