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Abstract: The paper presents a structure and improved functional algorithms of a strap-down satellite 
inertial gravimetric navigation system of minimum hardware configuration. Various options of 
traditional loosely coupled and a new modification of closely coupled architectures were studied, which 
allowed for authors achieving sufficient precision of vector gravimetry and finding parameters of 
orientation and navigation. There were also studied potentials of increased accuracy and reliability of 
SGS as a component of functionally redundant cone-shaped accelerometer modules. The paper 
described the specifics of use of functional redundancy inertial measuring units. A specific version of a 
future modification of a closely related architecture is proposed, which opens up additional possibilities 
for evaluating and correcting errors of a satellite navigation system, which leads to an increase in the 
overall accuracy and reliability of determining orientation, navigation, and gravimetric parameters. 
The advantages of use of streamlined redundant raw data sensors were estimated qualitatively and 
quantitatively. 

Key Words: functional algorithm, vector gravimetry, inertial measuring unit, optimal estimation, error 
correction 

1. INTRODUCTION 
The effective exploration and development of new mineral deposits both onshore and offshore 
remains a topical issue. Prospecting and exploration technologies are critical for the fast and 
efficient development of mineral deposits with the offshore airborne gravimetric survey being 
one of the key phases. Mobile gravimetry is also employed in geophysical monitoring of the 
natural and manmade environment, as well for resolving problems of geophysics, geodesy, 
navigation including the correlation-extreme one (high precision self-contained navigation 
based on geophysical anomaly data). The problems of gravimetry have critical business, 
scientific and defense dimensions. As of today such problems are handled mostly with 
expensive shipborne or airborne scalar gravimetry systems of intermediate class, by surveying 
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the land and water areas of interest in parallel and diagonal sweeps [1]. The airborne 
gravimetry is developing mainly through improvement of the existing equipment while the 
general concept of the mobile gravimetry has remained unchanged for decades. Among the 
advantages of the modern mobile gravimetry is a great deal of expertise accumulated in the 
areas of hardware, software and technologies, as well as the measurement precision (0.05-0.5 
mGal) being satisfactory for the most tasks including search and exploration of mineral 
deposits. 

However, the modern technologies of mobile gravimetry have their limitations such as 
huge weight and size of the existing gravimetric systems (meters and hundreds kilograms), 
high energy consumption (hundreds of watts) and high cost (dozens of million Rubles) because 
gravimetric sensors must be placed on heavy gyroscope-stabilized platforms for proper local 
vertical orientation. 

Consequently, there is a need for research ships, medium-class airplanes and helicopters 
with certain carrying capacity. 

The limited maneuverability of such ships and aircraft reduces the performance, precision 
and responsiveness of measurements, while operation costs of such platforms with crews drive 
the total costs of gravimetry dramatically. To solve these problems of the modern mobile 
gravimetry it is necessary to address its principal drawback i.e. to get rid of an expensive and 
massive gyrostabilizer used in a gravimetry system for stabilization of a high-precision single-
component gravimetric sensor. 

This, in its turn, will allow for reducing the mass, size, energy consumption and cost of 
the system, and will make possible an airborne and shipborne deployment of the system 
including on automatic small-sized unmanned vehicles. 

Therefore, there is a high demand for advanced and cost-efficient airborne gravimetry 
systems based on modern small-sized unmanned aerial vehicles and employing high-end strap-
down satellite navigation, electronics, software and hardware. 

The Department of Automatic Orientation and Navigation Systems of Moscow Aviation 
Institute (MAI) has long been engaged in designing a high-precision small-sized strap-down 
graviinertial system (SGS) having the best mass and size parameters, reduced energy 
consumption as compared to the conventional gyrostabilized systems, with commensurable 
error of measurement of the vertical projection of the acceleration due to gravity. 

Moreover, SGS is potentially capable of measuring the horizontal projections of the 
gravity acceleration (vertical deflections) [2]. The present work describes rational functional 
algorithms of SGS with a minimum configuration of measuring subsystems, and presents the 
potentials of increasing its precision through the use of functionally redundant architecture of 
inertial measuring units. 

2. BASIC FUNCTIONAL ALGORITHM OF SGS 
A practical configuration of a projected SGS will include a series of raw data sensors and 
measuring subsystems, computer module with SGS functional algorithms, and memory 
storage device. 

A minimum basic set of SGS measuring units (Figure 1) includes a three-component 
accelerometer module (AM) and a three-component gyroscope module (GM) as part of inertial 
measuring unit (IMU) of a strap-down inertial navigation system (SDINS), as well as a 
differential satellite receiver of GLONASS and/or GPS satellite navigation system (SNS) with 
Galileo and etc. as an option. 
 



7 Analysis of structure and algorithm features of new type strapdown gravimetric navigation system 
 

INCAS BULLETIN, Volume 12, Special Issue/ 2020 

 
Fig. 1 – Basic configuration of an airborne SGS 

In the figure above: BS is a Basic Station; nx, ny, nz are projections of apparent acceleration 
vector nO on an axis of the body axis coordinate system as measured by the Basic Station; ωx, 
ωy, ωz are projections of vectors of absolute angular rate ωO on the axis of the body axis 
coordinate system as measured by Basic Station; RC, UC are radius-vector of position of an 
object and vector of its relative velocity as measured by SNS. The SGS computer module 
implements algorithms of pre-processing of measuring subsystems data, defines parameters of 
orientation, navigation and vector gravimetry, as well processes and corrects information in 
the most optimal way through Kalman filtering. The results of and current measuring signals 
are registered by the memory storage device. 

The accelerometer and gyroscope modules of SDINS measure the projections of vectors 
nO=(nx, ny, nz)T and ωO=(ωx, ωy, ωz)T of the SGS-carrying vehicle in a body axis coordinate 
system with unit vectors x, y, z. Then, SNS helps find UC, RC, and when doing so, both 
geographic and equatorial coordinate systems can be used. The Equatorial Coordinate System 
(ECS), as a right-handed system of coordinates with unit vectors ξ, η, ζ (alternative name is 
Greenwich coordinate system), originates from the center of the Earth; ξ is situated on the line 
of intersection of the plane of equator with the Greenwich meridian, ζ is directed at vector u 
of the Earth angular velocity. The C index corresponds to the parameters computed from SNS 
readings, the O index marks the vectors represented in the projections on the axis of the body 
axis coordinate system, while no index means vectors on the equatorial coordinate system 
(ECS). A SNS working in a normal mode will be well enough for the orientation and 
navigation functions only, while for vector gravimetry it will be practical to apply a more 
differential mode of measurements with corrections received from a land BS. 

For high-precision navigation, the computer module of the SNS receiver calculates and 
introduces corresponding corrections into the measured pseudo-ranges and pseudo-velocities 
to offset errors of satellite clocks, as well as ionosphere, troposphere and other errors of SNS 
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[3]. Then, usually, for finding RC and UC based on the corrected pseudo-ranges and pseudo-
velocities, a well-known least square method is applied. In addition to coordinates and 
projections of SGS carrier angular velocity, the receiver clock offset τ and its drift are 
calculated in the dimension of range 𝜏𝜏𝐿𝐿 = 𝑐𝑐 ⋅ 𝜏𝜏 and velocity 𝜏̇𝜏𝐿𝐿, were c is the speed of light. 

Thus, the pseudo-ranges and pseudo-velocities after an algorithmic offset of basic errors 
before the start of iteration procedure of the least square method [3] will be written as follows: 

𝑃𝑃𝑆𝑆 = 𝑑𝑑𝑆𝑆 + 𝛿𝛿𝑑𝑑𝑆𝑆 + 𝜏𝜏𝐿𝐿; (1) 

𝑃̇𝑃𝑆𝑆 = 𝑑̇𝑑𝑆𝑆 + 𝛿𝛿𝑑̇𝑑𝑆𝑆 + 𝜏̇𝜏𝐿𝐿, (2) 

where S =0,1,…, N-1 is the number of a navigation satellite from a N available satellites; 𝑃𝑃𝑆𝑆, 𝑃̇𝑃𝑆𝑆 
are pseudo-range and pseudo-velocity of the satellite; 𝑑𝑑𝑆𝑆 is geometrical range from the receiver 
antenna to the radiating antenna of the satellite; the δ symbol means the error of the 
corresponding value, in this particular case this means residual error of pseudo-range and 
pseudo-velocity after algorithmic compensation of their basic errors caused by all reasons 
excluding offset and drift of receiver clock. In its turn, the range and its derivative are function 
of coordinates and relative velocity of the antenna, in this case for true coordinates and velocity 
(with index I): 

𝑑𝑑𝑆𝑆 �𝑅𝑅𝐼𝐼𝜉𝜉,𝜂𝜂,𝜁𝜁� = �(𝑅𝑅𝜉𝜉
𝑆𝑆 − 𝑅𝑅𝐼𝐼𝜉𝜉)2 + (𝑅𝑅𝜂𝜂𝑆𝑆 − 𝑅𝑅𝐼𝐼𝜂𝜂)2 + (𝑅𝑅𝜁𝜁𝑆𝑆 − 𝑅𝑅𝐼𝐼𝜁𝜁)2; (3) 

𝑑̇𝑑𝑆𝑆 �𝑅𝑅𝐼𝐼𝜉𝜉,𝜂𝜂,𝜁𝜁 , 𝑈𝑈𝐼𝐼𝜉𝜉,𝜂𝜂,𝜁𝜁� =

=
(𝑅𝑅𝜉𝜉

𝑆𝑆 − 𝑅𝑅𝐼𝐼𝜉𝜉) ⋅ (𝑈𝑈𝜉𝜉
𝑆𝑆 − 𝑈𝑈𝐼𝐼𝜉𝜉) + (𝑅𝑅𝜂𝜂𝑆𝑆 − 𝑅𝑅𝐼𝐼𝜂𝜂) ⋅ (𝑈𝑈𝜂𝜂𝑆𝑆 − 𝑈𝑈𝐼𝐼𝜂𝜂) + (𝑅𝑅𝜁𝜁𝑆𝑆 − 𝑅𝑅𝐼𝐼𝜁𝜁) ⋅ (𝑈𝑈𝜁𝜁𝑆𝑆 − 𝑈𝑈𝐼𝐼𝜁𝜁)

�(𝑅𝑅𝜉𝜉
𝑆𝑆 − 𝑅𝑅𝐼𝐼𝜉𝜉)2 + (𝑅𝑅𝜂𝜂𝑆𝑆 − 𝑅𝑅𝐼𝐼𝜂𝜂)2 + (𝑅𝑅𝜁𝜁𝑆𝑆 − 𝑅𝑅𝐼𝐼𝜁𝜁)2

, (4) 

where RS
ξ,η,ζ, US

ξ,η,ζ are projections of the radius vector of the S satellite’s current location and 
velocity relative to the Earth. The unknown vector to be estimated through iteration procedure 
of the least square method will take the following form: 

𝐘𝐘 = �𝐑𝐑𝐶𝐶
T,𝐔𝐔𝐶𝐶T, 𝜏𝜏𝐿𝐿, 𝜏̇𝜏𝐿𝐿�

T. (5) 

In case of absence of a priori information, the zero values are taken as its initial 
approximation, and when a priori information is available from previous steps of calculations 
or from other sources, such information will be used to form a vector of initial conditions 

𝐘𝐘0 = �𝑅𝑅𝐶𝐶𝜉𝜉
0 , 𝑅𝑅𝐶𝐶𝜂𝜂

0 , 𝑅𝑅𝐶𝐶𝜁𝜁
0 , 𝑈𝑈𝐶𝐶𝜉𝜉

0 , 𝑈𝑈𝐶𝐶𝜂𝜂
0 , 𝑈𝑈𝐶𝐶𝜁𝜁

0 , 𝜏𝜏𝐿𝐿0, 𝜏̇𝜏𝐿𝐿0�
T

, (6) 

which are corresponded with the initial approximations of pseudo-ranges and pseudo-
velocities: 

𝑃𝑃𝑆𝑆0 = 𝑑𝑑𝑆𝑆0 + 𝜏𝜏𝐿𝐿0; (7) 

𝑃̇𝑃𝑆𝑆0 = 𝑑̇𝑑𝑆𝑆0 + 𝜏̇𝜏𝐿𝐿0, (8) 

where 𝑑𝑑𝑆𝑆0 = 𝑑𝑑𝑆𝑆(𝑅𝑅𝐶𝐶0𝜉𝜉,𝜂𝜂,𝜁𝜁), 𝑑̇𝑑𝑆𝑆0 = 𝑑̇𝑑𝑆𝑆(𝑅𝑅𝐶𝐶0𝜉𝜉,𝜂𝜂,𝜁𝜁, 𝑈𝑈𝐶𝐶0𝜉𝜉,𝜂𝜂,𝜁𝜁) and index 0 means initial conditions. The 
state vector Δ estimated through the least squares method includes increments in the vector of 
initial conditions: 
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𝚫𝚫 = �𝛥𝛥𝐑𝐑𝐶𝐶T, 𝛥𝛥𝐔𝐔𝐶𝐶T, 𝛥𝛥𝜏𝜏𝐿𝐿, 𝛥𝛥𝜏̇𝜏𝐿𝐿�
T; (9) 

𝐘𝐘 = 𝐘𝐘0 + 𝚫𝚫, (10) 

where 𝛥𝛥 means increment in the corresponding values to their initial values. 
The assessment Y can be obtained through one iteration of the least squares method: 

𝐘𝐘� = 𝐘𝐘0 + 𝚫𝚫�, (11) 

by making use of a matrix equation of the least squares method in the form: 

𝚫𝚫� = 𝐍𝐍𝐍𝐍, (12) 

where 𝐍𝐍 = �𝐀𝐀T𝐀𝐀�-1𝐀𝐀T for a Gaussian estimation or 𝐍𝐍 = �𝐀𝐀T𝐏𝐏-1𝐀𝐀�-1𝐀𝐀T𝐏𝐏-1 for a Gaussian-
Markov estimation with a known covariance matrix P of measurement noise. The matrix and 
vector of measurement are calculated through the following relations: 

𝐀𝐀 =

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎛

𝜕𝜕𝑑𝑑00

𝜕𝜕𝑅𝑅𝐶𝐶𝜉𝜉
0

𝜕𝜕𝑑𝑑00

𝜕𝜕𝑅𝑅𝐶𝐶𝜂𝜂
0

𝜕𝜕𝑑𝑑00

𝜕𝜕𝑅𝑅𝐶𝐶𝜁𝜁
0 0 0 0 1 0

𝜕𝜕𝑑𝑑10

𝜕𝜕𝑅𝑅𝐶𝐶𝜉𝜉
0

𝜕𝜕𝑑𝑑10

𝜕𝜕𝑅𝑅𝐶𝐶𝜂𝜂
0

𝜕𝜕𝑑𝑑10

𝜕𝜕𝑅𝑅𝐶𝐶𝜁𝜁
0 0 0 0 1 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
𝜕𝜕𝑑𝑑𝑁𝑁−1

0

𝜕𝜕𝑅𝑅𝐶𝐶𝜉𝜉
0

𝜕𝜕𝑑𝑑𝑁𝑁−1
0

𝜕𝜕𝑅𝑅𝐶𝐶𝜂𝜂
0

𝜕𝜕𝑑𝑑𝑁𝑁−1
0

𝜕𝜕𝑅𝑅𝐶𝐶𝜁𝜁
0 0 0 0 1 0

𝜕𝜕𝑑̇𝑑00

𝜕𝜕𝑅𝑅𝐶𝐶𝜉𝜉
0

𝜕𝜕𝑑̇𝑑00

𝜕𝜕𝑅𝑅𝐶𝐶𝜂𝜂
0

𝜕𝜕𝑑̇𝑑00

𝜕𝜕𝑅𝑅𝐶𝐶𝜁𝜁
0

𝜕𝜕𝑑̇𝑑00

𝜕𝜕𝑈𝑈𝐶𝐶𝜉𝜉
0

𝜕𝜕𝑑̇𝑑00

𝜕𝜕𝑈𝑈𝐶𝐶𝜂𝜂
0

𝜕𝜕𝑑̇𝑑00

𝜕𝜕𝑈𝑈𝐶𝐶𝜁𝜁
0 0 1

𝜕𝜕𝑑̇𝑑10

𝜕𝜕𝑅𝑅𝐶𝐶𝜉𝜉
0

𝜕𝜕𝑑̇𝑑10

𝜕𝜕𝑅𝑅𝐶𝐶𝜂𝜂
0

𝜕𝜕𝑑̇𝑑10

𝜕𝜕𝑅𝑅𝐶𝐶𝜁𝜁
0

𝜕𝜕𝑑̇𝑑10

𝜕𝜕𝑈𝑈𝐶𝐶𝜉𝜉
0

𝜕𝜕𝑑̇𝑑10

𝜕𝜕𝑈𝑈𝐶𝐶𝜂𝜂
0

𝜕𝜕𝑑̇𝑑10

𝜕𝜕𝑈𝑈𝐶𝐶𝜁𝜁
0 0 1

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
𝜕𝜕𝑑̇𝑑𝑁𝑁−1

0

𝜕𝜕𝑅𝑅𝐶𝐶𝜉𝜉
0

𝜕𝜕𝑑̇𝑑𝑁𝑁−1
0

𝜕𝜕𝑅𝑅𝐶𝐶𝜂𝜂
0

𝜕𝜕𝑑̇𝑑𝑁𝑁−1
0

𝜕𝜕𝑅𝑅𝐶𝐶𝜁𝜁
0

𝜕𝜕𝑑̇𝑑𝑁𝑁−1
0

𝜕𝜕𝑈𝑈𝐶𝐶𝜉𝜉
0

𝜕𝜕𝑑̇𝑑𝑁𝑁−1
0

𝜕𝜕𝑈𝑈𝐶𝐶𝜂𝜂
0

𝜕𝜕𝑑̇𝑑𝑁𝑁−1
0

𝜕𝜕𝑈𝑈𝐶𝐶𝜁𝜁
0 0 1

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎞

; (13) 

𝑩𝑩 = �𝑃𝑃0 − 𝑃𝑃00, 𝑃𝑃1 − 𝑃𝑃10, . . . , 𝑃𝑃𝑁𝑁−1 − 𝑃𝑃𝑁𝑁−10 , 𝑃̇𝑃0 − 𝑃̇𝑃00, 𝑃̇𝑃1 − 𝑃̇𝑃10, . . . , 𝑃̇𝑃𝑁𝑁−1 − 𝑃̇𝑃𝑁𝑁−10 �T. (14) 

The equation of measurements and vector of measurement noise are written as: 

𝐁𝐁 = 𝐀𝐀 ⋅ 𝚫𝚫 + 𝐕𝐕; (15) 

𝐕𝐕 = �𝛿𝛿𝑑𝑑0, 𝛿𝛿𝑑𝑑1, . . . , 𝛿𝛿𝑑𝑑𝑁𝑁−1, 𝛿𝛿𝑑̇𝑑0, 𝛿𝛿𝑑̇𝑑1, . . . , 𝛿𝛿𝑑̇𝑑𝑁𝑁−1�
T

. (16) 

Normally, in order to find exact Y, several iterations of the above-mentioned algorithm 
are repeated until the latest estimation of the state vector reaches the preset minimum value. 
When starting each next iteration of the least squares method (expressions (11), (12) and (14)), 
the initial value Y is assumed to be corresponding to its prior estimation: 

𝐘𝐘0 = 𝐘𝐘�. (17) 

A functional algorithm of a SGS of a basic configuration implemented in its computer 
module represented in ECS build as a close-open scheme and using the IMU and SNS data 
will take the form as follows [4]: 
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𝚲̇𝚲 = 0,5 𝐓𝐓𝛚𝛚�𝑂𝑂 𝚲𝚲; 
𝛚𝛚�𝑂𝑂 = 𝛚𝛚𝑂𝑂 − 𝛿̂𝛿𝛚𝛚𝑂𝑂𝑂𝑂 −𝐌𝐌𝜔𝜔𝛚𝛚𝑂𝑂 + 𝐀𝐀𝑂𝑂/𝐸𝐸

T 𝐊𝐊⟨0..2⟩𝐙𝐙;
𝐀𝐀𝑂𝑂/𝐸𝐸 = 𝐀𝐀𝐼𝐼/𝐸𝐸[(2𝜆𝜆02 − 1)𝐄𝐄 + 2[𝛌𝛌𝛌𝛌T] − 2𝜆𝜆0𝐋𝐋𝛌𝛌];
𝐔̇𝐔 = −2𝐮𝐮 × 𝐔𝐔 + 𝐀𝐀𝑂𝑂/𝐸𝐸𝐧𝐧�𝑂𝑂 + 𝐠𝐠TN + 𝐀𝐀� − 𝐊𝐊⟨3..5⟩𝐙𝐙;   
𝐑̇𝐑 = 𝐔𝐔 − 𝐊𝐊⟨6..8⟩𝐙𝐙;
𝐧𝐧�𝑂𝑂 = 𝐧𝐧𝑂𝑂 − 𝛿𝛿𝐧𝐧𝑂𝑂𝑝𝑝 −𝐌𝐌𝑛𝑛𝐧𝐧𝑂𝑂; 
𝐀𝐀� = 𝐀𝐀𝑖𝑖 − 𝛿𝛿𝐀𝐀𝑝𝑝 − 𝛿𝛿𝐀𝐀sl − 𝐌𝐌𝐴𝐴(𝐑𝐑 − 𝐑𝐑0);   

𝛿̇𝛿𝐧𝐧𝑂𝑂𝑝𝑝 = 𝐊𝐊⟨9..11⟩𝐙𝐙;   𝛿̇𝛿𝛚𝛚𝑂𝑂𝑝𝑝 = 𝐊𝐊⟨12..14⟩𝐙𝐙;   

𝛿̇𝛿𝐀𝐀𝑝𝑝 = 𝐊𝐊⟨15..17⟩𝐙𝐙;   𝛿̇𝛿𝐀𝐀sl = −𝐃𝐃𝜇𝜇𝛿̂𝛿𝐀𝐀sl + 𝐊𝐊⟨18..20⟩𝐙𝐙; 

𝐤̇̂𝐤𝛿𝛿𝛿𝛿 = 𝐊𝐊⟨21..29⟩𝐙𝐙; 𝛿̇𝛿𝐤𝐤𝜔𝜔 = 𝐊𝐊⟨30..32⟩𝐙𝐙; 𝛿̇𝛿𝐤𝐤𝑛𝑛 = 𝐊𝐊⟨33..35⟩𝐙𝐙; 
𝚯𝚯�̇𝜔𝜔 = 𝐊𝐊⟨36..41⟩𝐙𝐙; 𝚯𝚯�̇𝑛𝑛 = 𝐊𝐊⟨42..44⟩𝐙𝐙;
𝛿̇𝛿𝐑𝐑Cp = 𝐊𝐊⟨45..47⟩𝐙𝐙;  

𝛿̇𝛿𝐔𝐔Cp = 𝐊𝐊⟨48..50⟩𝐙𝐙;

𝐙𝐙 = �
𝐑𝐑 − 𝐑𝐑C + 𝛿𝛿𝐑𝐑Cp

𝐔𝐔 −𝐔𝐔C + 𝛿𝛿𝐔𝐔Cp 
� . 

⎭
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎫

 (18) 

where 𝚲𝚲 = [𝜆𝜆0, 𝜆𝜆1, 𝜆𝜆2, 𝜆𝜆3]𝑇𝑇 is the vector of Rodriguez-Hamilton parameters which 
characterizes the rotation of the body axis coordinate system relating to the inertial coordinate 

system, λ=(λ1,λ2,λ3)T; 𝐋𝐋𝐚𝐚 = �
0 −𝑎𝑎3 𝑎𝑎2
𝑎𝑎3 0 −𝑎𝑎1
−𝑎𝑎2 𝑎𝑎1 0

�, 𝐓𝐓𝐚𝐚 = �

0 −𝑎𝑎1 −𝑎𝑎2 −𝑎𝑎3
𝑎𝑎1 0 𝑎𝑎3 −𝑎𝑎2
𝑎𝑎2 −𝑎𝑎3 0 𝑎𝑎1
𝑎𝑎3 𝑎𝑎2 −𝑎𝑎1 0

� – of the 

matrix made of elements of some vector a=(a1,a2,a3)T; AO/E is the matrix of orientation of ECS 

(E) relating to the body axis coordinate system (O); 𝐌𝐌𝜔𝜔 = �
𝛿𝛿𝑘𝑘𝑥𝑥𝜔𝜔 𝛩𝛩�𝑥𝑥𝑥𝑥𝜔𝜔 𝛩𝛩�𝑧𝑧𝑧𝑧𝜔𝜔

𝛩𝛩�𝑦𝑦𝑦𝑦𝜔𝜔 𝛿𝛿𝑘𝑘𝑦𝑦𝜔𝜔 𝛩𝛩�𝑦𝑦𝑦𝑦𝜔𝜔

𝛩𝛩�𝑧𝑧𝑧𝑧𝜔𝜔 𝛩𝛩�𝑧𝑧𝑧𝑧𝜔𝜔 𝛿𝛿𝑘𝑘𝑧𝑧𝜔𝜔
� ;     𝐌𝐌𝑛𝑛 =

�
𝛿𝛿𝑘𝑘𝑥𝑥𝑛𝑛 𝛩𝛩�𝑥𝑥𝑥𝑥𝑛𝑛 0

0 𝛿𝛿𝑘𝑘𝑦𝑦𝑛𝑛 0
𝛩𝛩�𝑧𝑧𝑧𝑧𝑛𝑛 𝛩𝛩�𝑧𝑧𝑧𝑧𝑛𝑛 𝛿𝛿𝑘𝑘𝑧𝑧𝑛𝑛

� ; 𝐌𝐌𝐴𝐴 = �

𝑘𝑘�𝜉𝜉𝜉𝜉
δ𝐴𝐴 𝑘𝑘�𝜉𝜉𝜉𝜉

δ𝐴𝐴 𝑘𝑘�𝜉𝜉𝜉𝜉
δ𝐴𝐴

𝑘𝑘�𝜂𝜂𝜂𝜂
δ𝐴𝐴 𝑘𝑘�𝜂𝜂𝜂𝜂δ𝐴𝐴 𝑘𝑘�𝜂𝜂𝜂𝜂δ𝐴𝐴

𝑘𝑘�𝜁𝜁𝜁𝜁
δ𝐴𝐴 𝑘𝑘�𝜁𝜁𝜁𝜁δ𝐴𝐴 𝑘𝑘�𝜁𝜁𝜁𝜁δ𝐴𝐴

� ;  𝑘𝑘𝑖𝑖
𝜔𝜔,𝑛𝑛 are scale coefficients of gyroscopes 

or accelerometers with a measuring axis i, kω,n are column vectors made of them; 𝛩𝛩𝑖𝑖𝑖𝑖
𝜔𝜔,𝑛𝑛 are low 

angles of deviations of measuring axes of gyroscopes or accelerometers from an ideal axis i 
along axis j of the body axis coordinate system, Θω,n are column vector made of them; 𝐀𝐀𝐼𝐼/𝐸𝐸 =

�
cos( 𝑢𝑢𝑢𝑢) sin( 𝑢𝑢𝑢𝑢) 0
− sin( 𝑢𝑢𝑢𝑢) cos( 𝑢𝑢𝑢𝑢) 0

0 0 1
� is the matrix of orientation of ECS relative to an inertial 

coordination system (I); u is module u; t is current time; E is unit matrix of corresponding 
dimension; R is geocentric radius-vector of location of the SGS-carrying vehicle; U is vector 
of relative velocity of the SGS-carrying vehicle; Ai is vector of anomaly of the acceleration 
due to gravity known with limited accuracy (when initial data is not available, Ai=0); R0 is 
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initial value of R; gTN – is normal vector of the acceleration due to gravity; 𝑘𝑘𝑖𝑖𝑖𝑖𝛿𝛿𝛿𝛿 are linear 
coefficients of error model of anomaly projected on the axis i depending on coordinate j, kδA 
is column vector made of them; A is vector of anomaly of the acceleration due to gravity; Dμ 
is diagonal matrix mad of elements of the vector of coefficients of attenuation μ of correlation 
functions chosen for description of the corresponding projections of random components of 
the anomaly of the acceleration due to gravity; index sl means random components of values 
while the index p corresponds to their systematic constant components; K is matrix of 
coefficients of enhancement of the Kalman optimal filter (KOF); index ‹i..j› indicates that the 
matrix K keeps lines from i to j; symbol ^ here means estimation of the corresponding value 
with KOF or a corrected value of some parameter; Z is vector of measurement of KOF in true 
representation [5], [6], [7] for a case of traditional loosely-coupled architecture of the system. 

The functioning algorithms results into estimation and correction of the corresponding 
errors of SDINS and SNS and, eventually, calculate navigation parameters (R, U), orientation 
parameters (Λ, AO/E), vector of anomaly of the acceleration due to gravity 𝐀𝐀�, projections of 
vectors of the apparent acceleration and absolute angular velocity (𝐧𝐧�𝑂𝑂,𝛚𝛚�𝑂𝑂). Notably, for the 
sake of simplicity, only systematic components of errors of accelerometer modules, gyroscope 
modules and SNS are to be estimated within this algorithm, represented by a zero order 
polynomial (constants). When necessary, more complex models can be described by 
polynomials of the first or second order, as well as by considering a correlating random 
component of error, for instance, that similar to errors of anomaly of the acceleration due to 
gravity. 

Since the functional algorithm of geophysical SGS is implemented in ECS, gTN will be 
described as follows [2]: 

𝐠𝐠𝑇𝑇𝑇𝑇 = 𝐹𝐹𝑁𝑁𝑁𝑁𝑁𝑁 𝐍𝐍𝑔𝑔𝑔𝑔 + 𝐹𝐹𝑅𝑅𝟏𝟏𝑅𝑅 − 𝐮𝐮 × (𝐮𝐮 × 𝐑𝐑);  𝟏𝟏𝑅𝑅 = 𝐑𝐑(𝐑𝐑 ⋅ 𝐑𝐑)−0,5 = �𝑙𝑙𝜉𝜉, 𝑙𝑙𝜂𝜂, 𝑙𝑙𝜁𝜁�
T; (19) 

𝐄𝐄𝑔𝑔𝑔𝑔 = (𝛇𝛇 × 𝟏𝟏𝑅𝑅)�1 − 𝑙𝑙𝜁𝜁2�
−0,5;  𝐍𝐍𝑔𝑔𝑔𝑔 = 𝟏𝟏𝑅𝑅 × 𝐄𝐄𝑔𝑔𝑔𝑔; 𝑅𝑅 = (𝐑𝐑 ⋅ 𝐑𝐑)0,5; (20) 

𝐹𝐹𝑁𝑁𝑔𝑔𝑔𝑔 = 𝑔𝑔𝑒𝑒(𝑞𝑞 − 𝑒𝑒2)(𝑎𝑎/𝑅𝑅)4𝑙𝑙𝜁𝜁(1 − 𝑙𝑙𝜁𝜁2)0,5[1 + 𝑒𝑒2(0,5𝑒𝑒2 − 30𝑞𝑞/14)(𝑞𝑞 − 𝑒𝑒2)−1] ×
×�1 + �30𝑞𝑞/14 − 1,5𝑒𝑒2 + 𝑙𝑙𝜁𝜁2(3,5𝑒𝑒2 − 5𝑞𝑞)�(𝑞𝑞 − 𝑒𝑒2)−1(𝑒𝑒𝑒𝑒/𝑅𝑅)2�; 

(21) 

𝐹𝐹𝑅𝑅 = −𝑔𝑔𝑒𝑒 �
𝑎𝑎
𝑅𝑅
�
2

{1 − 0,5𝑒𝑒2 − 0,125𝑒𝑒4 + 𝑞𝑞 �1,5 − (15𝑒𝑒
2

28
� + [0,5𝑒𝑒2 − 0,25𝑒𝑒4 +

+𝑞𝑞(−0,5 + 15𝑒𝑒2/14) − 𝑙𝑙𝜁𝜁2�1,5𝑒𝑒2 − 0,75𝑒𝑒4 + 𝑞𝑞(−1,5 + 45𝑒𝑒2/14)��(𝑎𝑎/𝑅𝑅)2 +
+[0,375𝑒𝑒2 −15𝑞𝑞/28 + 𝑙𝑙𝜁𝜁2(0,625𝑒𝑒2 − 25𝑞𝑞/28) −𝑙𝑙𝜁𝜁2�1 − 𝑙𝑙𝜁𝜁2�(4,375𝑒𝑒2 −

6,25𝑞𝑞)�𝑒𝑒2(𝑎𝑎/𝑅𝑅)4�,  

(22) 

where FNgc, FR are projections of strength of the normal gravitational field of the Earth on the 
axis of the following geocentric coordinate system which, in general case, subject to conditions 
of operation of SGS, can be represented by functions of equatorial, geocentric or geographic 
coordinates [5, 8]; Egc (East), Ngc (North), 1R (geocentric vertical) are unit vectors of a 
following geocentric coordinate system; ge is value of normal acceleration due to gravity at 
equator; q is a ratio of centrifugal force due to Earth’ rotation to the gravity at the Equator; 
𝑒𝑒 = (𝑎𝑎2 − 𝑏𝑏2)0,5𝑎𝑎−1 and a, b are the first eccentricity, large and small semi-axes of reference 
ellipsoid correspondingly. 

Parameters of orientation of the SGS-carrying vehicle (heading ψ, pitch ϑ, roll γ) are 
calculated according to the algorithm [2]: 
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𝐙𝐙1 = (𝐱𝐱 × 𝐫𝐫)|𝐱𝐱 × 𝐫𝐫|−1;
𝜓𝜓 = −arctg(𝐍𝐍gg𝐙𝐙1(𝐄𝐄gg𝐙𝐙1)−1);
𝜗𝜗 = arctg(𝐱𝐱𝐱𝐱(1 − (𝐱𝐱𝐱𝐱)2)−0,5);
𝛾𝛾 = arctg(𝐲𝐲𝐙𝐙1(𝐳𝐳𝐙𝐙1)−1), ⎭

⎪
⎬

⎪
⎫

 (23) 

where unit vectors of the body axis coordinate system x, y, z are the 1st, 2nd and, 
correspondingly, 3rd columns AO/E; Egg, Ngg, r are unit vectors of the eastbound, northbound 
and vertical directions of a geographic coordinate system. These unit vectors can be calculated 
by simplified relations: 

𝐫𝐫 = −𝐠𝐠TN gTN
−1; 𝐄𝐄gg = 𝐄𝐄gc; 𝐍𝐍gg = 𝐫𝐫 × 𝐄𝐄gg,  (24) 

which have a minor methodical error because at non-zero altitudes a normal to a reference 
ellipsoid and the direction of the normal acceleration due to gravity, in the strict sense, are not 
in agreement because of presence of a northerly component of normal acceleration due to 
gravity at non-zero altitudes. 

This error is virtually equal to zero near poles, Equator and the surface of the reference 
ellipsoid, and reaches its maximum at middle latitudes and almost linearly depends on the 
altitude. For instance, at an altitude of ±10 kilometers and a latitude of 45° the orientation error 
r will be merely ±1.7 arc/sec which satisfies the accuracy requirements of vector gravimetry. 
However, this error can be completely eliminated by making use of accurate but much more 
complex relations [4, 5]: 

𝐫𝐫 = 𝟏𝟏𝑅𝑅 + (1 + 𝛩𝛩2/4)−1�𝚯𝚯 × (𝟏𝟏𝑅𝑅 + 𝚯𝚯 × 𝟏𝟏𝑅𝑅/2)�, (25) 

where 𝚯𝚯 = 2𝐄𝐄gg tg ��𝜑𝜑gc − 𝜑𝜑�/2�; 𝜑𝜑gc = arcsin(𝑙𝑙𝜁𝜁) = arccos(1 − 𝑙𝑙𝜁𝜁2)0,5 is geocentric 
latitude; φ is geographic latitude which can be found by SGS though one of the known 
analytical [5] or numerical [9] methods, by solving algebraic equations relating φ with φgc and 
R, or by solving a differential equation in parallel with (18): 

𝜑̇𝜑 = ��𝑅𝑅𝜉𝜉𝑅̇𝑅𝜉𝜉 + 𝑅𝑅𝜂𝜂𝑅̇𝑅𝜂𝜂�tg𝜑𝜑 − 𝑅̇𝑅𝜁𝜁�𝑅𝑅𝜉𝜉2 + 𝑅𝑅𝜂𝜂2� (1 − 𝑒𝑒2 sin2 𝜑𝜑) cos2 𝜑𝜑 (𝑎𝑎𝑒𝑒2cos3𝜑𝜑 �(1 − 𝑒𝑒2 sin2 𝜑𝜑) ×�    

× �𝑅𝑅𝜉𝜉2 + 𝑅𝑅𝜂𝜂2 − �𝑅𝑅𝜉𝜉2 + 𝑅𝑅𝜂𝜂2�(1 − 𝑒𝑒2 sin2 𝜑𝜑) + ��𝑅𝑅𝜉𝜉2 + 𝑅𝑅𝜂𝜂2�tg𝜑𝜑 − 𝑅𝑅𝜁𝜁�𝑅𝑅𝜉𝜉2 + 𝑅𝑅𝜂𝜂2�𝑒𝑒2 sin𝜑𝜑 cos3 𝜑𝜑). 
(26) 

By using functionally redundant accelerometer and gyroscope modules in SGS, the values 
nO and ωO are found as follows [2]: 

𝐧𝐧𝑂𝑂 = 𝐇𝐇𝑎𝑎𝐚𝐚; 𝛚𝛚𝑂𝑂 = 𝐇𝐇𝑔𝑔𝐦𝐦;
𝐇𝐇𝑎𝑎 = (𝐄𝐄𝑎𝑎T𝐄𝐄𝑎𝑎)−1𝐄𝐄𝑎𝑎T; 𝐇𝐇𝑔𝑔 = (𝐄𝐄𝑔𝑔T𝐄𝐄𝑔𝑔)−1𝐄𝐄𝑔𝑔T,� (27) 

where Ha, Hg are matrices of (3×k)-dimension of processing of redundant measurements of 
accelerometer and gyroscope modules from k sensors; a, m are vectors of redundant 
measurements of accelerometer and gyroscope modules from k sensors; 𝐄𝐄a,g =
[𝐞𝐞1𝑂𝑂

a,g,...,𝐞𝐞𝑖𝑖𝑖𝑖
a,g,...,𝐞𝐞𝑘𝑘𝑘𝑘

a,g ]𝑇𝑇 are matrices of (k×3)-dimension of alignment of accelerometer and 
gyroscope modules from k sensors. And unit vectors of orientation of measuring axes in a 
body axis coordinate system are lines of matrices of alignment of accelerometer and gyroscope 
modules: 
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𝐞𝐞𝑖𝑖𝑖𝑖
a,g = [𝐞𝐞𝑖𝑖

a,g𝐱𝐱, 𝐞𝐞𝑖𝑖
a,g𝐲𝐲, 𝐞𝐞𝑖𝑖

a,g𝐳𝐳]𝑇𝑇, (28) 

where 𝐞𝐞𝑖𝑖𝑖𝑖
a,g− is the unit vector of a measuring axis of accelerometer or gyroscope i in projections 

on the axis of a body axis coordinate system. 

3. ADVANCED MODIFICATION OF A TIGHTLY-COUPLED 
ARCHITECTURE OF THE INTEGRATED SYSTEM 

A new modification of a tightly-coupled architecture of SDINS and SNS will open extra 
potentials of improving the accuracy of the system due to better observability and estimability 
of systematic errors of SNS resulting from their better corrections and higher accuracy of 
finding parameters of orientation, navigation and gravimetry. The reliability of SGS will also 
increase because of their correcting capability remaining even with single available satellite. 
The special feature of the new modification of a tightly-coupled architecture is a simultaneous 
use of optimal KOF and the least squares method for processing the readings of measuring 
subsystems. Thus, a computing module of the satellite receiver, through the least squares 
method, estimates RC, UC, τL and 𝜏̇𝜏𝐿𝐿 with residual estimation errors which can be found by 
substituting (15) to (12): 

�𝛿𝛿𝐑𝐑𝐶𝐶
T, 𝛿𝛿𝐔𝐔𝐶𝐶T , 𝛿𝛿𝜏𝜏𝐿𝐿, 𝛿𝛿𝜏̇𝜏𝐿𝐿�

T = 𝐍𝐍𝐍𝐍. (29) 

Interestingly, the two bottom lines of the last expression are: 

𝛿𝛿𝜏𝜏𝐿𝐿 = 𝐍𝐍⟨6⟩𝐕𝐕 = 𝑁𝑁6,0𝛿𝛿𝑑𝑑0 +⋯+ 𝑁𝑁6,𝑁𝑁−1𝛿𝛿𝑑𝑑𝑁𝑁−1 + 𝑁𝑁6,𝑁𝑁𝛿𝛿𝑑̇𝑑0 + ⋯+ 𝑁𝑁6,2𝑁𝑁−1𝛿𝛿𝑑̇𝑑𝑁𝑁−1; (30) 

𝛿𝛿𝜏̇𝜏𝐿𝐿 = 𝐍𝐍⟨7⟩𝐕𝐕 = 𝑁𝑁7,0𝛿𝛿𝑑𝑑0+. . . +𝑁𝑁7,𝑁𝑁−1𝛿𝛿𝑑𝑑𝑁𝑁−1 + 𝑁𝑁7,𝑁𝑁𝛿𝛿𝑑̇𝑑0+. . . +𝑁𝑁7,2𝑁𝑁−1𝛿𝛿𝑑̇𝑑𝑁𝑁−1, (31) 

which describe the relation between the residual errors of pseudo-ranges and pseudo-velocities 
after algorithmic compensation of their main errors, and the estimation errors of the offset of 
the receiver clock scale due to the least squares method and its drift via elements of N-matrix 
calculated through the least squares method. Thus, considering the estimations of the offset of 
scale of receiver clock and its drift, the range to a satellite and its velocity relating to the 
antenna of the moving vehicle, according to SNS: 

𝑑𝑑𝐶𝐶𝐶𝐶 = 𝑃𝑃𝑆𝑆 − 𝜏̂𝜏𝐿𝐿 = 𝑑𝑑𝑆𝑆 + 𝛿𝛿𝑑𝑑𝑆𝑆 − 𝛿𝛿𝜏𝜏𝐿𝐿; (32) 

𝑑̇𝑑𝐶𝐶𝐶𝐶 = 𝑃̇𝑃𝑆𝑆 − 𝜏̂̇𝜏𝐿𝐿 = 𝑑̇𝑑𝑆𝑆 + 𝛿𝛿𝑑̇𝑑𝑆𝑆 − 𝛿𝛿𝜏̇𝜏𝐿𝐿, (33) 

have overall errors 

𝛿𝛿𝑑𝑑𝐶𝐶𝐶𝐶 = 𝛿𝛿𝑑𝑑𝑆𝑆 − 𝛿𝛿𝜏𝜏𝐿𝐿 = 𝛿𝛿𝑑𝑑𝑆𝑆 − 𝑁𝑁6,0𝛿𝛿𝑑𝑑0−. . . −𝑁𝑁6,𝑁𝑁−1𝛿𝛿𝑑𝑑𝑁𝑁−1 − 𝑁𝑁6,𝑁𝑁𝛿𝛿𝑑̇𝑑0−. . . −𝑁𝑁6,2𝑁𝑁−1𝛿𝛿𝑑̇𝑑𝑁𝑁−1; (34) 

𝛿𝛿𝑑̇𝑑𝐶𝐶𝐶𝐶 = 𝛿𝛿𝑑̇𝑑𝑆𝑆 − 𝛿𝛿𝜏̇𝜏𝐿𝐿 = 𝛿𝛿𝑑̇𝑑𝑆𝑆 − 𝑁𝑁7,0𝛿𝛿𝑑𝑑0−. . . −𝑁𝑁7,𝑁𝑁−1𝛿𝛿𝑑𝑑𝑁𝑁−1 − 𝑁𝑁7,𝑁𝑁𝛿𝛿𝑑̇𝑑0−. . . −𝑁𝑁7,2𝑁𝑁−1𝛿𝛿𝑑̇𝑑𝑁𝑁−1, (35) 

which depend only on residual errors of the pseudo-ranges and pseudo-velocities. The analysis 
of observability demonstrates that the errors δdCS and 𝛿𝛿𝑑̇𝑑𝐶𝐶𝑆𝑆 are observed values, while their 
components δdS and δτL, 𝛿𝛿𝑑̇𝑑𝑆𝑆 and 𝛿𝛿𝜏̇𝜏𝐿𝐿 are values observable in combination in pairs with each 
other. Therefore, within this architecture it is difficult to estimate them individually. However, 
this fact will not affect the resulting accuracy of function of the integrated system because the 
latter provides estimation and correction of exactly these combinations which are overall errors 
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of distances to satellites and their velocities relating to the antenna of the moving vehicle 
calculated from SNS data and through the least squares method. This, in its turn, will allow 
for improving the accuracy of correction of the integrated system in general. The distances to 
satellite and its velocity relating to the antenna, as calculated from the data of the integrated 
inertial satellite system, are: 

𝑑𝑑𝐾𝐾𝐾𝐾 = �(𝑅𝑅𝜉𝜉
𝑆𝑆 − 𝑅𝑅𝜉𝜉)2 + (𝑅𝑅𝜂𝜂𝑆𝑆 − 𝑅𝑅𝜂𝜂)2 + (𝑅𝑅𝜁𝜁𝑆𝑆 − 𝑅𝑅𝜁𝜁)2 = 𝑑𝑑𝑆𝑆 + 𝛿𝛿𝑑𝑑𝐾𝐾𝐾𝐾; (36) 

𝑑̇𝑑𝐾𝐾𝐾𝐾 =
(𝑅𝑅𝜉𝜉

𝑆𝑆 − 𝑅𝑅𝜉𝜉) ⋅ (𝑈𝑈𝜉𝜉
𝑆𝑆 − 𝑈𝑈𝜉𝜉) + (𝑅𝑅𝜂𝜂𝑆𝑆 − 𝑅𝑅𝜂𝜂) ⋅ (𝑈𝑈𝜂𝜂𝑆𝑆 − 𝑈𝑈𝜂𝜂) + (𝑅𝑅𝜁𝜁𝑆𝑆 − 𝑅𝑅𝜁𝜁) ⋅ (𝑈𝑈𝜁𝜁𝑆𝑆 − 𝑈𝑈𝜁𝜁)

�(𝑅𝑅𝜉𝜉
𝑆𝑆 − 𝑅𝑅𝜉𝜉)2 + (𝑅𝑅𝜂𝜂𝑆𝑆 − 𝑅𝑅𝜂𝜂)2 + (𝑅𝑅𝜁𝜁𝑆𝑆 − 𝑅𝑅𝜁𝜁)2

=

= 𝑑̇𝑑𝑆𝑆 + 𝛿𝛿𝑑̇𝑑𝐾𝐾𝐾𝐾 

(37) 

and have overall errors: 

𝛿𝛿𝑑𝑑𝐾𝐾𝐾𝐾 =
𝜕𝜕𝑑𝑑𝐾𝐾𝐾𝐾
𝜕𝜕𝑅𝑅𝜉𝜉

𝛿𝛿𝑅𝑅𝜉𝜉 +
𝜕𝜕𝑑𝑑𝐾𝐾𝐾𝐾
𝜕𝜕𝑅𝑅𝜂𝜂

𝛿𝛿𝑅𝑅𝜂𝜂 +
𝜕𝜕𝑑𝑑𝐾𝐾𝐾𝐾
𝜕𝜕𝑅𝑅𝜁𝜁

𝛿𝛿𝑅𝑅𝜁𝜁; (38) 

𝛿𝛿𝑑̇𝑑𝐾𝐾𝐾𝐾 =
𝜕𝜕𝑑̇𝑑𝐾𝐾𝐾𝐾
𝜕𝜕𝑅𝑅𝜉𝜉

𝛿𝛿𝑅𝑅𝜉𝜉 +
𝜕𝜕𝑑̇𝑑𝐾𝐾𝐾𝐾
𝜕𝜕𝑅𝑅𝜂𝜂

𝛿𝛿𝑅𝑅𝜂𝜂 +
𝜕𝜕𝑑̇𝑑𝐾𝐾𝐾𝐾
𝜕𝜕𝑅𝑅𝜁𝜁

𝛿𝛿𝑅𝑅𝜁𝜁 +
𝜕𝜕𝑑̇𝑑𝐾𝐾𝐾𝐾
𝜕𝜕𝑈𝑈𝜉𝜉

𝛿𝛿𝑈𝑈𝜉𝜉 +
𝜕𝜕𝑑̇𝑑𝐾𝐾𝐾𝐾
𝜕𝜕𝑈𝑈𝜂𝜂

𝛿𝛿𝑈𝑈𝜂𝜂 +
𝜕𝜕𝑑̇𝑑𝐾𝐾𝐾𝐾
𝜕𝜕𝑈𝑈𝜁𝜁

𝛿𝛿𝑈𝑈𝜁𝜁. (39) 

In the simplest case of an open tightly-coupled integrated system of a new modification, 
the elements of measuring vector of KOF by range and velocity, can be represented as follows: 

𝑍𝑍𝑑𝑑𝑑𝑑 = 𝑑𝑑𝐾𝐾𝐾𝐾 − 𝑑𝑑𝐶𝐶𝐶𝐶 = �(𝑅𝑅𝜉𝜉
𝑆𝑆 − 𝑅𝑅𝜉𝜉)2 + (𝑅𝑅𝜂𝜂𝑆𝑆 − 𝑅𝑅𝜂𝜂)2 + (𝑅𝑅𝜁𝜁𝑆𝑆 − 𝑅𝑅𝜁𝜁)2 − 𝑃𝑃𝑆𝑆 + 𝜏̂𝜏𝐿𝐿; (40) 

𝑍𝑍𝑑̇𝑑𝑆𝑆 = 𝑑̇𝑑𝐾𝐾𝐾𝐾 − 𝑑̇𝑑𝐶𝐶𝐶𝐶 = 

=
�𝑅𝑅𝜉𝜉

𝑆𝑆 − 𝑅𝑅𝜉𝜉� ⋅ �𝑈𝑈𝜉𝜉
𝑆𝑆 − 𝑈𝑈𝜉𝜉� + �𝑅𝑅𝜂𝜂𝑆𝑆 − 𝑅𝑅𝜂𝜂� ⋅ �𝑈𝑈𝜂𝜂𝑆𝑆 − 𝑈𝑈𝜂𝜂� + �𝑅𝑅𝜁𝜁𝑆𝑆 − 𝑅𝑅𝜁𝜁� ⋅ �𝑈𝑈𝜁𝜁𝑆𝑆 − 𝑈𝑈𝜁𝜁�

�(𝑅𝑅𝜉𝜉
𝑆𝑆 − 𝑅𝑅𝜉𝜉)2 + (𝑅𝑅𝜂𝜂𝑆𝑆 − 𝑅𝑅𝜂𝜂)2 + (𝑅𝑅𝜁𝜁𝑆𝑆 − 𝑅𝑅𝜁𝜁)2

− 

−𝑃̇𝑃𝑆𝑆 + 𝜏̂̇𝜏𝐿𝐿. 

(41) 

Similarly, for the components of the measurement equation: 

𝑍𝑍𝑑𝑑𝑑𝑑 = 𝑑𝑑𝐾𝐾𝐾𝐾 − 𝑑𝑑𝐶𝐶𝐶𝐶 = 𝑑𝑑𝑆𝑆 + 𝛿𝛿𝑑𝑑𝐾𝐾𝐾𝐾 − 𝑑𝑑𝑆𝑆 − 𝛿𝛿𝑑𝑑𝐶𝐶𝐶𝐶 = 

=
𝜕𝜕𝑑𝑑𝐾𝐾𝐾𝐾
𝜕𝜕𝑅𝑅𝜉𝜉

𝛿𝛿𝑅𝑅𝜉𝜉 +
𝜕𝜕𝑑𝑑𝐾𝐾𝐾𝐾
𝜕𝜕𝑅𝑅𝜂𝜂

𝛿𝛿𝑅𝑅𝜂𝜂 +
𝜕𝜕𝑑𝑑𝐾𝐾𝐾𝐾
𝜕𝜕𝑅𝑅𝜁𝜁

𝛿𝛿𝑅𝑅𝜁𝜁 − 𝛿𝛿𝑑𝑑𝑆𝑆 + 𝑁𝑁6,0𝛿𝛿𝑑𝑑0 + ⋯+ 𝑁𝑁6,𝑁𝑁−1𝛿𝛿𝑑𝑑𝑁𝑁−1 + 

+𝑁𝑁6,𝑁𝑁𝛿𝛿𝑑̇𝑑0 + ⋯+ 𝑁𝑁6,2𝑁𝑁−1𝛿𝛿𝑑̇𝑑𝑁𝑁−1; 

(42) 

𝑍𝑍𝑑̇𝑑𝑆𝑆 = 𝑑̇𝑑𝐾𝐾𝐾𝐾 − 𝑑̇𝑑𝐶𝐶𝐶𝐶 = 𝑑̇𝑑𝑆𝑆 + 𝛿𝛿𝑑̇𝑑𝐾𝐾𝐾𝐾 − 𝑑̇𝑑𝑆𝑆 − 𝛿𝛿𝑑̇𝑑𝐶𝐶𝐶𝐶 = 

=
𝜕𝜕𝑑̇𝑑𝐾𝐾𝐾𝐾
𝜕𝜕𝑅𝑅𝜉𝜉

𝛿𝛿𝑅𝑅𝜉𝜉 +
𝜕𝜕𝑑̇𝑑𝐾𝐾𝐾𝐾
𝜕𝜕𝑅𝑅𝜂𝜂

𝛿𝛿𝑅𝑅𝜂𝜂 +
𝜕𝜕𝑑̇𝑑𝐾𝐾𝐾𝐾
𝜕𝜕𝑅𝑅𝜁𝜁

𝛿𝛿𝑅𝑅𝜁𝜁 +
𝜕𝜕𝑑̇𝑑𝐾𝐾𝐾𝐾
𝜕𝜕𝑈𝑈𝜉𝜉

𝛿𝛿𝑈𝑈𝜉𝜉 +
𝜕𝜕𝑑̇𝑑𝐾𝐾𝐾𝐾
𝜕𝜕𝑈𝑈𝜂𝜂

𝛿𝛿𝑈𝑈𝜂𝜂 +
𝜕𝜕𝑑̇𝑑𝐾𝐾𝐾𝐾
𝜕𝜕𝑈𝑈𝜁𝜁

𝛿𝛿𝑈𝑈𝜁𝜁 − 

−𝛿𝛿𝑑̇𝑑𝑆𝑆 + 𝑁𝑁7,0𝛿𝛿𝑑𝑑0+. . . +𝑁𝑁7,𝑁𝑁−1𝛿𝛿𝑑𝑑𝑁𝑁−1 + 𝑁𝑁7,𝑁𝑁𝛿𝛿𝑑̇𝑑0+. . . +𝑁𝑁7,2𝑁𝑁−1𝛿𝛿𝑑̇𝑑𝑁𝑁−1. 

(43) 

Thus, switching to a new modification of a closed/open loop tightly-coupled integrated 
system, as compared to (18), will result into a new form of measuring vector 
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𝐙𝐙 =

⎝

⎜
⎛
𝐝𝐝𝐾𝐾 − 𝐏𝐏𝐶𝐶 + 𝜏̂𝜏𝐿𝐿 + 𝛿𝛿𝐝𝐝𝑝𝑝 − 𝐍𝐍⟨6⟩ �

𝛿𝛿𝐝𝐝𝑝𝑝
𝛿𝛿𝐝̇𝐝𝑝𝑝

�

𝐝̇𝐝𝐾𝐾 − 𝐏̇𝐏𝐶𝐶 + 𝜏̂̇𝜏𝐿𝐿 + 𝛿𝛿𝐝̇𝐝𝑝𝑝 − 𝐍𝐍⟨7⟩ �
𝛿𝛿𝐝𝐝𝑝𝑝
𝛿𝛿𝐝̇𝐝𝑝𝑝

�
⎠

⎟
⎞

, (44) 

where 𝐝𝐝𝐾𝐾 = (𝑑𝑑𝐾𝐾0, . . . , 𝑑𝑑𝐾𝐾𝐾𝐾−1)T, 𝐝̇𝐝𝐾𝐾 = �𝑑̇𝑑𝐾𝐾0, . . . , 𝑑̇𝑑𝐾𝐾𝐾𝐾−1�
T

, 𝐏𝐏𝐶𝐶 = (𝑃𝑃0, . . . , 𝑃𝑃𝑁𝑁−1)T, 𝐏̇𝐏𝐶𝐶 =
�𝑃̇𝑃0, . . . , 𝑃̇𝑃𝑁𝑁−1�

T. Here, in (18), the estimation equations δRCp and δUCp should be replaced with 
the equations of estimation of systematic components of residual errors of pseudo-ranges 
𝛿𝛿𝐝𝐝𝑝𝑝 = �𝛿𝛿𝑑𝑑𝑝𝑝0, . . . , 𝛿𝛿𝑑𝑑𝑝𝑝𝑝𝑝−1�

T and pseudo-velocities 𝛿𝛿𝐝̇𝐝𝑝𝑝 = �𝛿𝛿𝑑̇𝑑𝑝𝑝0, . . . , 𝛿𝛿𝑑̇𝑑𝑝𝑝𝑝𝑝−1�
T
 after 

algorithmic compensation of main errors in the SNS computer module, caused by all reasons 
except the influence of the offset and drift of the receiver clock: 

𝛿̇𝛿𝐝𝐝𝑝𝑝 = 𝐊𝐊⟨45…(45+𝑁𝑁−1)⟩𝐙𝐙; (45) 

𝛿̇𝛿𝐝̇𝐝𝑝𝑝 = 𝐊𝐊⟨(45+N)...(45+2𝑁𝑁−1)⟩𝐙𝐙, (46) 

where, similar to (18), the errors are represented with constant values, but, when necessary, 
more complex models can be assigned to them including with correlated random component. 
Here we should note that the observability and estimability of the integrated system, though 
not being part of this paper, have shown that in case of loosely-coupled architecture, a good 
estimability of SNS errors by coordinates is possible only with highly accurate initial 
alignment of SDINS or with a high velocity and extremely intense maneuvering of the moving 
vehicle. At the same time, within the considered case of a tightly coupled architecture for good 
estimability of SNS errors by ranges to satellites, neither preparatory highly accurate 
alignment of SDINS nor movement of a SGS-carrying vehicle will be required (including a 
parked vehicle). Eventually, in most cases the presented modification of a tightly coupled 
architecture of a system provides for a better resulting accuracy of finding coordinates of the 
moving vehicle and vertical anomaly of the acceleration due to gravity. The estimability and 
quality of error corrections of the relative velocity, orientation and horizontal projections of 
anomaly of the acceleration due to gravity will remain at close levels for both cases. 

4. ERROR MODEL OF FUNCTIONALLY REDUNDANT 
ACCELEROMETER MODULES 

Vector gravimetry is defined as finding the vector of the acceleration due to gravity from the 
solution (18) based on the subsystems data. For this purpose, first of all, it is necessary to have 
a highly accurate dimension of an apparent acceleration of the vehicle. One of the ways of 
improvement of the accuracy and reliability of measurement of the apparent acceleration is to 
use accelerometer modules with redundant functionality. Thus, to study potentials of the 
improvement of the apparent acceleration accuracy, let us focus on the specifics of the design 
and operation of functionally redundant accelerometer modules. The mathematic model of an 
instrumental error of the measurement of the apparent acceleration vector (below indicated as 
Δ) with a functionally redundant accelerometer module has the form [10]: 

𝛥𝛥𝐧𝐧𝑂𝑂 = 𝐇𝐇𝑎𝑎(𝛥𝛥𝐚𝐚 − 𝛿𝛿𝐄𝐄𝑎𝑎𝐧𝐧𝑂𝑂); (47) 

𝛿𝛿𝐄𝐄𝑎𝑎T = [𝛿𝛿𝐞𝐞1𝑎𝑎, . . . , 𝛿𝛿𝐞𝐞i𝑎𝑎, . . . , 𝛿𝛿𝐞𝐞𝑘𝑘𝑎𝑎]; (48) 
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𝛿𝛿𝐞𝐞i𝑎𝑎 = �𝛼𝛼𝑖𝑖𝑖𝑖𝐞𝐞𝑖𝑖𝑖𝑖𝑎𝑎 − 𝛼𝛼𝑖𝑖𝑖𝑖𝐞𝐞𝑖𝑖𝑖𝑖𝑎𝑎 , 𝛼𝛼𝑖𝑖𝑖𝑖𝐞𝐞𝑖𝑖𝑖𝑖𝑎𝑎 − 𝛼𝛼𝑖𝑖𝑖𝑖𝐞𝐞𝑖𝑖𝑖𝑖𝑎𝑎 , 𝛼𝛼𝑖𝑖𝑖𝑖𝐞𝐞𝑖𝑖𝑖𝑖𝑎𝑎 − 𝛼𝛼𝑖𝑖𝑖𝑖𝐞𝐞𝑖𝑖𝑖𝑖𝑎𝑎 �
T, (49) 

where αix, αiy, αiz are projections of a small rotation vector αi, characterizing the alignment 
error of a measuring axis of accelerometer i of an accelerometer module in a body axis 
coordinate system; 𝒆𝒆𝑖𝑖𝑖𝑖𝑎𝑎  is a unit vector of direction of a measuring axis of the accelerometer i 
on axis j of a body axis coordinate system. 

𝛥𝛥𝐚𝐚 = 𝛥𝛥𝐚𝐚0 + 𝛥𝛥𝐚𝐚1 + 𝛥𝛥𝐚𝐚2𝑡𝑡 + Diag𝛥𝛥𝐚𝐚3𝐄𝐄𝑎𝑎𝐧𝐧𝑂𝑂 + Diag𝛥𝛥𝐚𝐚4(𝐄𝐄𝑎𝑎𝐧𝐧𝑂𝑂)2 (50) 

the instrumental errors vector of accelerometers includes: fluctuation of the zero signal Δa0, 
zero offset Δa1, drift of a zero signal Δa2, error of the scale coefficient Δa3, non-linearity 
coefficient Δa4 of an output characteristic of the accelerometers; Diag is a diagonal matrix 
comprised of the vector’s elements. The errors of the apparent acceleration vector in a body 
axis coordinate system, depending on instrumental errors of the sensors of a functionally 
redundant accelerometer module, correspond to the following relations: 

𝛥𝛥𝐧𝐧𝑂𝑂 = 𝐇𝐇𝑎𝑎𝛥𝛥𝐚𝐚; (51) 

D𝛥𝛥𝒏𝒏𝑂𝑂 = SpCov𝛥𝛥𝐧𝐧𝑂𝑂; (52) 

Cov𝛥𝛥𝐧𝐧𝑂𝑂 = 𝑀𝑀�𝛥𝛥𝒏𝒏𝑂𝑂𝛥𝛥𝒏𝒏𝑂𝑂T� = 𝑯𝑯𝑎𝑎Cov𝛥𝛥𝐚𝐚𝐇𝐇𝑎𝑎
T, (53) 

where D is dispersion; Sp is matrix spur; Cov is covariance matrix. With measurements of 
equal accuracy typical for sensors made under the same technology the analytic expression of 
the dispersion of errors of the apparent acceleration vector will take the form: 

D𝛥𝛥𝐧𝐧𝑜𝑜 = D𝛥𝛥𝐚𝐚Sp(𝐇𝐇𝑎𝑎𝐇𝐇𝑎𝑎
T) = D𝛥𝛥𝐚𝐚Sp(𝐄𝐄𝑎𝑎𝐄𝐄𝑎𝑎T)−1, (54) 

which, for a cone-shaped accelerometer module from k accelerometers (Figure 2) the 
measuring axis of which are evenly distributed on the cone generators, will result into: 

D𝛥𝛥𝐧𝐧𝑂𝑂  =
D𝛥𝛥𝐚𝐚
𝑘𝑘 �

1
cos2 𝜒𝜒

+
4

sin2 𝜒𝜒
�, (55) 

where χ is the cone’s semiapex angle. Whence it follows that the accuracy of the accelerometer 
module increases with an increase in the number of accelerometers in a module. Here it is 
possible to optimize the design (geometry) of the accelerometer module in terms of specifics 
of instrumental errors of the module’s sensors. 

 
Fig. 2 – Cone-shaped modules comprised of 3 (along axes OX1, OX2, OX3) or 6 (along axes OX1, OX2, OX3, OA1, 

OA2, OA3) inertial sensors 
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In this figure the axes OX1, OX2, OX3 are evenly distributed on a generator of the cone 
surface with semiapex angle χ, the axis OO1 is the central axis of the cone, the axes OA1, OA2, 
OA3 also lie on cone’s generator and are evenly distributed between axes OX1, OX2, OX3. Let 
us assume that the model of random errors of accelerometers, besides fluctuation of a zero 
signal σ0, also contains a scale coefficient fluctuation σM,. In such case the accelerometers error 
dispersion is 

D𝛥𝛥𝑎𝑎𝑖𝑖 = σ02+σ𝑀𝑀2 𝑎𝑎𝑖𝑖2cos2χ=σ02(1+𝐾𝐾2cos2𝜒𝜒). (56) 

Besides, the ratio of the mean square values of the indicated errors is characterized by the 
coefficient 

𝐾𝐾 =
σ𝑀𝑀𝑎𝑎𝑖𝑖
𝜎𝜎0

. (57) 

As shown in [10], the dispersion of a measurement error of vector nO takes a minimum 
value at the semiapex angle χopt of cone of measuring axes of raw data sensors, which 
corresponds to the following analytic expression: 

𝜒𝜒opt = arccos
1 

[2(𝐾𝐾2 + 1)1/2 + 1]1/2 . (58) 

In a particular case (K=0) the relation (58) corresponds to the results obtained earlier, for 
instance, in [11], then, χopt=54°45ʹ, which corresponds to a traditional orthogonal structure for 
a three-sensor accelerometer module. If K increases, this value may increase up to 90°. In a 
general case, the optimum semiapex angle of the cone depends on relation between coefficient 
of statistic model of measurement errors and the value of measured vector [10]. 

The estimations of optimum configurations of cone-shaped IMU suggest that as an IMU 
becomes more redundant, the effectiveness of the considered technical solution increases. For 
instance, comparing with a three-sensor IMU with K=0, an error influence in a four-sensor 
IMU will decrease by 14%, in a five-sensor, by 23%, in a six-sensor, by 29%. With a growing 
K these numbers somewhat decrease: for K=5 and K=10 those are correspondingly 10%, 18%, 
23% and 8%, 16%, 21%. However, the undoubted advantage of such technical solution is the 
potential increased accuracy of measurements of the apparent accelerometer vector in relation 
to a random error, merely through optimal choice of design of a functionally redundant 
accelerometer module. Obviously, the module’s reliability increases sharply, because, in 
contrast to a three-sensor module where no single sensor failure is acceptable, a 4-6 sensor 
module remains operable even if 1-3 sensors fail. 

The study of configuration of a cone-shaped accelerometer module in terms of systematic 
errors of measurements showed that in case of a suboptimum semiapex angle of the cone of 
an accelerometer module’s measuring axes, the requirements to alignment accuracy and offset 
of sensors’ zero for 3-6-sensor modules are somewhat different. Notably, such standards are 
significantly low for 4-sensor modules (up to – 38%), somewhat low for 5-sensor modules (up 
to – 8%), significantly higher for 6-sensor modules (within +25%) as compared with a regular 
three-sensor module. However, as χ goes to optimum value of 54°45ʹ, the requirements for 3-
5-sensor modules virtually do not differ, for 6-sensor modules such requirements are higher 
by mere percents, and become virtual identical for the whole group when exceeded 54°45ʹ. 

Therefore, since, depending on K, it is practical to use χ≥54°45ʹ, it is obvious that the 
degree of redundancy will not affect systematic errors of the module. Here, the alignment 
accuracy requirements to functionally redundant IMUs, while being high in general, conflict 



Alexander A. AFONIN, Andrey S. SULAKOV 18 
 

INCAS BULLETIN, Volume 12, Special Issue/ 2020 

with feasibility of observing them through high-precision processing alignment bases of 
measuring elements. Such limitations can be addressed through analytical alignment and 
calibration of accelerometer modules [12], when an alternative solution is the analytical 
identification of real parameters of orientation of sensors’ measuring axes in a setting 
coordinate system of IMUs [12], [13], [14], [15], [16]. 

5. CONCLUSIONS 
The paper has studied the structure and principles of design of an airborne strap-down 
graviinertal navigation system of a basic configuration. There were presented functional 
algorithms of the system in a case of traditional loosely-coupled architecture of its inertial and 
satellite components. There was suggested a version of future modification of a tightly-
coupled architecture which opens up extra potentials of estimation and correction of errors of 
a satellite navigation system resulting into increased overall accuracy and reliability of finding 
parameters of orientation, navigation and gravimetry. 

There were also studied potentials of increased accuracy and reliability of SGS as a 
component of functionally redundant cone-shaped accelerometer modules. The paper shows 
that, based on requirements to SGS, an optimum cone structure of accelerometer module may 
be found, having acceptable margins of random and systematic errors. To increase the 
accuracy and reliability of the system it is practical to combine algorithmic (optimum 
estimation and correction of errors) and hardware (increase in the number of sensors and 
finding the optimum cone’s semiapex angle) approaches. 
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