
INCAS BULLETIN, Volume 10, Issue 1/ 2018, pp. 175 – 192        (P) ISSN 2066-8201, (E) ISSN 2247-4528 
 

Intercept Algorithm for Maneuvering Targets Based on 

Differential Geometry and Lyapunov Theory 

Yunes Sh. ALQUDSI*,1a, Gamal M. EL-BAYOUMI2b 

*Corresponding author 
1Cairo University, Nile University, Giza, 12613, Egypt,  

yunes.sharaf@pg.cu.edu.eg 
2Cairo University, Flight Mechanics & Control - Aerospace Engineering Dept.,  

Giza, 12613, Egypt,  

gelbayoumi@cu.edu.eg 

DOI: 10.13111/2066-8201.2018.10.1.16 

Received: 24 december 2018/ Accepted: 2 February 2018/ Published: March 2018 

Copyright © 2018. Published by INCAS. This is an “open access” article under the CC BY-NC-ND 

license (http://creativecommons.org/licenses/by-nc-nd/4.0/) 

Abstract: Nowadays, the homing guidance is utilized in the existed and under development air defense 

systems (ADS) to effectively intercept the targets. The targets became smarter and capable to fly and 

maneuver professionally and the tendency to design missile with a small warhead became greater, 

then there is a pressure to produce a more precise and accurate missile guidance system based on 

intelligent algorithms to ensure effective interception of highly maneuverable targets. The aim of this 

paper is to present an intelligent guidance algorithm that effectively and precisely intercept the 

maneuverable and smart targets by virtue of the differential geometry (DG) concepts. The intercept 

geometry and engagement kinematics, in addition to the direct intercept condition are developed and 

expressed in DG terms. The guidance algorithm is then developed by virtue of DG and Lyapunov 

theory. The study terminates with 2D engagement simulation with illustrative examples, to 

demonstrate that, the derived DG guidance algorithm is a generalized guidance approach and the 

well-known proportional navigation (PN) guidance law is a subset of this approach. 

Key Words: Homing Guidance, Differential Geometry, Proportional Navigation, Intercept, 

Engagement, Missile, Latax, Air Defense Systems (ADS), Line-Of-Sight (LOS). 

NOMENCLATURE 

Basic Latin Letters 

𝑎𝑚 , 𝑎𝑡    =   Missile and Target lateral accelerations (m/sec2).  

𝑒𝜃    =   Rotational unit vector normal to the LOS. 

𝐼    =   Impact point. 

𝑛𝑚 ,  𝑛𝑡   =   Missile normal and tangential unit vectors. 

𝑟′    =   The real closing speed (m/sec). 

𝑟𝑠    =   Sight line range (m). 

𝑟𝑡     =   Target range (m). 
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𝑟𝑚    =   Missile range (m). 

𝑠𝑚 , 𝑠𝑡   =   Length of missile and target trajectories. 

𝑡, 𝑛, 𝑏   =   Tangent, normal and bi-normal unit vectors. 

𝑡𝑠 ,  𝑛𝑠   =   Tangent and normal unit vectors of the LOS. 

𝑡𝑚 ,  𝑛𝑚   =   Tangent and normal unit vectors of the missile trajectory.   

𝑡𝑡 ,  𝑛𝑡   =   Tangent and normal unit vectors of the target trajectory.  

𝑡𝑚𝑑  , 𝑛𝑚𝑑   =   Missile demand unit tangent and normal vectors.  

𝑡𝑚𝑐  , 𝑡𝑡𝑐   =   Unit vector of the missile and target chords. 

𝑣𝑚 , 𝑣𝑡    =   Missile and target velocities (m/sec). 

Greek Letters 

𝜅     =   Curvature of the curve (m-1). 

𝜅𝑚 , 𝜅𝑡   =  Missile and target curvatures (m-1). 

𝜏     =   Torsion of the 3D curve (m-1). 

𝜃𝜀    =   Angle between the actual and required missile’s heading angle.  

𝜃𝑚    =   Missile heading angle. 

𝜃𝑠    =   Sight line angle. 

𝜃𝑚𝑑    =   Demand missile-heading angle. 

𝜃𝑡𝑐𝑠𝑖    =   Angle between the LOS and target chord unit tangent vector. 

𝜃𝑚𝑠 , 𝜃𝑡𝑠   =   Angles of missile and target relative to sight line angle. 

𝜃𝑎𝑟𝑐𝑚
 , 𝜃𝑎𝑟𝑐𝑡

  =   Missile and the target arc angles. 

𝜂 , 𝛾    =   Missile to target velocity’s ratio. 

𝕐    =  Lyapunov assumed function (rad2). 

List of Abbreviations 

ADS    =   Air Defense Systems. 

c.g.    =   Center of gravity. 

DG.    =   Differential Geometry.  

Fn.    =   Function. 

LOS.    =   Line of sight. 

PN.    =   Proportional Navigation. 

SLR.    =   Sight line rate of change. 

t2go.    =  Missile time-to-go. 

1. INTRODUCTION 

Latterly, the missile guidance and control systems became significantly concerned with the 

effectiveness, accuracy and precision against highly maneuverable targets. Homing guidance 

is one of the effective approaches for tactical missiles to intercept smart and stealthy targets. 

The homing guidance configuration is illustrated in figure (1) where the two reference 

points, the target and the missile, in addition to the impact point, formed the so-called impact 

triangle, where the triangle’s side that connecting the missile c.g. with the target c.g. forms 

the sight line. 
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Homing guidance is a common expression referred to missile that steers and directs its 

motion according to the commands of the missile’s onboard seeker, which generates its 

steering commands based on the reflected or emanating signals from the target. As we know, 

the equations of motion of the missile are best described using the inertial frame of 

reference, whereas the representing of the aerodynamics forces and moments is convenient 

in the body axis frame of reference, which leads to high nonlinearity in the dynamics of both 

the missile and target [1-4]. By virtue of the differential geometry concepts, we can deal 

directly with the nonlinearity of the missile systems, which improves the intercept capability 

of the guidance algorithm. 

On the other hand, the well-known PN Guidance algorithm which is considered as a 

robust approach [5-8], although it is not provide flexibility in choosing the intercept 

trajectory however this prompts the control designers to produce a more controllable and at 

the same time robust guidance algorithms [9]. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: The homing guidance configuration 

In order to obtain better control, precise accuracy and flexibility of the intercepting and 

engagement trajectories for homing missiles guidance and control systems, geometrical 

approach is used since the concepts of differential geometric control theory provides useful 

tools for modelling, analysis and design for nonlinear guidance and control systems [10]. 

The objective is to produce better guidance algorithm to ensure intercepting smaller and 

highly maneuverable targets with greater flexibility in controlling and choosing the 

engagement trajectories. Furthermore, this study considers the challenges such as, the 

complexity and nonlinearity of the missile systems and the restrictions on the missile latax 

and sensing sensors. Since the interceptor missile's speed plays a key role in determining its 

aerodynamic maneuverability thus the relative velocity of the missile-to-target also taken 

into account in a precise and deliberate manner. 

2. PRIOR WORK AND LITERATURE REVIEW 

There is a great variety of methods used for missile guidance where the accuracy is the most 

critical factor during its effectiveness. One of the well-known approaches used in the homing 

missiles is the proportional navigation (PN) guidance law, discussed in many studies such as 

[11-13]. PN is considered as an experimental law based on the line-of-sight, and there were 

many trials and modified versions have been developed to improve this approach such as the 

augmented proportional navigation (APN) [1,4]. In APN a term proportional to the estimated 

target acceleration was introduced and may give an acceptable performance for a certain 
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maneuvering targets; it has the advantage of decreasing the required induced missile’s 

acceleration due to target maneuvers. Recently, there have been few attempts to improve the 

missile guidance strategies by using the differential geometry concepts [14-20]. A notable 

example is the work of [16] White et al. In their paper, they examine the use of DG to the 

engagement of nonmaneuvering as well as constant curve maneuvering targets. To determine 

the intercept conditions, they use 2D geometry, where the guidance law of the direct 

intercepting of nonmaneuvering target is  

𝜃̇𝑚 = − (1 +
1

𝛾
) |𝜃𝑠̇| 𝜃𝜀 − K 𝜃𝜀       and        𝜅𝑚 =

𝜃̇𝑚

𝑣𝑚
 

where 𝛾 is velocity ratio of the missile and the target, 𝜃𝜀 the error angle between the 

actual and required missile’s heading angle, 𝜃𝑠

.

 the rate of change of the sight line angle, 𝜅𝑚 

the intercepting curvature and 𝑣𝑚 the missile instantaneous velocity. 

They assume that, both the missile and the target have a constant speed and acceleration, 

and there is an estimator to supply the target motion data such as target range and sight-line-

angle. They do not consider the seeker dynamics or uncertainty conditions for instance the 

noise and time delay. Their work ended by a 2D simulation to illustrate the approach 

properties. The results show a great accuracy under the ideal condition for both the 

nonmaneuvering and constant curve maneuvering targets. Another earlier noteworthy work 

is of [17-20] Chiou et al. In the manuscripts of [17-19] a 3D point mass analysis for both the 

missile and target kinematics were determined also based on the sight line between the 

missile and target. The equation of intercepting curvature of the missile is as follows: 

𝜅𝑚 = 𝑏2 𝜅𝑡  
𝑛𝑡. 𝑒𝜃

𝑛𝑚. 𝑒𝜃
− 𝐴  

𝑟′𝜔

𝑛𝑚. 𝑒𝜃
 

Where =
𝑣𝑡

𝑣𝑚
< 1,  𝑒𝜃 the rotational unit vector normal to the LOS, 𝑛𝑡 ,𝑛𝑚 the missile 

normal and tangential unit vectors, 𝜅𝑡 the target curvature, 𝜔 the rate of the LOS, 𝑟′ the real 

closing speed. They introduce in their work a heuristic gain A>2, to enable the approach 

convergence. The basic idea is based on the condition that the sight line rate “SLR” equals 

zero, producing an equivalent condition as the PN law. They also develop an extra formula 

for the missile torsion so as to obtain a well- defined guidance formula. The approach was 

good only for a certain and specific initial conditions. 

3. HOMING GUIDANCE TYPES AND PHASES 

The functional missile guidance and control system is required to measure and determine the 

engagement geometry, well estimating the dynamics of the target using appropriate tracking 

system, and generating the necessary commands to accurately change the interceptor missile 

actuators to put it on the collusion course. Additionally, the guidance algorithm needs to 

actively respond to any mismatch in the intercepting geometry that may emerged due to the 

target maneuvering or by an initial heading error, thus producing the missile normal 

acceleration required to correct the missile orientation. 

A. Guidance Phases 

We may divide the guidance of a missile into three different phases: (1) The booster or 

launch phase, which begin from the time that the missile leaves its launcher up to burn all the 

booster fuel. This phase may or may not be controlled, (2) The mid-course phase, which 

extends until the missile reaches the locked area such that, the last phase can start 
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successfully, and (3) Terminal phase, from the moment the missile seeker locked onto its 

target until the intercept occurs. This stage required high accuracy and quick reaction to 

precisely put the missile in the collusion course. Thus, the last phase considered as the 

critical one, which needs extremely precise equipment to achieve the interception accurately. 

What is worth mentioning here is that, in the modern ADS and guidance systems there is 

also additional information collected by third-party sensors. This means you can make use of 

the missile own sensors or sensors from auxiliary sources connected together in a certain 

way and work well in an integrated networked system to end up with a qualified and 

effective system. 

B. Homing Guidance Types 

In homing guidance, the missile itself acts as receiver and transmitter, in such a type is called 

active homing. If the missile just receives the target characteristic signals, then it is named 

passive homing. The third type is the semi-active homing where the target illuminating 

signal is emanated by launcher or another source as illustrated in figure (2). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Types of homing guidance systems 

If we considered each type individually, then the actively guided system is characterized 

by the (launch-and-leave) property; however, the disadvantages may be the extra weight, the 

high cost and the risk that may occur; since its position and motion can be detected because 

of the radiation that the missile send out. An example of this system type is the European 

Meteor air-to-air missile (AAM). On the other hand, there is the semi-active homing 

guidance, which required an external signal source to keep illuminating the target during the 

entire flight, however this type provides a larger range for the guidance system. The 

supersonic (Sparrow III) is an example of this system type. The third type "the passive 

homing arrangement" totally relies on the characteristics of the radiations from the target and 

should be capable to detect and accurately sense them in order to generate the correct 

guidance commands, whereas the (Sidewinder missile) is an example of the passive system. 

At this point, it is appropriate to mention that, the components of the three homing 

configurations are essentially identical with some differences in terms of their location and 

the way they are used. 

4. DIFFERENTIAL GEOMETRY TOOLS USED IN GUIDANCE LAWS 

Using the differential geometry in the control theory offers practical tools for modelling, 

analysis and design of the linear and nonlinear guidance and control systems. The basic 

concept of Differential Geometry (DG) in dealing with continuously differentiable curves 
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(smooth curves) in 3D Euclidean space R3 is to use the calculus to describe the kinematic 

properties of a particle moving along the mentioned curve or to determine the curve itself 

geometric properties. On the other side, the differential geometry became an attractive 

approach to improve and offer useful guidance strategies, since the DG was used in 

mechanism and machine theory as a functional method of kinematic analysis [21]. 

One of the essential tools from the differential geometry uses in developing the missile 

guidance algorithm is the Frenet-Serret formula [6,21], which describes the derivatives of the 

triple unit vectors 𝑡,𝑛 and 𝑏 that representing the curve in the space as a function of the 

curvature and the torsion. 
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Where   ́ means the differentiation with respect to 𝑠“the arc length” and 𝜅 , τ  represent the 

curvature and the torsion of the 3D curve. The major aspects that have drawn our attention to 

the use of differential geometric approach in the development of missile guidance systems 

are (1) DG approach is more generalized guidance algorithm, which deals with curved and 

straight-line trajectories and the well-known PN guidance law is a subset of DG approach, 

(2) DG techniques deals with the nonlinear geometry directly, hence the convergence and 

stability are global, (3) DG approach offers flexibility and a set of possibilities in controlling 

and choosing the collision courses, and (4) As we will notice, DG guidance law will be 

stable for all initial conditions as will be shown in the following chapters, which indicates 

that the capture region involves all the space. On the other side, no restrictions or limits on 

the capture region, except for the physical limits on the missile such as the lateral 

acceleration capability as well as the limits on the sensor look angles. 

5. ENGAGEMENT KINEMATIC EQUATIONS 

According to the postulate stating that, the smallest distance between two points in the space 

is the direct path i.e. the straight line, we will examine the kinematics of direct intercept of 

target flying at a constant velocity. Let us consider the sightline joining the missile and the 

target centers of gravity (c.g.) and the anticipated impact point  𝑰 , where these three points 

establish what we call the impact triangle (MIT) as illustrated in figure (1). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Homing guidance and kinematic geometry 
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The kinematic geometry is shown in figure (3). Development of the kinematic equations 

is considered in more details in [22]; here only the final forms of the equations will be 

mentioned as follows: 

𝑟
.

𝑠 = 𝑣𝑡 cos(𝜃ts) − 𝑣𝑚 cos(𝜃ms) ; (1) 

𝑟𝑠𝜃
.

𝑠 = 𝑣𝑡sin(𝜃ts) − 𝑣𝑚sin(𝜃ms); (2) 

𝑟
..

𝑠 − 𝑟𝑠𝜃
.

𝑠

2
= −𝑎𝑡 sin(𝜃ts) +  𝑎𝑚 sin(𝜃ms) ; (3) 

𝑟𝑠𝜃
..

𝑠 + 2𝑟
.

𝑠𝜃
.

𝑠 = 𝑎𝑡cos(𝜃ts) + 𝑎𝑚cos(𝜃ms); (4) 

Equations (1, 2) illustrate the relative velocities of the missile and the target along and 

normal to the LOS. The components of the target-missile relative accelerations, along and 

normal to the sightline are expressed in equations (3, 4). Easily we can refer equations (1-4) 

to the inertial coordinate system x and y. 

6. GUIDANCE ALGORITHM AND DIFFERENTIAL GEOMETRY 

The aim of the guidance algorithm is to define the missile lateral acceleration that is required 

to produce the missile intercept curvature and to maintain the missile motion along the 

trajectory of the engagement until the collision occurs. We will derive and examine the 

guidance algorithm to intercept the maneuvering targets whereas the nonmaneuvering targets 

are special case. Considering that, the maneuvering targets can intercept either by 

maneuvering missiles or by direct intercept missile. On the other hand, the nonmaneuvering 

target may also intercepted by maneuvering or direct intercept missiles. 

A unified DG guidance law will be developed by virtue of Lyapunov theory for different 

engagement scenarios. In the intercept geometry, it's required that, the missile should 

maneuver until the ratio of the missile-target trajectories length is equal to the ratio of the 

missile-target velocities i.e. 

𝑠𝑚

𝑠𝑡
=

𝑣𝑚

𝑣𝑡
= 𝜂 (5) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Homing guidance configuration of variable maneuver 
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In this intercepting configuration, we consider both the missile and the target flying in 

variable maneuvering curves with constant velocity as illustrated in figure (4) which 

demonstrates the direct missile-target matching condition for this scenario as follows: 

𝑠𝑚𝑡𝑚 = 𝑟𝑠𝑡𝑠 + 𝐿tc𝑡tc; (6) 

where; 𝐿𝑡𝑐 the target chord length 

𝐿tc = 𝛼𝑡𝑠𝑡;                   𝑠𝑚 = 𝜂  𝑠𝑡;                 𝛼𝑡 =
sin (

𝜃arct

2 )

(
𝜃arct

2 )

 (7) 

where, 𝜃arc𝑡
 the target arc angle. 

𝑡𝑚 =
1

𝜂
((

𝑟𝑠

𝑠𝑡
) 𝑡𝑠 + 𝛼𝑡 𝑡tc) ; (8) 

Equation (8) represents the vector form of the missile-target matching condition, which 

indicates that, the missile unit tangent vector is defined base on the LOS unit vector 𝑡𝑠 and 

target-chord unit tangent vector   𝑡𝑡𝑐. The equation is also a function of both 𝜂  and   
𝑟𝑠

𝑠𝑡
. By 

using the cosine rule for the impact triangle, we get (
𝑟𝑠

𝑠𝑡
) as follows: 

(
𝑟𝑠

𝑠𝑡
) = 𝛼𝑡 cos(𝜃tcsi) + √𝜂2 − 𝛼𝑡

2
  sin2(𝜃tcsi); (9) 

where,  

𝜃tcsi = 𝜋 − abs(𝜃tcs);       𝜃tcs = 𝜃ts +
1

2
 𝜃arct

;       𝜃ts = 𝜃𝑡 − 𝜃𝑠; 

The mathematical condition to get real value for (
𝑟𝑠

𝑠𝑡
) is 

𝜂2 − 𝛼𝑡

2
sin(𝜃tcsi)

2

> 0 (10) 

Unfortunately, (9) can’t be solved explicitly to get (
𝑟𝑠

𝑠𝑡
) since 𝛼𝑡 or  𝜃arct

  are function of (
𝑟𝑠

𝑠𝑡
) 

as follows: 

𝑟arct
=

1

𝜅𝑡
;               𝑠𝑡 = 𝑟arct

  𝜃arct
;                 𝜃arc𝑡

=
𝑟𝑠𝜅𝑡

(
𝑟𝑠
𝑠𝑡

)
; (11) 

In order to obtain (
𝑟𝑠

𝑠𝑡
) we need to solve the following equations iteratively. 

 

Initial guess of  (
𝑟𝑠

𝑠𝑡
) 

From (11) get 𝜃arc𝑡
 

Now get  𝛼𝑡 

From (9) get (
𝑟𝑠

𝑠𝑡
)new 

Re-iterate until get the solution 
 

(12) 
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From (12) we get (
𝑟𝑠

𝑠𝑡
) ,𝜃arc𝑡

,  𝜅𝑡  ,  𝛼𝑡 . After obtaining these parameters by substituting in (9) 

then (8) we will get the demand unit tangent vector 𝑡m of the missile collision trajectory. 

Now, to generate the guidance algorithm and study its stability we will use the 

Lyapunov theory. Lyapunov tests whether the system dynamics are stable/asymptotically 

stable. In other words, in the sense of Lyapunov, if the system starting at state 𝑥𝑜 ∈ domain 

D and staying within that domain then the system is Lyapunov stable, or in case of 

asymptotically stable which is more strongly; the system state will return to 𝑥𝑜 “equilibrium 

state” after any disturbance. The Lyapunov stability condition implicitly implies that if the 

system energy decreases with time, which indicates that the system states would return to the 

equilibrium state then the system is stable. To study and check the system stability, we 

assume an energy-like function, positive definite, quadratic, and scalar at the same time its 

time derivative should be negative to ensure the stability of the system. So, let us assumes 

Lyapunov 𝕐 function as follows: 

𝕐 =
1

2
𝜃𝜀

2

;  (13) 

𝜃𝜀 = 𝜃md − 𝜃𝑚; 

𝕐
.

= 𝜃𝜀𝜃
.

𝜀;           𝕐
.

= 𝜃𝜀(𝜃
.

md − 𝜃
.

𝑚); 
(14) 

Then, we required that 

𝕐
.

= −𝐾𝕐;       𝕐
.

= −𝐾 (
1

2
𝜃𝜀

2

) ; (15) 

From (14 -15) we get: 

𝜃
.

𝑚 = 𝜃
.

md +
𝐾

2
𝜃𝜀; (16) 

Then, to obtain 𝜃
.

md from the missile demand unit vector as in (9), and by deriving (8) we 

get, 

𝑡md

.
=

1

 𝜂
 (

𝑑

dt
(

𝑟𝑠

𝑠𝑡
) 𝑡𝑠 + (

𝑟𝑠

𝑠𝑡
)  𝜃

.

𝑠 𝑛𝑠 +
𝑑

dt
(𝛼𝑡𝑡tc) )      and        𝑡md

.
= 𝜃md 

.

𝑛𝑚𝑑; (17) 

where        𝑡tc = cos(𝜃tcsi) 𝑡𝑠 + sin(𝜃tcsi) 𝑛𝑠; 

𝜃md 
.

𝑛𝑚𝑑 =
1

 𝜂
 (

𝑑

dt
(

𝑟𝑠

𝑠𝑡
) 𝑡𝑠 + (

𝑟𝑠

𝑠𝑡
)  𝜃

.

𝑠 𝑛𝑠 +
𝑑

dt
(𝛼𝑡𝑡tc) ) (18) 

𝜃md

.

= |
1

 𝜂
 (

𝑑

dt
(

𝑟𝑠

𝑠𝑡
) 𝑡𝑠 + (

𝑟𝑠

𝑠𝑡
)  𝜃

.

𝑠 𝑛𝑠 +
𝑑

dt
(𝛼𝑡𝑡tc) ) |; (19) 

Then obtaining the guidance law by substituting about 𝜃md

.

 in  

𝜃
.

𝑚 = 𝜃
.

md +
𝐾

2
𝜃𝜀; (20) 

Therefore, equation (20) demonstrates the guidance law of this scenario, which will 

guarantee that 

𝕐
.

= −𝐾𝕐 ,    𝐾 > 0. 

Then, the guidance law is globally stable. Applying the Frenet-Serret equation, we find: 
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𝜅𝑚 =
𝜃
.

𝑚

𝑣𝑚
; (21) 

After we determine 𝜃
.

𝑚, we get from equation (21) the missile trajectory curvature 𝜅𝑚, and 

𝑎𝑚 = 𝑣𝑚

2
𝜅𝑚 = 𝑣𝑚𝜃

.

𝑚;  (22) 

Equation (22) calculates the missile lateral acceleration that the missile should produce 

to guarantee following the determined engagement path. As expressed in the equations, the 

missile trajectory controlled by defining the missile curvature. The curvature is achieved as a 

result of the missile normal “Latax” acceleration. To this end, the guidance law shows that 

there is no restriction on the initial conditions of both missile and target. The limitation will 

appear only due to physical reasons for instance, limitation on the missile lateral acceleration 

and on the accuracy and capability of the tracking sensor and the sensor look angle range. 

7. NUMERICAL SIMULATION RESULTS 

This section will illustrate the simulation results of a missile-target engagement and 

interception in different cases and conditions to show the significant role and contribution of 

the differential geometry (DG) approach in the homing missile guidance and control 

systems. DG offers great approach so as to guarantee missile target precisely interception 

and gain allowance in choosing the suitable trajectory that the missile can adopt to ensure 

intercept the target within the missile design limits such as the maximum missile Latax. 

The missile guidance and control system and the simplified block diagram are illustrated 

in figures 5 and 6, respectively, where the missile flight control system and the target 

dynamics both control the interceptor motion. 

The terminal sensor and the state estimator determine the relative geometry and feed the 

guidance law by the missile range, LOS angle and their rates of change. The guidance 

algorithm then introduces the steering commands such as the required missile lateral acceleration to 

the flight control system. 

 

 

 

 

 

 

 
 

 
 

 

 

Figure 5: Scheme of missile guidance and control loop 

 

 

 

 

 

 
 

Figure 6: The basic elements of the missile flight control system 
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 The flight dynamics and control system force the actuators and aerodynamics surfaces to 

follow the guidance commands so as to ensure accurately intercept the target. Diverse 

scenarios of missile-target engagement are 2D simulated in this section, in order to illustrate 

the convergence of the differential geometric guidance approach and display the properties 

of this approach. Different cases of homing missiles intercepting were tested either surface-

to-air, air-to-surface or air-to-air missiles. Five different engagement scenarios simulated as 

follows: 

A. Non-maneuvering missile against non-maneuvering target. 

B. Maneuvering missile against non-maneuvering target. 

C. Non-maneuvering missile against maneuvering target. 

D. Maneuvering missile against “constant curve” maneuvering target. 

E. Maneuvering missile against “variable curve” maneuvering target (General 

Maneuverability). 

The inputs to the guidance section of the simulation program allow testing the different 

parameters that may affect the engagement and intercept geometry as follows: 

 For the target 

The tracker sensor is assumed to be able to measure and/or estimate the target position 

and the sight light angle, and then the program inputs are:  

o Target’s locked initial position 

o Target’s locked initial heading angle 

o Target’s velocity 

o Target’s acceleration 

 For The missile 

o Missile’s initial position 

o Missile’s initial heading angle 

o Missile’s velocity as a ratio of the target velocity i.e. enter (η)  

o Missile’s acceleration 

A. Non-Maneuvering Missile Against Non-Maneuvering Target 

In this scenario, we let the target velocity as 310 m/sec. and its acceleration is zero 

“nonmaneuvering”. Intentionally we enlarge the missile’s heading angle error, so as to show 

the global convergence of the DG approach. 

Table 1: Input parameters to the guidance algorithm, case (A) 

Target initial position 𝑋= -1000 m ,  𝑌=10000 m 

Target initial angle 𝜃𝑡𝑜=30o 

Missile initial angle 𝜃𝑚𝑜=150o 

η 1.2 

Gain (K) 0.5 

The missile velocity is relatively slaw, about 1.2 of the target velocity (372 m/sec) and 

the heading angle is within error greater than 100o as shown in figure (7). The guidance gain 

is set to 0.5, which gives a reasonable convergence within the allowable latax range. 

The results represent that, the approximate time-to-go is about (102 sec). In figure (8) 

the necessary missile lateral acceleration required to intercept the given target is depicted. 

Figure (9) shows the Lyapunov function, 
𝑟𝑠

𝑠𝑡
 , LOS_rate, and the missile curvature 𝜅𝑚. 

Lyapunov function converges rapidly, and the approach gives a good convergence. 
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Figure 8: Missile Lateral Acceleration Figure 7: Missile-Target intercept 

trajectory (η=1.2), case (A) 

Figure 9: {Lyapunov Fn., r/st, SLR, missile curvature} 

 

 

 

 

 

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

B. Non-Maneuvering Missile Against Maneuvering Target 

A surface-to-air (STA) engagement for maneuvering target is depicted in the scenario below. 

In this case, the target velocity is set to 310 m/sec and the target is considered as being able 

to maneuver in a constant curve. Figure (10) shows the results of a target with latax equal to 

1g. The missile velocity is twice the target. The results show that the missile will maneuver 

by normal acceleration shown in figure (11), and the impact will approximately occur after 

26 sec. Lyapunov also converges within 8 seconds. In this case, as the missile velocity is 

greater this increase the aerodynamics capability of the missile thus the required time-to-go 

is smaller about 26 sec. while the missile required latax range will increase as shown in 

figure (11). For the two cases, the guidance gain K is also set to 0.5 and shows a reasonable 

convergence. 

Table 2: Input parameters to the guidance algorithm, case (B-1) 

Target initial position 𝑋= -1000 m,  𝑌=10000 m 

Target initial angle 𝜃𝑡𝑜=  0o 

Target normal acceleration 𝑎𝑡= 1g 

Missile initial angle 𝜃𝑚𝑜=170o 

η 2 

Gain (K) 0.5 
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Figure 11: Missile lateral acceleration Figure 10: Missile-Target intercept trajectory (η=2), 

case (B-1) 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12: {Lyapunov Fn.,   r/st,    SLR,  missile curvature} 

An air-to-air engagement is shown in figure (13). In this case, the velocity of the missile 

is smaller than of the target with η=0.6 and the guidance gain is set to one to give a good 

convergence. 

Table 3: Input parameters to the guidance algorithm, case (B-2) 

Target initial position On the ground (0,0) 

Missile initial position 𝑋=- 1000  , 𝑌=10000 m 

Target initial angle 𝜃𝑡𝑜=60o 

Target latax 𝑎𝑡= 1g 

Missile initial angle 𝜃𝑚=0o 

η 0.6 

Gain (K) 1 
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Figure 13: Missile-Target intercept trajectory      Figure 14: Missile lateral acceleration 

                  (η=0.6), case (B-2) 

The target maneuvers with lateral acceleration equal to 1g. The simulation results of this 

case stated that even if the missile velocity is less than the target velocity the impact will 

occur. 

It is important here to mention that, if the chaser velocity is less than the target then the 

impact occurring will impose restrictions on the range and the heading angles at the same 

time on the target maneuverability. 

C. Maneuvering Missile Against Non-Maneuvering Target 

In this case, the target is flying in a constant curvature i.e. its latax is set to zero with a 

constant velocity equal to 310 m/sec and 30o initial heading angle. 

The missile is maneuvering by two different latax (±3 g) and initially flying away from 

the target with relatively large heading error to test the convergence. 

The simulation results represent the missile trajectory and its latax during the 

engagement as shown in figure (15). 

Table 4: Input parameters to the guidance algorithm, case (C) 

Target initial position 𝑋=1000 m,  𝑌=10000 m 

Target initial angle 𝜃𝑡𝑜=30o 

Missile initial angle 𝜃𝑚𝑜=150o 

Missile latax 𝑎𝑚 = ±3 g 

η 2 

Gain (K) 0.5 
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Figure 15: Missile-Target intercept trajectory (η=2), case (C) and the missile LaTax  

D. Maneuvering Missile Against Maneuvering Target 

In this configuration, the target is maneuver along constant curve as shown in figure (16). 

The DG guidance algorithm is testing the guidance of air-to-air maneuverable missile flying 

in an initial heading angle equal to 0o, with 2g normal acceleration. The target latax is (-2g) 

and its initial heading angle is 60 deg. the missile velocity is about 465 m/sec i.e. 1.5 of the 

target speed. 

Table 5: Input parameters to the guidance algorithm, case (D) 

Target initial position On the ground (0,0) 

Missile initial position 𝑋= 1000,   𝑌=12000 m 

Target initial angle 𝜃𝑡𝑜=60o 

Target latax 𝑎𝑡= -2g 

Missile initial angle 𝜃𝑚𝑜=0o 

Missile latax 𝑎𝑚=2g 

η 1.5 

Gain (K) 0.5 

The approximated simulation time-to-go is 27 sec. and the missile lateral acceleration 

during the engagement is within the limits. The results again show good convergence with 

the guidance gain K=0.5. The missile and target internal arc angles 𝜃𝑚_𝑎𝑟𝑐  ,𝜃𝑡_𝑎𝑟𝑐 approach 

to zero as the impact point become closer which confirms the analysis. Again, the results 

show a good convergence and the missile lateral acceleration is within the limits. 
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Figure 16: Missile-Target intercept trajectory    Figure 17: Missile Lateral Acceleration 

                  (η=1.5), case (D) 

 
Figure 18: {Lyapunov Fn.,  r/st,  SLR,  θm_arc ,θt_arc  } 

E. General Maneuvering of The Missile and The Target 

In this engagement scenario, we will consider a target with high maneuverability. The target 

lateral acceleration is variable thus; the target maneuver is changing over time. Let us choose 

the target normal acceleration function over time as follows: 

𝑎𝑡 = 0.5 ∗ 𝑐𝑜𝑠 (0.01 ∗ 𝑡) + 10 ∗ 𝑠𝑖𝑛 (0.1 ∗ 𝑡) −  0.5 ∗ 𝑎𝑡𝑜     

𝑎𝑡𝑜 = 1 ∗ 𝑔 m/sec2. 

Table 6: Input parameters to the guidance algorithm, case (E) 

Target initial position 𝑋= 1000 m ,   𝑌=12000 m 

Target initial angle  𝜃𝑡𝑜=30o  

Target velocity 310 m/sec 

Missile initial angle  𝜃𝑚𝑜=150o 

η 1.5 

Gain (K) 0.5 

The interception considered in this example, examines the capability of the DG 

guidance algorithm to efficiently intercept the target of variable maneuverability. The time 

history of the target's lateral acceleration that illustrated in figure (19) varies between (-1.5𝑔) 

and (+0.5𝑔). The missile-target engagement configuration is illustrated in figure (20). The 
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target arc angle 𝜃t_arc ends up at zero to confirm the analysis. Again, the differential 

geometric concepts guarantee the missile-target interception; the approximate time-to-hit is 

about 60 sec. 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 19: Target lateral            Figure 21: Target internal arc 

Acceleration   Figure 20: Missile-Target intercept                   angle θ_(t_arc) 

              trajectory (η=1.5), case (E) 

 

8. CONCLUSIONS 

The study presented in this paper used the differential geometric concepts to develop a novel 

guidance algorithm for the homing missiles and air defense systems (ADS) in order to 

efficiently intercept the highly maneuverable targets. The study illustrated the essential idea 

behind the DG approach as well as the major properties and features of this guidance 

algorithm. The intercept geometry and kinematics of the engagement are developed and 

expressed in differential geometric terms established upon the direct interception to develop 

a generalized guidance law. After examining diverse scenarios of the missile-target 

interception, the DG approach is considered as more generalized guidance algorithm, which 

deals with curved and straight-line trajectories and the PN is a subset of it. In addition, DG 

techniques deal with the nonlinear geometry directly hence, the convergence and stability are 

global. From another aspect, by virtue of the differential geometry techniques we gain more 

flexibility and set of possibilities in controlling and choosing the interceptor trajectories. 
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