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Abstract: The study continues the recent work of the authors, by sketching an approach of the 

aircraft-pilot system stability analysis, considering both the rate saturation of the actuator and the 

time delay in control input. A stable behavior of the closed loop pilot-aircraft system with input delay 

was previously obtained. The problem is now if this stability survives in the presence of the actuator 

rate saturation. The mathematical tools of stability analysis are those of the Integral Quadratic 

Constraints (IQC) methodology. 
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1. INTRODUCTION 

Absolute stability, as was introduced and defined in [1], is in fact a global asymptotic 

stability of the equilibrium of a feedback system with a special structure, consisting of a loop 

of some linear ( L ) and nonlinear ( N ) components (Fig. 1a). Asymptotic stability is global 

in the sense that it refers to a whole class of functions that define the nonlinear component 

( N ). We mention in passing that absolute stability theory was developed around Aizerman 

[2] and Kalman's [3] conjectures which, although disproved, were fruitful for the 

applications of the problem they have generated. 

    

Fig. 1 – Basic feedback configuration of IQC paradigm  

One of the most consistent achievements of the absolute stability theory continues to be 

over 50 years the frequency stability criterion of Popov [4]. Certainly, it was expressed only 

as a sufficient condition, as the other contributions that have followed (for example, the 

circle criterion, see, e.g., [5]). Therefore, a challenge faced by researchers over time was to 

reduce the conservatism inherent to any theorem expressed as a sufficient condition, in other 

words, to reduce the “distance” between a sufficient condition and a sufficient and necessary 

condition. A common idea was this: more restrictions will be imposed on the nonlinear part 

N  of the system, less restrictive (therefore, less conservative) will be the conditions on the 
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linear part L  defined by the frequency domain inequality or by the equivalent to it Liapunov 

function [6] (see also [7]). This research direction has resulted in so-called Integral Quadratic 

Constraints (IQC) method, as it is known today through the work of Megretski and Rantzer 

[8]. As shown in [9], the IQC theory has its roots in at least three fruitful research fields: the 

input-output theory (Zames and Falb [10], Willems [11]); the absolute stability theory with 

special contributions from Popov [4] and Yakubovich [12]; the robust control ([13], [14], 

etc.). Here is added a less known book of Rasvan [15], with real contributions at the time. 

The stability of the closed loop pilot-aircraft system is important from both theoretical 

and practical viewpoint, and it is herein put in touch with a timeliness problem, that of 

prediction and prevention of the Pilot Induce Oscillations (PIO) phenomenon. PIO is usually 

due to adverse aircraft-pilot coupling during some tasks in which “tight closed loop control 

of the aircraft is required from the pilot, with the aircraft not responding to pilot commands 

as expected by the pilot himself” [16]. Predicting PIO is, of course, difficult and becomes 

even more difficult with the advent of new technologies such as active control and fly-by-

wire flight control systems. According to common references (e.g., [17]), PIO phenomenon 

is categorized depending essentially on the degree of nonlinearity of the different 

circumstances. In the category PIO II, quasi-linear oscillations result mainly from rate and/or 

position saturation of the actuator. 

In terms of input-state-output space representation, when modelling PIO, a state model 

of human pilot must be introduced in conjunction with the aircraft model. Clearly, the output 

of the pilot is the input to the aircraft model, but this junction follows to be fatalistically 

corrupted by physical (servo)actuation saturation type limits and input delays due to the pilot 

actions. This results in specific nonlinear stability problems, treated with specific tools, such 

as describing function [18], Popov and circle criteria [5], semi-global stability [19], etc. 

Attempts to describe the behavior of the human pilot in the loop are given in [20], in 

frequency domain, and in [21], [22], in the time domain of the optimal control. 

Undoubtedly, to have at hand a mathematical model of pilot behavior is very important 

for deriving a PIO prognostic theory. A recent work [23] describes the main steps of deriving 

a complex model of human pilot, based on time delay synthesis. Starting from the optimal 

model of the 1970s ([24], [25]), the pilot model problem is defined and solved by making 

reference to the control separation and duality principles and a closed-form expression of the 

solution is obtained. 

Another paper, [26], focuses on the investigating the susceptibility of the tandem pilot-

aircraft system to PIO generated by the actuator rate saturation. Both position and rate 

saturations in the plant model were considered in [27], by adapting the semi global 

stabilization theory for systems subject to input saturation [28]. So, in the two cited works 

[26], [27], the saturation and the delay, as possible sources of instability, are a separately 

approached. 

This paper addresses the absolute stability problem of the pilot-aircraft system 

considering both the rate saturation of the actuator and the time delay in control input. A 

stable behavior of the closed loop pilot-aircraft system with input delay was previously 

obtained [23]. A short presentation of these results is given in Section 2. The problem is 

now if this stability survives in the presence of the actuator rate saturation. The mathematical 

tools of stability analysis are those of the Integral Quadratic Constraints (IQC) methodology.  

More specifically, the basic IQC theorem given in [8] is used as a general framework for 

robustness analysis of linear dynamical system pilot-aircraft with respect to uncertainties or 

nonlinearities defined by rate saturation and input delay. 
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2. A SUMMARY OF PILOT MODELING 

BASED ON TIME DELAY SYNTHESIS 

The block diagram for the pilot-aircraft system is shown in Fig. 1. The aircraft dynamics are 

written in the form of a linear time invariant system [21]-[27] 

                    0, : 0t t t w t t t t t t  o y yx = Ax + B + E  y = Cx + v = y + v x x,  (1) 

  nt Rx is the state vector,   mt Ry  is the observation process,  t  is a scalar input 

defining the pilot command to aircraft,  w t and  tyv are independent Gaussian noises with 

intensities  , diag
iyW V , respectively. The initial condition 0

nRx  is a Gaussian vector 

such that 0x ,  w t and  tyv are independent. All the matrices are of appropriate 

dimensions. The core problem is that the human pilot inherently delays in the control loop of 

the aircraft. Our approach of the pilot command  t  modeling as a control law synthesis is 

based on the hypothesis that “the pilot behaves optimally” [21]-[27]. Thus, the pilot action is 

seen as: a) an observation component, b) a “mental” component, analogous to a Linear 

Quadratic Gaussian (LQG) controller, c) a decisional, “central nervous” component 

analogous to a dynamic predictor and d) an actuating, neuromuscular component. 

Assumption 2.1. As it was done in [23], the total inherent delay 2  of the pilot input   

is shared, for convenience, into the   component for observation and   effective CN 

decision feedback component (Fig. 2). 

In the paper [23], our approach was to eliminate the Padé approximations of the central 

nervous block frequently used in the literature and to assume the natural representation of the 

time delay in control input (Fig. 2) 

   p cu t u t    (2) 

 

 

 

 

 

 

 

 

Fig. 2 – Conceptual block diagram for the pilot-vehicle system (see (12a))  

Further on, the actuating neuromuscular block is modeled, as usually [23]-[25], by the 

lag block 

             0 for 0 t ; :d d p ut t u t t u t u t v t                , ,  (3) 

(   is the neuromuscular − NM − lag and  uv t  is a Gaussian noise with intensity uV ) and 

by virtue of the synthesis method will be intermediary considered as part of the plant 
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dynamics (1). Thus, the two blocks (1) and (3), in state space form, will be given by the 

system  

 
 

 
 

 
 

 

   
 
 

     

0

0 1 1 0 1

0

c
u

y

t t t
u t

t t v t

t
t t t t

t

  

          
              

                

  
        

   
:o y

A B Ex x w

x
y = C v y + v

 (4) 

or, in matrix form, with deductible notations (e.g., 
T

T:sx x  
 

) 

       

         
1

0 0

s s s

y

t t u t t

t t t r r

     

        

s s

o s s s

x A x B E w

y = C x + v x =

;

, , ,
 (4a) 

Remark 2.1. 1w  and yv  are zero mean stationary Gaussian white noises with strictly 

positive intensities    diag diag
iu yW V V, , . Worthy to note, the variance is independent of 

time:  var u t     var u ut V  . For the sake of notation simplicity, 

     p cu t u t u t     : . 

Pilot OCM as a Linear Quadratic Gaussian (LQG) paradigm. Given the system (4a), 

find the control  u t that minimizes the cost 

           T T 2 T

0
min lim E 2 for

ft

J f f f fJ u J u u R dt t t t t
 

       
  s s J s s s f sx C Q C x + x P x, ,  (5) 

The symbol  E f x    means the expectation of the function f  of a random variable x . 

: 0T
s J sQ = C Q C , 0JR   and 0f P  weight the state vector  s tx , the control  u t  and 

 s ftx , respectively. T
a denotes the transpose to a vector (matrix) a . 

Based on the separation principle and the duality principle [29], [30], the solution of 

pilot OCM was obtained in two steps [23]. The first step in the synthesis of the pilot OCM 

was finding of the LQR solution.  

LQR paradigm. The aircraft is described by the linear system with time delay in 

control input 

         0 0st t u t r r      , , ,s s s sx = A x + B x =  (4b) 

The pilot, based on the observation output  

   o t t  s sy = C x  (6) 

herein considered as a performance output (the observation is “measured” on the screen), 

aims to minimize the index 

        

     T T 2 T

0

min 0 0

2 for
f

s

t

J f s f f

J u J u J u

u R dt t t t

  

 
    

  s s J s s s f

x

x C Q C x + x P x

, : , . ,

,
 (7) 
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Proposition 2.1. The solution to the LQR problem for linear time invariant system (4b), 

(7) with input delay, in the case of infinite horizon, ft  , is given by 

     

   

1 T T

T 1 T T

exp ,

exp exp 0

J s s s

s s s s J s s

u t R t

R

 



       

      

B A Px

A P + PA P A B B A P Q
 (8) 

Proof. See [23]. The time delay synthesis machinery developed in [31] was used. 

The second step in the synthesis of the optimal pilot model consisted in the statement 

and the solution of the estimation problem in the context of the system with time delay in the 

output equation 

     o yt t v t    s sy = C x  (6a) 

So, let us consider the random process     ,s ot tx y described by the equations (4a) with 

the initial condition      , ,0s r r r   x  given by a stochastic process, and with 

1, , yw v   independent white noise stochastic processes. 

Estimation paradigm. Based on the observation process     , 0ot s s t   Y y , find 

the optimal estimate  ˆs tx  of the state  s tx , which minimizes the Euclidean 2-norm 

         
T

ˆ ˆE Y
s s s tJ t t t t   

  sx x x x F  (9) 

at every time moment t . 

The operator E     in (9) means the conditional expectation of the stochastic process 

  with respect to the algebra  generated by the observation process 

    , 0ot s s t   Y y  [31]. A well-known result [32] is expressed by 

Proposition 2.2. The optimal estimate is given by the conditional expectation 

   ˆ E Y
s s tt t 

 
x x F  (10) 

The matrix function 

           
T

ˆ ˆ=E Y
s s s s tt t t t t  

  
S x x x x F  (11) 

is the estimation error variance. 

Further is shown the LQG solution to both LQR problem and estimation problem. 

Proposition 2.3. The solution to the LQG problem (4a), (5) is given by the following system 

of equations  

       

   
            

   

1 T T

T 1 T T

T T 1

T T T T 1
1

ˆ ˆexp :

exp exp 0

ˆ ˆ ˆ , : exp

exp exp 0

J s s s R s

s s J s s

s s s y

s s s s y s

u t R t t

R

t t u t t t

 



 



          

     

        

      

s s

s s s f o s f s

s s s

B A Px K x

A P + PA P A B B A P + Q

x = A x + B K y C x K S A C V

SA A S + E W E S A C V C A S

 (12) 
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Proof. See [23]. 

Remark 2.2. Extending classical results [29], [30], the existence of the solutions of the 

Riccati equations in (12) is guaranteed if the pairs   exp ,s s  sA A B  and   1,s sA E W  

are stabilizable and the pairs  , ssC A  and   exp ,s s sC A A  are detectable. 

Corollary 2.1. The state space representation of the pilot is given by 

     

         

          

     

0 for 0o

R s

s o s

o y

t t t t

t t u t u t t

t t u t t t

t t v t

 

     

             

     

    

, ,

ˆ,

ˆ ˆ ˆ
s s s f s

s s

y

K x

x = A x + B K y C x

y = C x

 (12a) 

Accordingly, the closed loop pilot-vehicle system is the following  

 

 

 
 

 
 

   1

00

0

0

0

s s Rs s

f s R f

y
f

t t t

t tt

t t

         
                     

  
    

   

s

s ss s ss

s

x B KA x x

K C B K K CA x xx

E
w v

K

ˆ ˆˆ
 (13) 

or, in matrix form, and, for convenience, with zero initial condition 

           1 0 for 0

0 00

0 0

s s s s f y s

s R s
s f

f s R f f

t t t t t t t



              

      
                   

: , : , : :

cl cl

s
cl cl

s ss

X A X A X E w K v X

B KA E
A A E K

K C B K K C KA

 (13a) 

Remark 2.3. The comment in Remark 2.1 can be extended to equation (13a). The sum 

of two white noises    1s f yt t  E w K v can be represented by an equivalent white noise 

process  t  

          0 for 0s s s st t t t t t           ,cl clX A X A X X  

                T T T Tcov =:E diag diag
is u s f y ft t t t W V V t t t t               

   
,E E K K

 

(13b) 

Stochastic differential delay equations such as (13b) were introduced in the 1960s; see, 

e.g., [33], in which the existence and uniqueness of the solution were discussed. Despite 

efforts of many researchers over time, this field is still in its infancy [34]. For example, the 

stability conditions are known in the case of general stochastic differential equations without 

delay (see, e.g., [35]) and in the case of certain delay differential equations (see e.g. [36]); 

instead, major difficulties are encountered because of the combination of delay and 

stochastic processes. 

Here it should be mentioned that under LQG performed synthesis, the autonomous 

equation associated to equation (13b) 

     s s st t t   cl clX A X A X  (13c) 

is stable. In this context, it is interesting to directly check the stability of autonomous 

equation base on the theorem given below. 



59 Dealing with actuator rate limits. Towards IQC-based analysis of aircraft-pilot system stability 
 

INCAS BULLETIN, Volume 5, Issue 2/ 2013 

Proposition 2.4 ([36], Chapter 1, Theorem 5.2). If   0 : max Re : 0cl cl e     I - A A , 

then, for any 0  , there is a constant  K K   such that the fundamental solution   

satisfies the inequality   tt Ke   ( 0t  ). 

To facilitate a quickly searching, by an optimization procedure, for the selection of the 

noise intensities u yW V, ,V , an algebraic equation for the covariance of the stationary state 

vector was established in [23]. 

Proposition 2.5. The covariance of the stationary state vector 

    T

ˆ

: E :
s

s

x

s s
t x

t t



 

 
   

  

C
C X X

C
 (14) 

is given by the solution of the matrix algebraic equation  

     
T

0cl cl cl           clA A C C A A  (15) 

The covariances of the stationary output    t t  s sy = C x  and control    R su t t    ˆK x  

are described by the following relations 

    T T: Ey s s
t

y t y t 


 C C C C  

      T T 1 T T
ˆ: E , : expu R x R R J s s

t
u t u t 




    C K C K K R B A P  

(16) 

In general, the control signal  t is applied to a servo actuator. Herein, this is the so-

called “power control unit”, usually a hydraulic servo actuator installed in the command 

chain of the flight controls (Fig. 3). However, it should be noted that the above synthesis of 

the pilot model was made without considering the servo actuator dynamics. This 

simplification is quite common [24], [25] and can be motivated given that the actuator’s 

dynamics are anyway much faster than the plant dynamics. This does not exclude strongly 

nonlinear saturation phenomena during operation: amplitude saturation (which derive from a 

constructive-functional constraint), and rate saturation (which is an energy constraint, in 

other words, an oil flow limitation). 

 

Fig. 3 – Basic scheme of flight controls with hydro-mechanical servo actuator [39] 

An approach in the framework of the semi global stabilization theory for the pilot-

aircraft system subject to both position and rate saturations was done in [27]. Obviously, the 
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rate saturation modeling requires a dynamic model of the servo actuator; herein, one of first 

order is considered representative. Also, for reasons of simplicity, we will address the 

problem of absolute stability at the simultaneous emergence of the actuator rate limit and 

input delay, and we will neglect the actuator position limit. In this context, the updating of 

mathematical model summarized in the equations (1)-(16) means simply to interpose a first 

order servo actuator equation between the NM block output  t and the effective aircraft 

input  ls t   

             

         

B,

ˆ / 1

ls ls B ls

R s u

t t t w t t t t

t t t v t 

        

          

x Ax B + E

K x
 (17) 

The notation B  stands for the servo actuator bandwidth angular frequency, i. e., the inverse 

of the time constant of the hydraulic servo actuator [37], [38]. Thus, the synthesis procedure 

described by the equations (1)-(16) has to be step by step performed for the aircraft extended 

with the state ls  of a linear servo actuator 

       
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A B E
A B E

K x

x A x B K x K y C x

A Bx
x A B C C

 (18) 

In the above equations, the noises have been evaded for the simplicity of notation. 

Numerical evaluation of pilot synthesis proposed above follows exactly the line 

described in [23]. The mathematical model concerns the hovering control of a VTOL-type 

aircraft [24]. With reference to Fig. 2, the aircraft model and the displayed outputs for the 

experiment deployment were  

0 0 0 0 0 1
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where gu − longitudinal component of the gust velocity [m/sec]; U  − velocity perturbation 

hx along the aircraft x axis [m/sec];   − pitch attitude [rad];  q  − pitch rate [rad/sec]; 

hx  position [m];   − control stick input [mm]; 
u

M − speed stability parameter (0.068 

rad/m/sec); qM  − pitch rate damping ( 3 1 sec ); M  − control sensitivity 

( 0.017 rad/sec2/mm); uX  − longitudinal drag parameter ( 0.1 sec  ; g − gravitational 

constant, 9.81 m/sec2; U  and q  are the first derivatives of hx , and  , respectively; 
gu − 

white noise filter pole (0.314 rad/sec); 0.1sec,   2 0.15sec   ; 20 003u uV   .  and 

20 01
i iy yV   . , which correspond to normalized control noise and normalized 

observation noise of −25 dB and −20 dB, respectively (all the observation noise were set 

equal). The values of uM , M  and uX  correspond to a “nominal” operating point [24]. The 

choice for weighting matrix JQ  was made accordingly to reference [24], 

 2 2 2 2 2 2diag 0s m 1m 37s rad 0radJQ     . The idea is that the task of the pilots in 

experiment was to minimize the hovering error. A trade between hovering error and pitch 

attitude error, based on measurements, is involved.  
 

 

 

 

 

Fig. 4 – Series loop model for pilot longitudinal control in hover [24] 

The determination of the matrices in the system (12a), (18) (see details in [23]) requires 

a systematic procedure for the selection of the noise intensities  ,
iu yV V  in order to obtain 

the above normalized observation noises. An assumption was made concerning a multiloop-

model approach and an a priori closed-loop system structure illustrated in Fig. 4. In an 

attempt to correlate this multi-loop structure with the pilot model, the transfers functions 
xpY  

and 
pY


must be computed 
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(21) 

Human performance is predicted and compared with data obtained from simulation 

experiments in which skilled pilots executed the task. The results in [24] showed that the 

described there pilot model, called optimal control model (OCM) indeed reproduces most of 

the essential control characteristics of the pilots as well as closed-loop system performance. 

Numerical results shown in Fig. 5, in the form of transfer functions 
xpY and 

pY


, represent a 


 


 

gu

 

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 h refx
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comparison of experimental results reported in [40], [41] with theoretical results described 

by the system (12a), (18). The following transfer function associated to (12a) 
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a) transfer function pY


; b) transfer function 
xpY   

Fig. 5 – Comparison of experimental and theoretical results involving the transfer functions 
xpY and pY


. 

“Experiment” means “experimental data obtained with skilled pilots”; “model” means “numerical simulations on 

the system (12a), (18)” 
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K
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y
 (22) 

was considered as a mathematical “model” in numerical evaluations (Fig. 5). The increased 

phase shift with respect to experimental values is consistent with the framework of the delay 

synthesis. However, under conditions specified in Remark 2.2, the closed loop system (13), 

even with the extensions in (18), is designed as stable. The question arises if the dynamical 

stability is preserved in the presence of rate saturation.  

Compared to the previous equations (18), the occurrence of the rate saturation is 

modeled as follows 

               
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s s
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x A x B K x K y C x

x A B
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 (23) 

A typical block diagram of the rate saturation, also called rate limiter [42], is shown in Fig. 

6. This diagram describes the simplified and established servo actuator model with rate 

saturation [16], [26], [27], [37] (an easily different scheme is proposed in [42]). Saturation 

occurs when the error signal e exceeds the saturation value, L L Be V / . During saturation, 

the output ns  is required to move at its maximum rate LV  until error signal reduced.  
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Fig. 6 − a) Block diagram of the rate limiter; b) equivalent scheme 

3. SOME FUNDAMENTALS OF IQC-BASED STABILITY ANALYSIS 

The IQC framework for the absolute stability analysis allows the expression of many 

absolute stability criteria (Popov criterion, circle criterion [5], other criteria, e.g., [44]) in 

terms of a single unifying theory [8]. The fundamental result provided in [8] will be reported 

below for the sake of completeness. For self-containedness, a minumum theoretical 

framework is clarified below. Let R be the set of real numbers and C the set of complex 

numbers. The set of square integrable functions on lR  is denoted by 2L  and the set of 

functions on lR  that are square integrable on any compact set is denoted by 2eL . 2L and 

2eL  are normed spaces. We can take as example  2 0 L , , the space of lR -valued functions 

 0 lR f : , of finite energy:  
22

0
: d : ,t t



 f f f f . 

The above noted space 2eL  is an extended space consisting of signals that may not be 

bounded in the norm of the vector space but any their truncation to a finite time interval is 

bounded. Extended spaces are usually defined only for time axes included in R , because 

only causal systems starting at time zero are considered. A formalized definition of the 

extended space highlights the truncation operator TP  which leaves a function unchanged on 

the interval  0 T,  and gives the value zero on  T , . The causality of an operator F means 

that T T TP F P FP  for any 0T   [8]. 

Consider the system in Fig. 1b, where the linear part G is a linear time-invariant operator 

defined by a transfer matrix G(s) and the nonlinear part is given by a bounded gain nonlinear 

operator 2 2: e e L L . In applications, the bounded and causal operator   describes the 

“troublemaking” [8] components of a system: the nonlinearities, delays, or uncertainties). 

The positive feedback interconnection of G and   is described by the relations 

        Gu u,  (24) 

where  and   represent interconection noises on 2eL (see Fig. 1b). The dimensions of all 

spaces, functions and operators are appropiate, but are evaded for simplicity of notation (an 

operator is a mapping from a normed space into another). 

e  ns  
ns    

- s

1
 

LV  
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It is assumed the well-posedness of the interconnection, i. e., the operator    , , u g f  

defined by (24) is causally invertible. The well-posedness is equivalent to the existence, 

uniqueness and continuity of the solutions of the underlying differential equations [8]. The 

interconnection is stable if, in addition, the inverse is bounded, i. e., if there exists a constant 

0c  such that 

   2 2 2 2

0 0
d d

T T

t c t   u  
 

(25) 

for any 0T   and for any solution of (24). The gain of an operator 

   2 20 0e e  F L L: , , is given by     2sup / : 0, , 0   F F f f f L f . The 

operator is bounded if the gain is finite. 

The IQCs are quadratic forms characterizing the structure of the operators in Hilbert 

spaces H , i. e., in complete normed vector spaces with norm defined in terms of an inner 

product. More specifically, an IQC is defined as an self-adjoints operator [9], whose matrix 

M  is, consequently, Hermitian, M M
*  (the exponent (*)  means the transpose and 

conjugate applied to a complex matrix). Let   a bounded and self-adjoint operator, 

Therefore, given    u  (see Fig. 1b), we say that the signals u,  satisfy the IQC 

defined by   if  (as defined by a transfer matrix,    ω ω
*

Π Πj j ) 
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 
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             u u u uu u

    
     (26) 

 2 0,  L . Here  ˆ ωj  and  ˆ ωju  are Fourier transforms of the signals 

 2 0u L, , . In fact, IQCs are weightings, or multipliers. In other words, the quadratic 

form   ,Q     keeps a constant sign, whatever the input  2 0 L , , a Hilbert space.  

The main result of the IQC-based stability analysis is given below. 

Theorem 3.1 [8]. Consider a linear system defined by a stable transfer matrix  sG , and a 

bounded causal operator 2 2e e L L: . Assume that: 1) for every  0,1 , the 

interconnection of  G and  , as defined in (24), is well-posed; 2) for every  0,1 , the 

IQC (26) is satisfied by  ; 3) there exists 0  such that 

     II ,
j j

j


    

         

G G
I R

I I
. (27) 

Then, the feedback interconnection of G and   is stable.  

4. APPLICATION TO STABILITY ANALYSIS OF THE AIRCRAFT-PILOT 

SYSTEM WITH RATE SATURATION AND INPUT DELAY 

Remember now the components of the aircraft-pilot system: the aircraft equation, the 

actuator rate saturation equation, the optimal pilot model designed in the framework of input 

delay theory in which we add NM lag 

http://en.wikipedia.org/wiki/Matrix_%28mathematics%29
http://en.wikipedia.org/wiki/Hermitian_matrix
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We choose the vector signals u  and   as follows 
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(29) 

The next step is to find a linear part of the system (28), (29). Given the new variables (29), 

we rewrite the system (28) by ignoring the noises, which anyway are intercepted in the 

structure of Fig. 1b  

                  

             

1 3

2 3

ˆ, ; , / /

ˆ ˆ

ns ns B R s

s f s s s s R f s s f s s R f s

t = t t t u t t t t

t t t t t

             

      

x Ax B K u x

x K C x A B K K C x K C u B K K C u
 (30) 

An intermediate relationship was used 

   

                   2 3 2 3

ˆ

ˆ ˆ ˆ

s s

s s s s s s

t t

t t t t t t t t t t

 

   

   

          

x x

x x x x x x u u
  (31) 

It is not difficult to see that the matrix associated to the system 

1

2

3

0 0

0 0 0 0

0 0 1/ /

ˆˆ

0 0 0

1 0 0

0 0 /

0

ns ns

R

sf s s s R f ss

R

f s s R f s

u

 



    
          
       
    

        

 
  
  
  
    

  

A Bx x

K

xK C A B K K Cx

u
K

u
K C B K K C

 (32) 

is not a stable matrix, so a basic condition in Theorem 3.1 is not satisfied. At first glance, this 

compromises the solution of the problem in the framework of IQC paradigm. Without 
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excluding other possible approaches, in the following we consider a technique of 

encapsulation in a feedback loop [41], [45], [46] of the pure integrator 1 s  that we see in the 

second row of the relation (32). This way, the model is put in the limits of applicability of 

the Theorem 3.1. Performing a slight change of variables with respect to (29), in accordance 

with the block diagram in Fig. 7  

           

            

           

1 2 3

1 1 1

2 2 2 3 3 3

ˆ: , : , :

: sat

: , :

s s

B ns B ns

t t t t t t

u t t t t t

t t t t t t

    

        

     

x x

u u

 



     

 (29a) 

we get a new form of the system 

5 1 5 7

1 5 1 7

1 5

5 7 5 7

1 1
1 7 1 7

2 2
1 7

3 3

0 1/ /

ˆˆ

0

1
,

0 /

0

B Bns ns

R

sf s s R f ss

R

f s s R f s

u

 

 

  

 

 



    
          
       
    

        

 
    

   
   
      

  

A Bx x

K

xK C A B K K Cx

u
K

u
K C B K K C



 

   



 

 


 


1 5 1 7 1

7 7 7 2

7 7 7 315 14

0 1

0

ˆ

ns

s

u 



 

 
    

       
     
        

 

x

I u

I u
x

 





 

 (32a) 

respectively 

            

        

       

     

1

3

2 3

, + ;

ˆ/ /

ˆ ˆ

ns ns B ns B

R s

s f s s s s R f s s

f s s R f s

t = t t t t u

t t t t

t t t

t t

 

         

      

    

 

x Ax B

K u x

x K C x A B K K C x

K C u B K K C u

 (32b) 

 

 

 

 

 

 

 

 

 
Fig.7 – Encapsulation of the rate limiter 

On the one hand, analyzing the state matrix in equation (32a), we see that it is stable, 

moreover, this is even the state matrix that was used in the LQG synthesis with delay. On the 

other hand, the definitions (29a) mean the introducing of the nonlinear operator    (Fig. 1) 

 

   

   

1 1 sat 1

2 2 2 2

3 3 3 3

: :

Bu

t t

t t

      
   

        
            

u u

u

   

  

 
   

(33) 

   

  

ns  
e  ns  

1  :  
- 

ωB  
B  

LV  

L
L

ωB

V
e   s

1
 1u   
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with the operator  sat 1
B   defined by the relations 

              1 1, sat , 0 0ns B ns ns B ns nsu t t t t t             
  

(33a) 

Let now write the linear part G  of the system according to Fig. 1. With deductible 

notations, the system (32a) gives 

G G GX = A X + B u, = C X  
   

(34) 

therefore we have defined the system matrix G  

     
1

15,


G G GG s = C sI - A B G s M  
   

(35) 

Taking into account the sizes of the systems described in (18), (19), (28), (29), it follows that 

  15G s M , where by nM  is denoted the set of n n  complex matrices.   

Having in mind the definition (26) of the IQC multiplier, we are interested to obtain an 

assessment of the gains i i u , 1, 2, 3i  . For this purpose, we first get 

Proposition 4.1. The 2L -induced gain of the mapping 

    1 1 1 1: : satB ns B nsu           

does not exceed  sat : max 1, 2 B Bk    . 

The proof adjusts the result from [45], Theorem 3.4, p. 11. The function     = satz z  

is a semi concave function as defined in [45], with  0  = 1 , so the upper bound of 

the operator   1 1 1: satB ns B nsu         does not exceed  max 1, 2 B . 

Therefore the upper bound refers to the operator  

  1 1 1: : satB ns B nsu          

    

    
1 1 1 1 1

1 1

sat

sat max 1, 2

B ns B ns

B ns B ns B B B

u          

        



 
 

 

Observe that, based on the definitions 

 
 
 

 
 

,
sat

sgn ,

, : /
sat

sgn ,

B ns B ns L nsL
B ns

L ns B ns L nsL

ns ns L L B
ns

L ns ns L

V

V V

e V

e e

       
   

     

     
  

  

 

 

the identity  sat B ns     satB ns    holds, as shown in Fig. 6.  

In fact, Proposition 4.1 substantiates the following multiplier 

1 1

2
sat 0

0 1
u

k


 
  

 
 (36) 

Indeed, the definition of the of IQC multiplier (26) is written in this case as 
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 
2

1 1 2 2 2sat
sat 1 1 1

1 1

0
, 0

0 1

k
k u

u u

     
        

    
 (26') 

which just asserts Proposition 4.1. It should be added that various other IQCs of the rate 

limiter are proposed in literature. These IQCs transcribe a sector condition, or the Popov 

criterion, or the Zames-Falb multipliers [47] etc. 

Proposition 4.2. Consider an uncertain delay  0,1 . The 2L -induced gain in the 

mappings          2 2: :s s st t t t t     x u x x  ,          3 3ˆ ˆ ˆ: s s st t t t t     x u x x  

does not exceed the bound 

     2 4 2 4
delay 0: ψ ω ω 0.08ω 1+0.13ω 0.02ωk      (37) 

Indeed, with  0,1 , we get 

     

         

       

                

2 2

22 2 2 2
2 2 2

22 2
2

2 2 22 2 2
2 2 2

ˆ ˆ1

ˆ ˆ ˆ1 cos sin 1

ˆcos 1 2cos sin

ˆ ˆ ˆ2 1 cos 2 1 cos / 2 sin / 2 4sin / 2

j

j

j e j

j e j j j

j

 

 

   

          

        
 

                

u

u



 



  

 
(38) 

Define 

 
 

 
*

0

2
2

0, 0

4sin / 2 ,
max 4sin

2 4, 

      
     

    

 (39) 

To assessing the relative conservativeness of various absolute stability criteria, we are 

looking for weightings as defined in (26), thus we seek a rational upper bound of  
*

  . 

Such a function is even   0ψ ω  given in (37) (Fig. 8). The construction of this function 

relies on Propositions 2 and 3 from [48], which describe upper bounds of delay operators, 

with uncertain, but constant  0,1 . Therefore 

           
2 2 2 2

2 0 2 3 0 3ˆ ˆˆ ˆψ ω , ψ ωj j j j     u u   (40) 

This consideration ends the proof. 

Proposition 4.2 substantiates the following multipliers  

   
2 2 3 3

2 2

0 7 7 7 0 7 7 7

7 7 7 7 7 7

ψ ω ψ ω
,

0 0

0 0

 

 

   
    
       

  u u

I I

I I
 (41) 

7I  is identity matrix of order 7 and 7 70   is zero matrix of order 7 7 . Taking together the 

relations (36), (41), we get 
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Fig. 8 – Finding an upper bound of mappings        2 2 3 3,t t t t  u u  gain  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

*
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2
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2
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ˆ ˆω ω

ˆ ˆω ω

ˆ ˆω ω
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ˆ ˆω ω
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ψ ω

ψ ω:
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u j u j
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j j

    

     

   

   
   
   
   

   
   
   
   
      







u

u

u u

u u

I

I

I





 

 




0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

30 30

7 7

7 1 7 7 7 7 7 1 7 7 7





    

 
 
 
 
 


 
 
 
 
  

M

I0 0 0 0 0

 

 

(42) 

The matrix  u defines an IQC of the problem of stability for the pilot-aircraft system 

with rate saturation and input delay (28). 

Some preliminaries are necessary to establish the main result of the article. Let us note 

first that the matrix  u  can be written as the matrix product 

     
   *

* 11
0 00

0 00
u

I H jH j
H j NH j

I II


    
          

    
 

   

(43) 

   

 
1 0 7

0 7

2 0 0

: 0 ψ ω 0

0 0 ψ ω

H j j I

j I

 
 

   
 
 

 
   

(43') 

Considering (43), the condition (27) is successively rewritten as 
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       

 
     

   
   

* *
11

*
* 11

* * 1
1

0 00
0

0 00

0 00
0

0 00

0
0

0

IG j H j G jH j

II I II

I H j G jH j
G j I

I I II

I H j G j
G j H j I

I I

         
       

       

                       

   
          

 

 

With the notations 

     * *
1

0
: , :

0

I
L j G j H j W

I

 
      

 
 

   

(44) 

we invoke further the Kalman-Yakubovich-Popov (KYP) Lemma in the version given in 

[49]: 
Lemma 4.1. The frequency domain inequality  

   
0

L j L j
W

I I


    

    
   

 
   

(45) 

holds if and only if there exists a matrix TP P  such that 

T
T

T
0

A P PA PB
C D W C D

B P

 
         

  

 (46) 

where the four matrices  , , ,A B C D  represent a realization of the transfer matrix 

 
*

*
L s I 
 

. 

The results of the article can be summarized as follows. 

Proposition 4.3. Let the problem of stability for the aircraft-pilot system described in the 

basic feedback configuration of IQC paradigm (Fig. 1), with the linear part defined by stable 

matrix G  (35) and the “trouble makings” (saturation and delays) embedded in the 

nonlinear bounded causal operator   (33), (3a). The bounded self-adjoint operator 

 u (42) was chosen as IQC type multiplier. Let  u have the realization 

   
1 1

II=
j I A B j I A B

M
I I


 

   


      
   
      

 
(47) 

where , ,x wB B B and A   
     is Hurwitz.  Then the conditions 1) and 2) in Theorem 

3.1 are fulfilled. The condition 3) is equivalent to the condition that the Riccati equation  

   1T T TQ PA A P PB S R B P S      (48) 

should have a stabilizing solution. The matrices in (48) are defined as  
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, , ,

30 30

,
0

v G x G w

G G

A B C B D B
A B

A B

   



   
    
   

 

0 0 0 0

0 0

0 0 0 0

T

G G G GT

I I
Q S

C D M C D
S R

I I



   
     

      
      

   

 

(48') 

A future work will consider numerical applications in order to prove the efficiency of 

the above theoretical developments. 
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