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Abstract: This paper discusses and presents an overview of the proportional navigation (PN) 

guidance law as well as the differential geometry (DG) guidance algorithm that are used to develop 

the intercept course of a certain target. The intent of this study is to illustrate the advantages of the 

guidance algorithm generated based on the concepts of differential geometry against the well-known 

PN guidance law. The basic principles behind the both algorithms are mentioned. Moreover, the 

different versions of the PN approach is briefly clarified to show the essential improvement from one 

version to the other. The paper terminated with numerous two-dimension simulation figures to give a 

great value of visual aids, illustrating the significant relations and main features and properties of 

both algorithms. 

Key Words: Homing Guidance; Differential Geometry; Proportional Navigation; Intercept; 
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1. INTRODUCTION 

There is variety of techniques that the guided missiles may adopt to home in on their target. 

Each technique requires particular mathematics laws and may be subject to some constraints. 

One of the common and modern guidance techniques is the line-of-sight (LOS) base 

technique, where the LOS and its rate is the essential source of the target information 

required to guide the interceptor missile [1-4]. 

The guidance expression stands for the way and the mean by which the guided system is 

steered to certain target. Both the DG and PN guidance approaches that are taken into 

account in this study, utilize the idea of the sight line and its rate. 

The LOS is known as an imaginary line connecting the missile and the target, where the 

seeker function is to continuously establish the direction of this line. The basic idea of the 

PN experimental guidance law is to generate guidance commands as a ratio depends on the 

angular velocity of the LOS. 
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The turning ratio of the missile, “let’s represent it as 𝑘𝑝𝑛” is commonly named the 

proportional gain or constant. 

In order to guarantee intercept occurring, the proportional constant should be greater 

than one, usually ranging between two and six [5-7]. If  𝑘𝑝𝑛 is equal to one then, the turning 

rate of the missile is equal to the LOS rate. Furthermore, if 𝑘𝑝𝑛 is less than one then the 

interception is impossible to occur, since the missile turning rate will build down a lag angle 

with respect to the LOS. 

On the other hand, the basic idea behind the differential geometry approach is the use of 

calculus to describe the kinematic properties of a particle moving along continuously 

differentiable curves (smooth curves) in 3D Euclidean space R3, or to determine the 

geometric properties of the curve itself [8-11]. 

By virtue of the differential geometry concepts in guidance techniques, since it was a 

functional method of kinematic analysis in the machine theory, we can deal directly with the 

nonlinearity that exists in the system without need for simplification or linearization. Hence, 

the convergence and stability are global [12, 13]. 

2. AN OVERVIEW OF THE PROPORTIONAL NAVIGATION GUIDANCE 

LAW 

Because of its simplicity and reliability, the proportional navigation is one of the well-known 

guidance laws in homing missiles especially for short and medium ranges between the 

missile and target. The basic principle behind the PN guidance law is based on the fact that, 

if the rate of change of the line of sight (LOS) between two approaches bodies is zero this 

will guarantee that these two bodies eventually will impact on each other [14-16]. In other 

words, the aim of the PN guidance law (PNGL) “ideally speaking” is to prevent the sightline 

rotation rate against non-maneuvering targets by making the missile producing a lateral 

acceleration proportional to the LOS rate. The classical expression of this basic notion is as 

follows: 

𝒂𝒎 = 𝒌𝒑𝒏 𝑽𝒎𝜽
.

𝒔        or      𝜽
.

𝒎 = 𝒌𝒑𝒏𝜽
.

𝒔; 

where: 

𝒂𝒎 = Missile lateral acceleration  (m/sec2) 

𝒌𝒑𝒏= Navigation constant/ “effective” navigation ratio. 

𝑽𝒎 = Missile velocity      (m / sec) 

𝜽
.

𝒔 = Sightline rate (LOS rate)   (rad/sec) 

𝜽
.

𝒎= Rate of change of missile angle (rad/sec) 

The necessary missile lateral acceleration decreases as the navigation constant increase 

as shown in figures 1 and 2; at the same time, practically speaking, there is an upper limit for 

the navigation ratio due to many factors. 

For instance, the potential noise that may contaminate the seeker measurements during 

tracking maneuvering targets. This error is directly multiplied by the navigation constant as 

shown in the PN guidance law. 

It is worth mentioning that the value of the navigation gain kpn is also subject to the 

requirements of the missile normal acceleration against the target maneuver capability. An 

acceptable range of the navigation constant/ratio usually used is from three to five so as to 

ensure reasonable miss distance and minimize the necessary missile lateral acceleration [2]. 
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Figure 1: Missile-Target trajectories for PN constant= {1, 4} 

 

 

 

 

 
 

 
 

 

Figure 2: Missile flight/ latax for different 𝒌𝒑𝒏 

Regarding the derivation of the PN approach, an exact closed form analytical solution 

has been obtained, but for special cases with highly restricted conditions [15]. 

In spite of that, the PNGL may performs acceptably in relatively wide range of 

interception conditions but from a practical point of view, its accuracy and capability 

decrease rapidly in such cases like smart and maneuverable targets and relatively large 

heading angle-error during the launching. 

On the other hand, ideally, the PNGL required missile induced lateral acceleration to be 

normal to the sightline, but practically it occurs normal to the instantaneous missile unit 

tangent vector. Which mean that the angle between the unit vectors of the LOS and missile 

trajectory (θms) plays an important role in assessing the applicability of the PN algorithm 

[3], as shown in figure (3). 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

Figure 3: The homing configuration and impcat triangle 
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A. Parameters Affecting the PN Constant 𝒌𝒑𝒏 

We mention below some parameters that have a significant effect on the chosen value of PN 

effective ratio 𝑘𝑝𝑛 in addition to the missile dynamics consideration: 

a) Noise 

As the navigation constant 𝑘𝑝𝑛 increased this tends to increase the effect of the guidance 

noise associated with LOS rate  𝜃
.

𝑠. The noise tends to hide the exact value of  𝜃
.

𝑠; these 

noises may occur due to tracker receiver or intended guided noise signals from the target. 

b) Missile’s heading error angle 

This parameter is highly depending on the proportional ratio 𝑘𝑝𝑛 while treatment of the 

heading error became greater for large  𝑘𝑝𝑛. 

c) Target maneuverability 

The capture capability of the maneuverable targets increases proportionally with kpn [1, 3]. 

B. Proportional Navigation Versions 

In seeking to improve the classical PN approach, many modified versions have been 

developed. This section will briefly indicate the common versions: 

a) Pure Proportional Navigation (PPN): 

The required lateral acceleration is applied normally to the missile velocity direction; this 

approach gives a good solution for stationary targets. 

b) Biased Proportional Navigation (BPN): 

An additional parameter has been included in this improved version i.e. the rate bias of the 

rate of change of the LOS (𝜃
.

𝑏). This version may give good performance in operation 

conditions outside the atmosphere [3]. 

𝒂𝒎 = 𝒌𝒑𝒏 𝒗𝒎(𝜽
.

𝒔 − 𝜽
.

𝒃); 

c) True Proportional Navigation (TPN): 

This modified method considered as good choice for nonmaneuvering targets and it produce 

great accuracy. However, this version is restricted to some initial conditions. 

d) Generalized Proportional Navigation (GPN) and the Ideal Proportional 

Navigation (IPN): 

These two versions are almost similar where the direction of the applied acceleration is 

within a constant bias angle between the perpendicular to the LOS and the normal to the 

missile velocity vector. 

e) Augmented Proportional Navigation (APN): 

This approach added new term proportional to the estimated target acceleration and may give 

an acceptable performance for certain maneuvering targets [1,7] and have an advantage 

regarding decreasing the required induced missile acceleration due to target maneuvers. 

PN is widely used in tactical missiles areas. However, more relatively advanced 

guidance laws may have advantages according to the required missile lateral acceleration 

and miss distance, which mean that both the required normal acceleration and the miss 
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distance are relatively smaller. On the other hand, these advanced approaches need more 

information such as well estimation of the approximate time-to-go and the target relative 

positions and motions. 

3. DIFFERENTIAL GEOMETRY AND GUIDANCE ALGORITHM 

The concepts of differential geometric control theory offer functional tools for modelling, 

analysis and design of the nonlinear guidance and control systems. The basic concept of 

differential geometry in dealing with the continuously differentiable curves (smooth curves) 

in 3D Euclidean space R3, is to use the calculus to describe the kinematic properties of a 

particle moving along the mentioned curve or to determine the curve itself geometric 

properties [17]. 

On the other side, the differential geometry became an attractive approach to improve 

and offer useful guidance strategies, since the DG was used in mechanism and machine 

theory as a functional method of kinematic analysis [18,19]. 

One of the essential tools from the differential geometry uses in developing the missile 

guidance algorithm is the Frenet-Serret formula, which describes the derivatives of the triple 

unit vectors in term of each other as a function of the curvature and the torsion. 

The Frenet-Serret Formula 

The Frenet-Serret equations describe the curves in the space and extending notion of 

curvature into the torsion notion. In another word, if we have a particle moving along a 

manifold “continuous differentiable curve” in the Euclidean 3D space then, the Frenet-Serret 

formula introducing the kinematic properties of this particle by using the so-called Frenet 

coordinate frame as shown in figure (4). In addition to the Bi-normal Unit vector this frame 

includes the Tangent and Normal unit vectors, to complete the right-hand-rule of the 

coordinate system. 

To illustrate the Frenet-Serret formula in two-dimensional space, let's suppose that we 

have a particle moving along a circle of radius a as depicted in figure (5) where the position 

and the velocity of this particle is represented by: 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Frenet coordinate frame 

 

𝛼(𝑡) = (𝑎 𝑐𝑜𝑠(𝑡), 𝑎 𝑠𝑖𝑛(𝑡))  

𝛼’(𝑡) = (−𝑎 𝑠𝑖𝑛(𝑡), 𝑎 𝑐𝑜𝑠(𝑡)) 

where, | 𝛼’(𝑡)| =  𝑎 which represents a constant speed curve. 
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t 

α(t) 

a 

𝑇(𝑠) 

𝑁(𝑠) 

Let 𝛼(𝑡) be a regular curve i.e 𝛼′(𝑡) ≠ 0 which 

means the particle keep moving all the time. If we 

parameterize the particle equations using the arc 

length (s) where 

𝑠 = ∫|𝛼’(𝑡)|𝑑𝑡        then         𝑡 =
𝑠

𝑎
 

then the new curve is represented as follows: 

𝛽(𝑠) = (𝑎 𝑐𝑜𝑠 (
𝑠

𝑎
) , 𝑎 𝑠𝑖𝑛 (

𝑠

𝑎
))   

   𝛽′(𝑠) = (− 𝑠𝑖𝑛(
𝑠

𝑎
), 𝑐𝑜𝑠(

𝑠

𝑎
)) 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: Circle represents particle 

motion 

where | 𝛽′(𝑠)| = 1 which represents a unit speed curve. 

The particle acceleration is 𝛽′′(𝑠) = (−
1

𝑎
 𝑐𝑜𝑠(

𝑠

𝑎
), − 

1

𝑎
 𝑠𝑖𝑛(

𝑠

𝑎
))  and its length is |𝛽′′(𝑠)| =

1

𝑎
 

which is the curvature𝑘. If we normalized the acceleration vector, we get 

𝑁(𝑠) =
𝛽′′(𝑠)

|𝛽′′(𝑠)|
  𝑜𝑟  𝑁(𝑠) = (− 𝑐𝑜𝑠(

𝑠

𝑎
), −  𝑠𝑖𝑛(

𝑠

𝑎
)) 

which is a unit normal vector representing the direction of the acceleration of the moving 

particle. 

𝑇(𝑠) =
𝛽′(𝑠)

|𝛽′(𝑠)|
= 𝛽′(𝑠) 

𝑇(𝑠) the unit tangent vector representing the particle 

velocity direction. So, we can define the curvature as 

the length of the derivative of the tangent vector 𝑇(𝑠)  

i.e.    𝜅(𝑠) = |𝑇′(𝑠)|     where    𝑇′(𝑠) = 𝛽′′(𝑠) 

If we generalize the above analysis, we can conclude 

that at any point p on the curve  𝛽 𝑁(𝑠) points towards 

the center of the curvature “center of the approximate 

circle at that point p. 

 

 

 

 

 

 

 

 

 

 

Figure 6: Unit circle 

To complete the 𝑇(𝑠) and 𝑁(𝑠) coordinate system by using the right-hand-rule we defined 

the Bi-normal vector 𝐵(𝑠)  =  𝑇(𝑠) ×  𝑁(𝑠), and then we get (𝑇(𝑠), 𝑁(𝑠), 𝐵(𝑠)) as the 

Frenet frame of the curve  𝛽. The Frenet-Serret equation defines the rate of change of the 

three-unit vectors in the three directions as follows: 

[

𝑻′(𝒔)

𝑵′(𝒔)

𝑩′(𝒔)

] = [

𝟎 𝜿(𝒔) 𝟎
−𝜿(𝒔) 𝟎 𝝉(𝒔)

𝟎 −𝝉(𝒔) 𝟎
]  [

𝑻(𝒔)
𝑵(𝒔)
𝑩(𝒔)

] 

To derive that, we get the first equation from the definition, where 

𝑇′(𝑠) = 𝛽′′(𝑠), 𝑁(𝑠) =
𝛽′′(𝑠)

|𝛽′′(𝑠)|
 , 𝜅(𝑠) = |𝑇′(𝑠)| 

Then: 

  𝑻′(𝒔) = 𝜿(𝒔) 𝑵(𝒔) (A.1) 

Let us claim and then prove that, 𝐵′(𝑠) is a multiple of 𝑁(𝑠) 

∵ 𝐵(𝑠). 𝐵(𝑠) = 1 unit vector everywhere then 𝐵′(𝑠) ⊥ 𝐵(𝑠) 

∵ 𝐵(𝑠). 𝑇(𝑠) = 0 by differentiating it, we get: 

𝐵′(𝑠). 𝑇(𝑠) + 𝐵(𝑠). 𝑇′(𝑠) = 0 
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We know from (A.1) that, 𝑇′(𝑠) is a multiple of 𝑁(𝑠) and 𝐵(𝑠) ⊥ 𝑁(𝑠) then 

𝐵(𝑠). 𝑇′(s) = 0;     then   𝐵′(𝑠). 𝑇(𝑠) = 0; 

So    𝐵′(𝑠) ⊥ 𝐵(𝑠)   𝑎𝑛𝑑  𝐵′(𝑠) ⊥ 𝑇(𝑠) and we know that there is only one direction 

perpendicular to 𝐵(𝑠) 𝑎𝑛𝑑 𝑇(𝑠)  that is the normal vector 𝑁(𝑠) then we conclude that, 𝐵′(𝑠) 

is a multiple of 𝑁(𝑠) ; we can define 𝜏(𝑠) to be that multiple and we call 𝜏(𝑠) the torsion of 

the curve. Thus, we get the Frenet-Serret third equation as follows: 

  𝑩′(𝒔) = −𝝉(𝒔)𝑵(𝒔) (A.2) 

The negative sign is for historical reasons. Now to get the second equation which is 

evaluated as 𝑁′(𝑠) 

∵ 𝑁 = 𝐵 × 𝑇 and its derivative is 𝑁′(𝑠) = 𝐵′(𝑠) × 𝑇(𝑠) + 𝐵(𝑠) × 𝑇′(𝑠) 

Then: 𝑁′(𝑠) = −𝜏(𝑠) 𝑁(𝑠) × 𝑇(𝑠) + 𝐵(𝑠) × 𝜅(𝑠)𝑁(𝑠) or 

𝑁′(𝑠) = 𝜏(𝑠) 𝐵(𝑠) + 𝜅(𝑠)(−𝑇(𝑠)) 

∴The second equation is 

  𝑵′(𝒔) = −𝜿(𝒔) 𝑻(𝒔) + 𝝉(𝒔)𝑩(𝒔) (A.3) 

To this end, by virtue of the Frenet-Serret equations in addition to the Lyapunov theory we 

derive the DG guidance algorithm. Lyapunov tests whether the system dynamics are 

stable/asymptotically stable. The resultant DG guidance law introduced in detailed in [19] 

shows that there is no restriction on the initial conditions of both missile and target.  

𝜃
.

𝑚 = 𝑓(𝜂, 𝜃𝑠

.

,
𝑟𝑠

𝑠𝑡
, 𝜃𝜀 , 𝐾𝐷𝐺 , 𝜃ms, 𝜃ts) 

 𝑎𝑚 = 𝑣𝑚𝜃
.

𝑚; 
where: 

𝜃
.

𝑚    = Rate of change of actual missile angle. 

𝑎𝑚    = Missile lateral acceleration (LaTax). 

𝑣𝑚    = Missile velocity. 

𝜂    = Missile-target velocities ratio. 

𝜃𝑠

.

    = Rate of change of the LOS angle. 
𝑟𝑠

𝑠𝑡
     = Range to target arc length ratio. 

𝜃𝜀    = The error angle between actual and required missile tangent vector. 

𝜃ms & 𝜃ts  = Relative angle of the missile and target. 

𝐾𝐷𝐺   = DG guidance gain. 

The limitation will appear only due to physical reasons, for instance, limitation on the 

missile lateral acceleration and on the accuracy and capability of the tracking sensor and the 

sensor looking angle range. The DG approach also offers flexibility and a set of possibilities 

in controlling and choosing the intercept trajectories. Furthermore, it allows us to optimize 

the engagement trajectory and the guidance algorithm as illustrated in [20, 21]. 

4. SIMULATION RESULTS OF PN AND DG GUIDANCE ALGORITHMS 

The aim of this section is to compare the use of differential geometry approach and PNGL in 

the homing missile guidance algorithms and to present the major characteristics and 

properties for the two approaches. At the same time, the simulation also illustrates their 

advantages against each other. The missile guidance and control loop and the simplified 

block diagram are illustrated in figures 7 and 8, respectively, where the missile controls the 

system and the target dynamics controls the missile motion. The terminal sensor and the state 
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estimator determine the relative geometry and feed the guidance law by the missile range, 

LOS angle and their rates of change. The guidance algorithm then introduces the steering 

commands such as the required missile lateral acceleration to the flight control system. The 

flight dynamics and control system force the actuators and aerodynamics surfaces to follow 

the guidance commands so as to ensure accurately interception the given target. 
 

 

 

 
 
 

 
 

 

Figure 7: Scheme of missile guidance and control loop 

 

 

 

 

 

 
 

 

Figure 8: The basic elements of the missile flight control system 

The comparison is performed in different stages to show the effect of the different 

parameter variation on the intercept characteristics and engagement configuration. Three 

stages will consider observing the interception specifications when: 

1) Change the missile velocity. 

2) Change the range between the missile and the target. 

3) Special case illustrates the DG approach as a generalized guidance law. 

A. Frist Stage: Different Missile Velocities 

In the first stage, the initial positions and heading angles of both the missile and the target 

remained fixed. The lateral acceleration of the missile and the target and the guidance gain in 

the PN and DG algorithms also not changed. We changed only the missile velocity as a ratio 

of the target velocity. The inputs to the simulation program are as follows: 

Table 1: Simulation inputs of the DG vs PN. 1st stage 

Target initial position 𝑋=-2000 m,  𝑌=12000 m 

Missile initial position (0,0) 

Target initial angle 𝜃𝑡=-30o 

Target latax 𝑎to= -2g 

Missile initial angle 𝜃𝑚=0o 

Missile latax 𝑎mo=1g 

Gain (KDG) 0.5 

Gain (KPN) 5 

In figure (9) the missile velocity is 372 m/sec i.e. (η=1.2). The simulation results 

demonstrate the engagement trajectory in both the DG and the PN guidance laws, the missile 

lateral acceleration during the flying, the curvature of the missile and the missile’s heading 

angle as the engagement proceeds also shown in the simulation results to give a complete 

overview of the two approaches. 
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The results depict that the required approximate time-to-go in the DG guidance 

approach is about (20 sec) where in the PN guidance law it’s (28 sec). The required missile 

latax during the flight, is also illustrated. The simulation stated that the benefit of the smaller 

time-to-go in DG guidance required relatively larger initial normal acceleration in order to 

correct the heading angle error. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 9: PN vs DG {Trajectories – LaTax – Missile Curvature} at η=1.2 
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Figure 10: PN vs DG {Trajectories – LaTax – Missile Curvature} at η=0.8 
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More precisely at the first 5 sec. the missile latax declined from 13g to 5g then keep 

decreasing to reach the minimum latax 𝑎mo=1g as we enter this value to the program as a 

lower limit in the DG guidance approach. We mention that the lower limit can also be zero 

or a negative value. 

In (PN) law, the missile trajectory is considering only the LOS rate and it is based on the 

direct interception, this is why the latax performance in the PN approach seems as not 

controlled to fallow certain pattern. 

Now let us decrease the missile velocity and see the new characteristics of the 

engagement configuration. Figure (10) illustrates the simulation results of the engagement 

when the missile velocity is equal to (248 m/sec) i.e.  (η=0.8). 

It is noticeable that the distinction between the engagement flight times in both 

approaches is obviously large. 

In the DG guidance law t2go=25 sec while in PN guidance law t2go=113 sec. Also, the 

missile lateral acceleration during the flight is clearly shown in figure (10) where the pattern 

of the DG latax changes smoothly within smaller boundary in comparison with the PN one. 

In addition to the previous two cases, the simulation also tests the case when the missile 

velocity increased to be twice the target velocity which decreased the impact time to 15 sec, 

17 sec. in DG and PN guidance laws, respectively. 

To this end, in this stage of distinguishing, it seems that as the missile velocity decreases 

relative to a maneuvering target and the heading angle error is considerably large, the DG 

guidance law ensures acquiring the impact quicker, and the missile lateral acceleration 

required to achieve the interception is better and within the design limits. 

B. Second Stage: Different Missile-to-Target Ranges 

In this stage of comparison, the target and missile velocities for both cases are 372 m/sec i.e. 

(η=1.2). The initial heading angles of the missile and the target are 300o and 150o 

respectively. 

The target is maneuver in a constant curvature at a latax equal to 1g. The guidance gains 

in DG approach and PN approach are 0.4 and 4, respectively. We only changed the ranges 

between the missile and the target. 

The simulation results in figure (11) demonstrate the engagement when the range is 

about 12km where the target’s initial position is set to (2000, 12000) m, and figure (12) 

displays the results when the range is smaller {about 10km}. 

Table 2: Simulation inputs of the DG vs PN. 2nd stage 

Missile initial position (0,0) 

Target initial angle 𝜃𝑡𝑜=300o 

Target latax 𝑎to= 1g 

Missile initial angle 𝜃𝑚𝑜=150o 

η 1.2 

Gain (KDG) 0.4 

Gain (KPN) 4 

Again, as shown in the simulation results, the time-to-go in the DG guidance algorithm 

is smaller; the difference is about 20 sec. the curvature of the missile during the flight is 

within the design limits. 

The simulation results also illustrate the time history of the missile angle and the change 

in the lateral acceleration. 
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Figure 11: PN vs DG {Trajectories – LaTax –   𝜿𝒎 }, (𝒙𝒕𝒐, 𝒚𝒕𝒐)=(2000, 12000) 
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Figure 12: PN vs DG {Trajectories – LaTax –   𝜿𝒎 },   (𝒙𝒕𝒐, 𝒚𝒕𝒐)=(1000, 10000) 
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C. DG Approach as a Generalized Guidance Approach 

The following comparison just shows the generality of our method and how the DG 

guidance algorithm looks like a global approach. The input parameters are: 

Table 3: Simulation inputs of the DG vs PN. 3rd stage 

Target initial position (20,20) km 

Missile initial position (10,10) km 

Target initial angle 𝜃𝑡=45o 

Target latax 𝑎to= 0g 

Missile initial angle 𝜃𝑚=225o 

Η 2 

Gain (KDG) 0.3 

Gain (KPN) 15 or any 

In this configuration as shown in figure (14), the location and initial direction of the 

missile and target are located along the same line and in opposite directions. The target 

velocity is 310 m/sec and (η=2), the heading angle of the missile is in the opposite direction 

of the target’s heading angle. The simulation results demonstrate that using PN guidance 

algorithm will not guarantee the anticipation whatsoever the guidance gain {𝑘PN} and the 

missile velocity are. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

Figure 13: SLR in case of using DG and PN approaches 

This is because the SLR will remain zero along all the missile flight as shown in figure 

(13); this mean the missile’s heading angle also will remain constant and equal to the initial 

heading angle. Conversely, the DG guidance algorithm will ensure the missile-target impact 

and the required time-to-go is (67 sec). 

5. CONCLUSIONS 

The study presented in this article deals with well-known proportional navigation guidance 

law and the guidance algorithm generated base on the differential geometry concepts. The 

study illustrates the essential idea behind each approach as well as the major properties and 

features of the PN and DG guidance laws. The qualitative study draws conclusions as 

follows: 
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Figure 14: PN vs DG {Trajectories – LaTax – Missile Curvature}, “Theoretical case” 
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(1) The DG approach considered as more generalized guidance algorithm, which deals with 

curved and straight-line trajectories and the PN, is a subset of DG,  

(2) The DG approach deals with the nonlinear geometry directly hence, the convergence and 

stability are global,  

(3) The DG methods offer flexibility and a set of possibilities in controlling and choosing the 

intercept trajectories, 

(4) Traditional PN is based on straight line and constant velocity, and it does not allow us to 

control the choice of possible intercept trajectories. From another side, the necessary missile 

lateral acceleration is initially greater when we use the DG approach to quickly correct the 

missile initial heading and the pattern of latax is monotonic for the DG approach. 
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