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Section 4 – System design for small satellites 

Abstract: The degradation of navigation accuracy and integrity of GPS in the presence of radio 
frequency interference, hostile jamming and high dynamical situations, when the satellite signals may 
get lost due to signal blockage, led to the development of MEMS-INS/GPS integrated navigation systems 
for various applications of the positioning and navigation technologies. Unfortunately, the short-term 
advantages brought by the INS systems are overshadowed by their imprecise operation over the long 
term, mainly due to inertial sensor errors. A critical component of the inertial sensors errors is the 
noise. To improve the quality of the inertial sensors data, many denoising techniques have been used. 
Wavelet method has been proven as a useful tool for signal analysis, and it is widely used in signal 
processing and denoising applications. The here proposed technique is based on a time-frequency 
approach previously applied in bio-signals processing. In the proposed mechanism, the inertial sensors 
signals are processed analysed by using an extended version of the Wavelet transform. The optimal 
levels of decomposition are established for the wavelet filters, based on the evaluation of a parameter 
called coupling level (CL). It characterizes the coupling dynamics information between the reference 
signals, provided by a GPS, and the perturbed signal, which are the outputs of the inertial navigation 
system (INS). The proposed tuning method is experimentally tested in a bi-dimensional navigation 
application. 

Key Words: Inertial navigation, INS/GPS, wavelet denoising, tuning, experimental validation 

1. INTRODUCTION 
GPS used in standalone or assisted configuration ([1-3]), is still the broadest positioning 
system, having applications in navigation, geodesy, mapping, timing, and so on. However, 
usually, for situations when the signals from the GPS are lost, due to issues like the presence 
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of radiofrequency interferences, hostile jamming, high dynamical situations or signal blockage 
([4-6]), an inertial navigation system (INS) is complementary used. Unfortunately, the inertial 
sensors on the market, used in applications like automated car navigation, assistive navigation, 
emergency assistance, fleet management, asset tracking, collision avoidance, environment 
monitoring, and automotive assistance, have a significant error level ([7-9]). An INS, based on 
miniaturized inertial sensors, is accurate for short periods, depending on the error level of the 
miniaturized inertial sensors. The problem is that miniaturized inertial sensors have lost their 
accuracy due to their sensing components miniaturization ([5, 6, 10, 11]). 
Therefore, there are two directions of study for the researches in the global positioning field, 
to achieve low-cost, small-size, and high-precision INS/GPS navigator, suitable for assistive 
purposes in GPS challenging environments. 
The first one is the development of standalone accurate INS structures based on optimized 
inertial sensors or new architectures and algorithms for the error estimation and compensation 
of sensors. The second one is the development of new INS/GPS data-fusion techniques by 
incorporating artificial intelligence algorithms, to overcome the sensor’s limitations by 
optimizing the model dependencies, prior knowledge dependencies, and linearization 
dependencies ([5, 11-15]). 
This paper proposes a new technique for optimizing an inertial navigator, considered as a 
single unit, by applying optimized filtering, using the transformed wavelet to process the 
signals received from inertial sensors; so it is a study for optimizing the entire navigation 
system at the algorithmic level (component) of the navigation system. The adaptive filters 
based on the Wavelet transform, positioned between the detection unit (inertial detection unit) 
and the navigation algorithm, are tuned using the position information received from a GPS 
(considered as the reference navigator) and an extension of the Partial Directed Coherence 
(PDC) method. 
The time-variant PDC method evaluates the accuracy of the positioning information provided 
by our navigator (noisy/ perturbed signals) with respect to the positioning information received 
from the GPS (reference signals) using a parameter called the coupling level parameter. When 
this parameter values have a specific value, the optimal level of decomposition of the wavelet 
filter is found. The adaptive algorithm for inertial sensors signals de-noising is implemented 
and experimentally validated for horizontal bidirectional positioning. The results of this 
optimization revealed a substantial improvement in horizontal positioning accuracy. 

2. THE INERTIAL NAVIGATOR STRUCTURE  
AND MATLAB/ SIMULINK MODEL 

The process of measuring the total acceleration of a vehicle and its integration, considering 
the information received from gyros, allows to determine the speed, position, and attitude of 
the vehicle (in terms of angle of yaw, roll, and pitch). Inertial navigation allows to determine 
the position of a noninertial reference system relative to inertial reference systems, through a 
double integration of its acceleration under the given conditions. However, the errors in inertial 
navigation systems are mainly caused by sensors’ imperfections. 
The most significant errors in position, speed, and attitude detection arise from numerical 
integration of noise and incorrect bias measurements. A constant power characterizes the 
inertial sensor noise over the entire 0-100 Hz frequency spectrum which includes the dynamics 
of the monitored mobile systems; therefore, filtering this type of noise is not recommended in 
the indicated band. To simulate the inertial sensor inputs and outputs as close as possible, we 
implemented software the mathematical model of the sensors, considering all the characteristic 
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parameters provided by the manufacturers. Also, the block diagrams of accelerometers and 
gyro have been designed in Simulink.  
To obtain the position and speed information of a monitored vehicle ([6, 8, 9, 16]) it is 
necessary to perform the numerical integration of the inertial navigation's general equation, 
relative to the navigation frame which is considered to be the North-East-Down (NED - 
Oxlylzl) local horizontal frame in our investigation. 
Therefore, starting from the vehicle attitude information and the relative angular position of 
the vehicle frame (SV) and NED frame a transformation of the vehicle acceleration components 
between the SV, Oxvyvzv frame and NED frame is performed (Figure 1) [17]. For the horizontal 
plane monitoring (the position and speed evaluation) only the x and y-axes are considered. 
However, for solving the problem of the horizontal plane navigation, the linear accelerations 
measurements, along the x and y-axes and the angular speed measurements, along the z-axis, 
are collected and processed. 
In Figure 1 the following notations can be observed: r


 is the vehicle position vector in NED 

frame, v

 is the relative speed of the vehicle reported to the NED frame, yvxv vv


,  are the vehicle 

speed components of v

 in SV frame, while zvω

  is the vehicle’s angular speed ω

 component 

along the vehicle frame z-axis. 
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Figure 1. The relative position of the vehicle frame (SV) and north-east-down frame (NED) 

Starting from the specific force vector f
  (the outputs of the accelerometers), Eq. 1 ([6, 8, 9, 

16]), which is equal with the kinematic acceleration ( a

), when the gravitational field does not 

influence the accelerometer outputs (the sensitivity axes are located in the horizontal plane), 
becomes Eq. 2: 
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where fxv, fyv are the components of the specific force related to the x and y-axes of the SV 
frame. 
After Eq. 2 integration, the vehicle speed components in SV frame are obtained, and further 
transformed in NED frame, by applying the following coordinate changing: 
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where the yaw angle ψ value results after the ωzv gyro reading numerical integration as follows: 
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with ψ0 denoting the yaw angle initial value. After the vehicle speed components are calculated 
in the NED frame, by using Eq. 5, the vehicle’s horizontal positioning is obtained: 
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The navigator equations are implemented in Matlab/Simulink, and the model from Figure 2 is 
developed. The model’s inputs are the outputs of the inertial sensors, the SV accelerations 
along the x and y-axes, and the SV angular speed along the z-axis). The model’s outputs are 
the position and speed of the vehicle relative to NED and the yaw angle. 
To obtain the driven distances in North and East directions, in terms of latitude and longitude 
coordinates, the “Flat Earth to LLA” Matlab/Simulink block was used. 

 
Figure 2. The inertial navigator Matlab/ Simulink model 

3. THE PROPOSED WAVELET TUNING METHOD BASIC PRINCIPLE 
Denoising is a process to remove noise that is present in the signal of interest. Wavelet method 
has been proven as a useful tool in signal analysis, and it is widely used in denoising 
applications ([18-22]). A wavelet filter acts as a filter for mediation or a filter that detects detail 
when the signal is decomposed by wavelets. Some of the wavelet coefficients, therefore, 
reflect the details of the data set. 
The significance of these details is directly proportional to the amplitude of the waves - if they 
are low then can be left aside without affecting the basic properties of the dataset. The idea to 
establish thresholds is to set to zero all coefficients with a value below a certain threshold. For 
reconstructing the initial data set, these coefficients are used in inverse wavelet transformation 
(Figure 3 [23]). 
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Figure 3. Wavelet denoise approach 

The wavelet filtering method was already used in several navigation applications. Thus, in 
[24] was improved the navigation performance of a low-cost MEMS-INS/GPS integrated 
navigation system by applying the thresholding method of the wavelet denoising, Figure 4. 
Also, the results of comparison for various wavelet thresholding selections, with different level 
of decomposition for each GPS and INS, were exposed in [25]. The research of the wavelet 
method upon the integrated INS/GPS navigation systems conducted to different tandems such 
as wavelet multi-resolution analysis algorithm based ([26]), or wavelet multi-resolution 
analysis and artificial neural networks ([27]). 

 
Figure 4. Wavelet’s decomposition tree 

We introduced a new time-frequency variable approach, an extension of Partial Directed 
Coherence (PDC) method, for assessing the multivariate dynamic systems coupling dynamics 
information ([28]) by estimating the optimal level of decomposition for the wavelet filter ([29, 
30]). 
The diagram of the proposed algorithm is presented in Figure 5. Here the disrupted output 
signals from INS toward PDC reference signals are illustrated together with the reference 
signals received from the GPS. 
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Figure 5. The architecture of the proposed method for processing data from INS 

The PDC method is based on multichannel autoregressive models ([30]): 
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where N is the time series number, w the white noise, and p the process order. Ar matrices have 
the next formulation ([30]): 
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aij parameters denote the linear effect of xj(n-r) onto xi(n). To investigate the time series, 
ordinary coherence functions are performed ([30]): 
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for achieving the relative synchrony degree between the two areas, i and j, under analysis; S(f) 
denote the cross-spectral power density matrix of the measured signals xi(n), i=1÷N ([30]) 
while and Sij(f) its elements: 
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.)()()( fff HΣHHS =  (10) 
where (.)H is the Hermitian transpose, and H(f) an adequate filters matrix, with Σ the 
covariance matrix ([30]): 
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For the model described by Eq. (6), it results the joint spectral density estimate: 
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with the noise signals covariance matrix wi(n) ([30]); 
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The coupling estimation parameter equation, calculated between two time series (Xi and Xj) is 
given by the formula ([30]): 
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where )( fja  denotes the 𝐴𝐴(𝑓𝑓) matrix jth column. The normalization conditions of the 𝜋𝜋𝑖𝑖𝑖𝑖 
parameter, in the frequency domain, is defined as in Eq. (15) ([30]): 
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for all j=1÷N values. 
High values, of these measures, denote a direct influence between two signals as follows: 
values of 1 mean that Xj influences are directional towards Xi, values of 0 are denoting the 
causal correlation absence between Xj to Xi (Xj does not influence Xi). 
One last parameter estimates the two-time series coupling level (CL): 
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The wavelet’s actual level of decomposition is noted by WactualLvl, which is the wavelet’s 
optimal level of decomposition. 
The algorithm data flow is presented in Figure 6. The signals received from INS and GPS as 
the navigation solutions (for North and East positions) are collected, processed and analyzed 
by employing the wavelet transform until the optimal levels of decomposition are found and 
then set up; after this step, more accurate data from future INS registered signals can be 
achieved and interpreted. 

 
Figure 6. Coupling level estimation 

4. EXPERIMENTAL VALIDATION OF THE IMPROVED NAVIGATOR 
BASED WAVELET DENOISING 

For the positioning system’s validation step, the inertial navigator model, from Figure 2, and 
an optimization software routine were implanted in Matlab/ Simulink. 
Experimental tests were made, with the proposed INS and a GPS navigator boarded on a 
monitored vehicle (Figure 7). Positioning data were simultaneously acquired from these 
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systems. The GPS was considered the reference system for evaluating the proposed inertial 
navigator’s errors. The IMU had two accelerometers, one along the x and y-axis, and one gyro 
along the z-axis of the SV frame. The initial coordinates, of the starting point, i.e., latitude and 
longitude, were 44.33 deg and 23.84, respectively. The value of 189 m was considered the 
reference altitude. The North and East coordinate initial values were considered equal with 
zero. The inertial sensors data were acquired with a rate of 50 samples/s; therefore, only 
frequencies until 25 Hz can be analyzed in their spectrums. 

 
Figure 7. Acquiring data during the experimental test 

The trajectory of the vehicle during testing is shown in Figure 8. 
As previously mentioned, for filtering the signals received from the sensor with the wavelet 
transform, we set up a tuning methodology of the method and searched for a parameter which 
denotes the optimal decomposition level. Also, we performed the INS’s tuning. The first 
calculation step was to achieve information on the vehicle attitude estimation to align the SV 
and NED frames. 
This data was found after establishing the gyro’s optimal decomposition level. Next step was 
to calculate the optimal correlation between the North position given by the GPS and the North 
position estimated with the INS. Shortly after was estimated the optimal correlation between 
the East position indicated by the two measurement units, the GPS and INS. 
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Figure 8. The trajectory of the vehicle during testing 

We developed a Matlab software routine which performed tests for 20 decomposition levels 
for the gyro data, without accelerations data in x or y axes filtering. The model from Figure 2 
was run after each gyro data filtering step. The CL coefficient was evaluated at each step for 
the filtered navigation solution and GPS data. 
The same procedures were performed for tuning the data received from accelerometers; the 
targets were to calculate the optimal correlation between the North position offered by GPS 
and by the INS system, the optimal correlation between the East position offered by GPS and 
by the INS system, respectively. Therefore, the optimization software performs 400 
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combinations (20×20) between the decomposition levels in the acceleration channels to find 
the CL coefficient. 
The values of the CL coefficient CL_N=0.7282, and CL_E=0.7209, while the equivalent 
decomposition levels for filtering with wavelet transform are lev_x=13, and lev_y=15.  
Therefore, the optimal decomposition levels obtained with the proposed tuning method for the 
INS sensors are lev_x=13 for the accelerometer existent on the x-axis, lev_y=15 for the 
accelerometer existent on the y-axis, and lev_z=10 for gyro from the y-axis. The filtered data 
achieved from the inertial sensors versus the unfiltered inertial sensors data resulted as in 
Figure 9. 
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Figure 9. Filtered versus unfiltered inertial sensors data 

The graphical results, relating the final coupling level, between the GPS and the INS solutions, 
after the sensors’ data filtering, are presented in Figure 10 for North and East, and in Figure 
11 for Latitude and Longitude, respectively. 
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Figure 10. North and East coupling levels: GPS versus filtered INS 

By applying the PDC method to evaluate CL coefficient for the GPS Latitude-Longitude 
solution and filtered INS Latitude-Longitude solution, the following values were achieved, 
CL_Lat=0.7071 and CL_Lon=0.7070, values reflected by the diagrams depicted in Figure 11. 
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Figure 11. Latitude and longitude coupling levels: GPS → filtered INS 

Figure 12 depicts the evolution of the yaw angle obtained from INS navigator starting from 
the unfiltered and filtered sensors data, and the deviation between these two solutions. 
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Figure 12. Yaw angle: un-filtered and filtered INSs 

A more relevant analysis of the INS performance can be made by computing the deviations 
between INS and GPS solutions, for nonfiltered and filtered data achieved from sensors. The 
absolute maximum values of the deviations are presented in Table 1. The same table shows 
the degree of performance improvement in the form of the ratio of absolute maximum 
deviations obtained between INS unfiltered and INS filtered data. From the numerical values, 
we are concluding that we have achieved an essential improvement in precision positioning 
and an accurate INS. 

Table 1. Absolute maximal values of the solutions deviations 

Deviations INS un-filtered INS filtered ratio 
North [m] 89.7261 43.7264 2.052 
East [m] 50.6636 35.8058 1.415 

North speed [m/s] 2.2992 1.4501 1.585 
East speed [m/s] 1.7112 1.7290 0.989 
Latitude [deg] 8.0748*10-4 3.9351*10-4 2.052 

Longitude [deg] 6.3526*10-4 4.4896*10-4 1.415 

5. CONCLUSIONS 
The development of a new bi-dimensional strap-down inertial navigator was presented in the 
current research. For testing, this positioning system was boarded on a test vehicle. 
Experimental tests were made considering GPS as the reference navigation system for the new 
proposed INS. This navigator is based on a wavelet transform filtering algorithm which role is 



13 Tuning of the Wavelet Filters for the IMU Data Based on the PDC Method and the GPS Solution 
 

INCAS BULLETIN, Volume 11, Issue 3/ 2019 

to reduce the inertial sensors’ perturbations. The filtering processing algorithm was optimized 
using a short-time variant PDC method. In the proposed algorithm, two steps were 
accomplished for finding the optimal decomposition levels for the three inertial sensors. These 
steps were related to the navigation problem-solving method of the strap down INSs. We 
correlated the data achieved from the INS with the data registered by the GPS, for each sensor, 
and found the optimal decomposition level of the wavelet function for each of the three 
sensors, for the North and East directions. The optimization software performed approximately 
400 combinations (20×20) in each case, between the decomposition levels in the acceleration 
and angular speed channels. A CL coefficient was evaluated for each level of decomposition 
for each type of sensors and their optimum level of decomposition. The filtered and the non-
filtered data from the inertial sensor data were studied and graphically illustrated for a better 
visualization. The CL coefficient values were CL_N=0.7282 and CL_E=0.7209, while the 
equivalent decomposition levels for filtering with the wavelet transform are lev_x=13 for 
accelerometer x, lev_y=15 for accelerometer y, and lev_z=10 for gyro z. 
Moreover, the extended PDC method was applied to evaluate the CL coefficient existent 
between the GPS Latitude-Longitude solution and filtered INS Latitude-Longitude solution; it 
resulted in CL_Lat=0.7071 and CL_Lon=0.7070. A relevant analysis of the navigator's 
performances was achieved by computing the deviations between the INS solutions and the 
GPS solution for nonfiltered and filtered sensor data. We achieved a visible performance 
improvement in the ratio of absolute maximum deviations obtained between the noisy sensors 
signals and filtered sensors signals. 
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