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Abstract: With the aim of efficiently achieving complex trajectory tracking missions in the presence of 
model uncertainties and exogenous disturbances, this paper proposes a robust hybrid control for the 
orientation and position of flying robots by adopting insights from sliding mode, geometric tracking, 
and nonlinear feedback control strategies. Various retrofits are implemented to the composite control 
scheme in order to tackle the system uncertainties, eliminate the chattering effects, and enhance the 
trajectory tracking performance. The convergence and stability analysis demonstrated the asymptotic 
stability of the proposed control algorithm. To reveal the promising performance of the developed 
control schemes, a qualitative comparative analysis of different proposed control approaches is 
performed. The comparative analysis examines highly maneuverable trajectories for various tracking 
scenarios in the presence of uncertain disturbances. The simulation results demonstrated the versatility, 
robustness, and convergence of the developed control laws that allow autonomous flying robots to 
effectively perform agile maneuvers. 

Key Words: Robust Control, Sliding Mode Control, Trajectory Tracking, Nonlinear Control, Chattering 
Effect; Quadrotor Robot 

1. INTRODUCTION 

Due to their versatility, agility, and cost advantages the quadrotor aerial robots considered as 
one of the most attractive (UAVs, MAVs) platforms in academic and industrial researches. 
Unlike the fixed-wing UAVs and conventional helicopters, the hover capability combined with 
fabrication simplicity have given preference to quadrotors in commercial, agricultural, and 
civilian applications and even in military applications. Numerous researches concerning the 
applications of quadcopter UAVs have been published. For instance, in navigation and 
localization [1], [2], flying manipulation [3], object transportation [4], and in surveillance and 
monitoring activities [5]. In view of the fact that quadrotor robot is an underactuated, 
dynamically coupled, and highly nonlinear system, the design of its control system has opened 
up a wide area of research and attracted many developers and researchers with the aim of 
achieving an accurate trajectory tracking performance, asymptotic stability and convergence 
for the UAVs control systems. Recently, several control strategies for quadrotor robots have 
been developed to meet the requirements of the UAVs applications in various areas of interest. 
For the purpose of relatively low maneuverability and velocities, many linear control 
algorithms have been implemented such as the PID control family [6], linear quadratic-
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regulator (LQR) control [7]. To overcome the limitations and drawbacks of linear controllers, 
the researchers have been proposed several advanced nonlinear control schemes for highly 
maneuverable drones including linear parameter varying (LPV) control [8], fuzzy and neural 
network controls [9], [10], adaptive control [11], combined and geometric tracking control 
[12]–[14], backstepping control [15], [16], model predictive control [17], and sliding mode 
control [18]–[22]. The valuable work of [11], proposed the sliding mode-based control that 
assumed small roll and pitch angles to arrive at a linearized dynamical model of the quadrotor. 
They used a continuous adaptive dynamic vector to eliminate the chattering effect to achieve 
the asymptotic stability and enhance the tracking performance. Based on the finite-time 
stability theory and geometric control, the study of [14] proposed a discrete-time control 
scheme to gain better implementation in the onboard computers and arrive at an improved 
steady-state performance. The effect of the time-varying measurement delay and uncertain 
disturbances on quadrotor systems have been investigated in [15], to provide robust tracking 
performance and smooth input acquisition. The quadrotor input constraints and external 
disturbances are considered in [16]. They suggested a prescribed performance backstepping 
dynamic surface control (DSC) scheme to improve the stability of the quadrotor and simplify 
the controller design process. The simulation results demonstrated an acceptable tracking error 
and a satisfying steady-state performance. In [18], the authors proposed a controller split into 
two parts; a sliding mode-based controller to control the quadrotor attitude and a linear PD 
controller for the position and altitude control. For the position and altitude controllers, they 
assumed small yaw, pitch, and roll angles. Hence, based on the imposed assumptions, the 
simulation results showed satisfactory stability and performance. Reference [19], proposed a 
control approach based on the sliding mode observer with finite-time process, hybridized PID 
controller, and continuous sliding-mode control. The two main aims of their work were to 
estimate the system state vector based on the measured output states and to track the desired 
time-varying trajectory regardless of the influence of uncertainties or external disturbances. 
The authors of [23], developed a disturbance observed DO-based SMC. In their study, the 
desired control performance is achieved by transferring the system state from an unstable state 
to a steady state. The simulation results of their work showed a good convergence for altitude 
and attitude control. Authors of [24], utilized the feedback linearization in addition to PID and 
LQR controllers so as to design a position-tracking model and optimize the control algorithm 
by determining a suitable cost function for LQR and hence optimize the tracking performance. 
Among the various nonlinear control algorithms, SMC and its different versions have gained 
remarkable significance due to their robustness, time optimality, and ability to overcome 
uncertainties and disturbances [20]. Hence, in this study, we’ve decided to exploit the 
advantages of the SMC in a new synthesis control to arrive at a promising tracking 
performance for the UAVs. 

1.1 Motivation and Contribution of the Paper 

This study mainly focuses on the trajectory tracking control performance of aerial robots, 
taking into account the orientation and position controls, complete nonlinear dynamics, model 
uncertainties, and disturbance sources that may affect the system's overall performance. The 
novelty of this study is represented by the new composite control scheme that integrates certain 
nonlinear control algorithms with some retrofits to arrive at better stability and improved 
steady-state performance. More specifically, novel robust hybrid control laws based on the 
SMC, geometric tracking control (GTC), and nonlinear feedback control (NFC) are derived 
including adjustments to tackle the drawbacks associated with each component separately. For 
instance, we consider modifying the conventional SMC to eliminate the chattering effect and 
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accurately achieve complex tracking missions by using adjustable saturation function and 
along with the exponential reaching law (ERL). The rest of this paper is organized as follows: 
section 2 briefly mentions the main features and configurations of the quadrotor aerial robots. 
Then, a concise description of the nonlinear dynamic model of quadrotor UAVs is provided 
in the third section. The formulation and considerations of the control problem in addition to 
the proposed robust hybrid control schemes are derived and discussed in section 4. In the 
convergence and stability analysis section, Lyapunov’s stability approach is used to examine 
and prove the asymptotic stability of the proposed controllers. The considerations and tuning 
procedure of the controllable parameters are then mentioned. Subsequent qualitative 
comparative analysis (QCA) and simulation results are presented to exhibit the robustness, 
effectiveness, asymptotic stability, superiority, and applicability of the proposed control 
schemes. 

2. QUADROTOR FEATURES AND CHARACTERISTICS 
The configuration and coordinate system of quadrotor UAVs are shown in Fig. 1, in which its 
four rotors are directed upward in order to provide the necessary lifting force and moments, 
namely the roll, pitch, and yaw moment about 𝑥𝑥,𝑦𝑦 and 𝑧𝑧 , respectively. 

The quadrotor basic motions in the 3D space are achieved by varying the speed of its four 
motors. The six translational and rotational degrees of freedom (DOF) are controlled via four 
input DOFs, namely the thrust magnitude of four rotors, to arrive at asymptotic trajectory 
tracking of four desired outputs, that is the three components of the robot c.g. position vector 
and its heading angle. 

 
Fig. 1 Quadrotor Model and Coordinate System 

The rotation direction of rotors (1,3) in Fig. 1, is the opposite of that of rotors (2,4) to 
prevent unwanted yaw motion. For upward-downward motions along the z-axis, the speed of 
all motors increases or decreases simultaneously. The two well-known configurations of 
quadrotor UAVs are plus (+) and cross (×) configurations. In the quadrotor with plus-
configuration, the motion along the x-axis is carried out by tilting the robot i.e. by making the 
speeds of rotors (1,3) different. The same way is true for the motion along the y-axis through 
rotors (2,4). Regarding the yaw motion about the z-axis, in order to rotate the quadrotor 
counterclockwise, we increase the speed of clockwise rotors i.e. rotors (1,3). 

It is worth mentioning that, for plus and cross configurations as shown in Fig. 2, the yaw 
mode is obtained with the same scenario mentioned above. On the other hand, the roll and 
pitch motions in the plus-config required only two rotors to achieve the motion, however, in 
the cross-config, the four rotors rotate in a certain way to generate the motion. For instance, to 
move the quadrotor robot of cross-config along the x-axis, we need to increase (Ω𝑁𝑁𝑁𝑁,Ω𝑆𝑆𝑆𝑆) 
compared to (Ω𝑁𝑁𝑁𝑁 ,Ω𝑆𝑆𝑆𝑆). 
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Fig. 2 Quadrotor Plus and Cross Configurations 

In cross-config, as the rotation direction of (Ω𝑁𝑁𝑁𝑁,Ω𝑆𝑆𝑆𝑆) is opposite during the motion 
along the x-axis, the resultant yaw torque is canceled out. Thus, pitch and roll control don’t 
generate a net yaw moment in contrast with plus-config. Moreover, for the same desired 
motion, the momentum introduced by the cross-config is greater resulting in higher 
maneuverability as the roll and pitch modes require the four rotors to simultaneously change 
their speeds to achieve the motion. However, the attitude control for both plus and cross 
configurations is essentially analogous [21]. 

3. NONLINEAR DYNAMIC MODEL 
As depicted in Fig. 1, the quadrotor dynamics are derived in both inertial, 𝐸𝐸 and body, 𝐵𝐵 
coordinate systems, so that, the body frame is attached to the center of mass (c.g.) of the 
quadrotor robot. The position vector of the robot c.g. with respect to the fixed world frame is 
denoted by 𝑟𝑟 = [𝑥𝑥,𝑦𝑦, 𝑧𝑧]𝑇𝑇. The considerable forces affecting the robot are the gravity force in 
the (-𝑧𝑧𝑒𝑒) direction, and the thrust forces of all rotors along (𝑧𝑧𝑏𝑏) axis. Hence, using Newton’s 
approach, the linear acceleration of the robot c.g. is governed by the following vector equation, 

𝑚𝑚 r̈ =  −𝑚𝑚 𝑔𝑔 𝑧̂𝑧𝑒𝑒 + 𝑢𝑢1 𝑅𝑅 𝑧̂𝑧𝑏𝑏 (1) 

where, 𝑚𝑚 is the quadrotor mass, 𝑔𝑔 is referred to as the acceleration of gravity, 𝑢𝑢1is the 
summation of thrust forces of four rotors, and 𝑧̂𝑧𝑒𝑒, 𝑧̂𝑧𝑏𝑏 are the 3rd unit vector of the inertial and 
body frames respectively. In this study, we adopt the (Z-X-Y) convention for Euler angles to 
transform coordinates from body to inertial frame. Thus, the rotation matrix is given by, 

𝑅𝑅 = �
𝑐𝑐𝜓𝜓 𝑐𝑐𝜃𝜃 − 𝑠𝑠𝜙𝜙 𝑠𝑠𝜓𝜓 𝑠𝑠𝜃𝜃  −𝑐𝑐𝜙𝜙 𝑠𝑠𝜓𝜓 𝑐𝑐𝜓𝜓 𝑠𝑠𝜃𝜃 + 𝑐𝑐𝜃𝜃 𝑠𝑠𝜙𝜙 𝑠𝑠𝜓𝜓
𝑐𝑐𝜃𝜃𝑠𝑠𝜓𝜓 + 𝑐𝑐𝜓𝜓𝑠𝑠𝜙𝜙𝑠𝑠𝜃𝜃 𝑐𝑐𝜙𝜙𝑐𝑐𝜓𝜓 𝑠𝑠𝜓𝜓𝑠𝑠𝜃𝜃 − 𝑐𝑐𝜓𝜓𝑐𝑐𝜃𝜃𝑠𝑠𝜙𝜙

−𝑐𝑐𝜙𝜙𝑠𝑠𝜃𝜃 𝑠𝑠𝜙𝜙 𝑐𝑐𝜙𝜙𝑐𝑐𝜃𝜃
� (2) 

where, 𝑐𝑐(∗) and 𝑠𝑠(∗) denote cos(∗) and sin(∗), respectively and 𝜙𝜙,𝜃𝜃, and 𝜓𝜓 are the roll, pitch, 
and yaw angles, respectively. According to our rotation convention, the angular velocity 
components of the quadrotor in the body frame (𝑝𝑝, 𝑞𝑞, 𝑟𝑟)  are related to the derivatives of the 
roll, pitch, and yaw angles according to, 

�

𝑝𝑝

𝑞𝑞

𝑟𝑟

� = �

𝑐𝑐𝜃𝜃 0 −𝑐𝑐𝜙𝜙𝑠𝑠𝜃𝜃
0 1 𝑠𝑠𝜙𝜙
𝑠𝑠𝜃𝜃 0 𝑐𝑐𝜙𝜙𝑐𝑐𝜃𝜃

� �

𝜙̇𝜙

𝜃̇𝜃

𝜓̇𝜓

� (3) 

The vector equation governing the quadrotor angular acceleration is obtained using the 
Euler approach as follows, 
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𝐼𝐼 𝜔̇𝜔 = 𝑈𝑈2 − 𝜔𝜔 × 𝐼𝐼 𝜔𝜔 (4) 

where 𝜔𝜔 = [𝑝𝑝 𝑞𝑞 𝑟𝑟]𝑇𝑇, 𝐼𝐼 is a matrix representing the robot’s moment of inertia, and 𝑈𝑈2 is the 
torque vector which is defined based on the robot configuration as follows, 

𝑈𝑈2 = �

ℓ(c ∗ (F1 − F3) + F2 − F4)

ℓ(c ∗ (F2 − F4) + F3 − F1)

τ1 − τ2 + τ3 − τ4

�, (5) 

Where c equals zero and one, respectively, for quadrotor with Plus and Cross 
configurations. ℓ is the moment arm representing the distance from the rotor axis of rotation 
to the center of the aerial robot. F𝑖𝑖 and τ𝑖𝑖 are the thrust force and torque, respectively, 
generated by rotor𝑖𝑖 , 𝑖𝑖 ∊ {1,2,3,4}. Each robot has an angular velocity, Ω𝑖𝑖 produces thrust 
force, F𝑖𝑖 and torque, τ𝑖𝑖 according to: 

F𝑖𝑖 = k𝑓𝑓 Ω𝑖𝑖2    ,      τ𝑖𝑖 = k𝑚𝑚 Ω𝑖𝑖2 (6) 

where, Ω𝑖𝑖 is the angular velocity of rotor𝑖𝑖. The desired control action 𝑢𝑢des which includes the 
net force of all rotors and the three torque components namely, 𝑢𝑢1 and 𝑈𝑈2 is related to the 
desired rotor speeds vector according to the robot configuration. 

𝑢𝑢des =

⎣
⎢
⎢
⎢
⎡

k𝑓𝑓 k𝑓𝑓 k𝑓𝑓 k𝑓𝑓
𝑐𝑐 k𝑓𝑓ℓ k𝑓𝑓ℓ −c k𝑓𝑓ℓ −k𝑓𝑓ℓ
−k𝑓𝑓ℓ 𝑐𝑐 k𝑓𝑓ℓ k𝑓𝑓ℓ −c k𝑓𝑓ℓ

k𝑚𝑚 −k𝑚𝑚 k𝑚𝑚 −k𝑚𝑚 ⎦
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎡Ω  𝑑𝑑𝑑𝑑𝑑𝑑,1

2

Ω  𝑑𝑑𝑑𝑑𝑑𝑑,2
2

Ω  𝑑𝑑𝑑𝑑𝑑𝑑,3
2

Ω  𝑑𝑑𝑑𝑑𝑑𝑑,4
2 ⎦

⎥
⎥
⎥
⎤

 (7) 

where, k𝑓𝑓 , k𝑚𝑚 are the thrust and drag coefficients, respectively. According to the nonlinear 
quadrotor model, the robot system has twelve states and four inputs. The system state includes 
the position and linear velocity of the quadrotor c.g., in addition to the components of 
orientation and angular velocities. The robot orientation is locally parametrized by Euler 
angles. 

𝑋𝑋 = [𝑥𝑥 ,𝑦𝑦 , 𝑧𝑧 , 𝑥̇𝑥 , 𝑦̇𝑦 , 𝑧̇𝑧 ,𝜙𝜙 ,𝜃𝜃 ,𝜓𝜓 , 𝑝𝑝 , 𝑞𝑞, 𝑟𝑟]𝑇𝑇 ,       Inputs  = [Ω1 , Ω2 , Ω3 , Ω4]𝑇𝑇 
For the quadrotor, in order to follow the desired trajectory, the four inputs to the controller 

are the 𝑥𝑥 𝑑𝑑𝑑𝑑𝑑𝑑,𝑦𝑦𝑑𝑑𝑑𝑑𝑑𝑑 , 𝑧𝑧𝑑𝑑𝑑𝑑𝑑𝑑, and the heading angle 𝜓𝜓𝑑𝑑𝑑𝑑𝑑𝑑. In the robot mathematical model, we 
neglected the effect of motor dynamics and the forces with a minor influence such as the 
aerodynamics “induced drag-force”. Because the motor dynamics are relatively fast compared 
to that of the quadrotor, it's usually assumed to be instantaneously achieved. Since the induced 
drag is very small, its effect can be included in the disturbance term [25]. However, in this 
paper, the effect of motor dynamics and neglected forces will be taken into account during the 
controller design procedure. 

4. SYNTHESIS AND ANALYSIS OF THE ROBUST HYBRID 
CONTROLLER 

This section concentrates on the robust control strategy, namely, a hybrid SMC, GTC, and 
NFC to exploit its capability of asymptotically achieve the demanded performance regardless 
of system uncertainties or external disturbance, given that, the upper and lower bounds or at 
least the upper bound of the uncertain disturbances are known. The main preliminaries and 
notions about the conventional SMC are provided in the Appendix. 
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To start developing the proposed control schemes, at first, some modifications will be 
conducted to the classical SMC. More precisely, two additional terms will be added to Eq. 
(33) and the signum function will be replaced by a time-variant saturation function as follows; 

𝛿𝛿(𝑡𝑡) = − 𝜂𝜂 𝑆𝑆 𝑠𝑠𝑠𝑠𝑠𝑠 (𝑆𝑆/𝜑𝜑) − 𝐾𝐾 𝑆𝑆2 + 𝜑𝜑 ̇ 𝑆𝑆 𝑠𝑠𝑠𝑠𝑠𝑠 (𝑆𝑆/𝜑𝜑) (8) 

Such that, 

𝑆̇𝑆 ≤ (𝜑𝜑 ̇ −  𝜂𝜂)  𝑠𝑠𝑠𝑠𝑠𝑠 (𝑆𝑆/𝜑𝜑) − 𝐾𝐾 𝑆𝑆   (9) 

The time-variant saturation function, 𝑠𝑠𝑠𝑠𝑠𝑠�𝑆𝑆/𝜑𝜑(𝑡𝑡)� is determined according to, 

𝑠𝑠𝑠𝑠𝑠𝑠(𝑆𝑆/𝜑𝜑) = �  
1               𝑆𝑆 > 𝜑𝜑

𝑆𝑆/𝜑𝜑      −𝜑𝜑 ≤ 𝑆𝑆 ≤ 𝜑𝜑
−1                 𝑆𝑆 < −𝜑𝜑

 (10) 

 
Fig. 3 The Saturation function schematic diagram 

The parameter 𝐾𝐾 > 0, comes from ERL to improve the tracking performance [26], [27], 
while the saturation function 𝑠𝑠𝑠𝑠𝑠𝑠 (∗) is used instead of signum function 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 (∗) to resolve 
the chattering phenomenon since it provides a smooth transition between (1) and (-1). 
Furthermore, to gain the advantage of signum function in that the steady-state error almost 
equal to zero, the transition interval of the saturation function 𝑠𝑠𝑠𝑠𝑠𝑠 (𝑆𝑆/𝜑𝜑) is chosen to be a 
controllable parameter represented by 𝜑𝜑 such that, 𝜑𝜑 smoothly tends to zero hence, the 
saturation function switches to signum function. Since we have relaxed the sliding mode 
condition by using time-variant saturation function, then the time-varying parameter, 𝜑𝜑 ̇  
should be added to ensure that when S enters the transition interval, [−𝜑𝜑,𝜑𝜑] it will always 
remain there, which mean if 𝜑𝜑 shrinks then S should shrink at the same rate or faster i.e.  𝜑𝜑 ̇ ≥
 𝑆𝑆2 [28]. The value of 𝜑𝜑 depends on the system dynamics and the tunable parameters (𝜂𝜂,𝐶𝐶,𝐾𝐾) 
therefore, we arrive at better steady state error than that of 𝑠𝑠𝑠𝑠𝑠𝑠 (𝑆𝑆). In another words, 𝜑𝜑 plays 
a role in the trade-off between steady state error and chattering effect. 

4.1 Robust Hybrid Control Design 

In this section, the modified SMC with ERL will be integrated with GTC and NFC. In order 
to consider the uncertain disturbances, uncertainty terms will be added to the quadrotor 
equations of motion derived in Eq. (1) and Eq. (4), to arrive at, 

r̈ =  − 𝑔𝑔 𝑧̂𝑧𝑒𝑒 + 1/𝑚𝑚  𝑢𝑢1 𝑅𝑅 𝑧̂𝑧𝑏𝑏 + 𝛥𝛥1(𝑡𝑡)  (11) 

𝜔̇𝜔 = 𝐼𝐼−1 (−𝜔𝜔 × 𝐼𝐼 𝜔𝜔) + 𝐼𝐼−1 𝑈𝑈2 + 𝛥𝛥2(𝑡𝑡) (12) 

where, 𝛥𝛥1(𝑡𝑡) and 𝛥𝛥2(𝑡𝑡) are vectors that represent the virtual uncertainties and disturbances in 
the robot system such that, 𝛥𝛥1(𝑡𝑡) includes the uncertainties in 𝑥𝑥,𝑦𝑦, and 𝑧𝑧, while the attitude 
uncertainties are included in 𝛥𝛥2(𝑡𝑡) where, 

∆1𝐿𝐿 ≤ 𝛥𝛥1(𝑡𝑡) ≤ ∆1𝑈𝑈  ,         ∆2𝐿𝐿 ≤ 𝛥𝛥2(𝑡𝑡) ≤ ∆2𝑈𝑈 
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4.1.1 Position Control Design 

According to the problem formulation and the quadrotor’s governing equations, Eq. (11) and 
Eq. (12),  

𝑓𝑓3×1 =  − 𝑔𝑔 𝑧̂𝑧𝑒𝑒  ,   𝑔𝑔3×1 =
1
𝑚𝑚
𝑅𝑅 𝑧̂𝑧𝑏𝑏 , 𝑒𝑒3×1(𝑡𝑡) =  𝑟𝑟𝑑𝑑𝑑𝑑𝑑𝑑(𝑡𝑡) − 𝑟𝑟(𝑡𝑡) 

Let, ℋ3×1 = 𝑓𝑓 + 𝛥𝛥1(𝑡𝑡). The sliding surface vector-equation is defined as, 

𝑆𝑆 = 𝑒̇𝑒 + 𝐶𝐶𝑝𝑝 𝑒𝑒,  (13) 

By taking the derivative of the sliding surface in Eq. (13), we arrive at, 

𝑆̇𝑆 = 𝑟̈𝑟𝑑𝑑𝑑𝑑𝑑𝑑 − 𝑟̈𝑟 +  𝐶𝐶𝑝𝑝 𝑒̇𝑒 =  𝑟̈𝑟𝑑𝑑𝑑𝑑𝑑𝑑 −  ℋ− 𝑔𝑔 𝑢𝑢1 +  𝐶𝐶𝑝𝑝 𝑒̇𝑒 (14) 

We defined 𝑢𝑢1 as a summation of two terms 𝑢𝑢�1 and 𝑢𝑢1_uncer multiplied by 𝑔𝑔−1 such that, 
𝑢𝑢�1 =  𝑟̈𝑟𝑑𝑑𝑑𝑑𝑑𝑑 +  𝐶𝐶𝑝𝑝 𝑒̇𝑒 −  ℋ� , (15) 

𝑢𝑢1𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 =    (ℱ + 𝜂𝜂𝑃𝑃) 𝑠𝑠𝑠𝑠𝑠𝑠(𝑆𝑆/𝜑𝜑𝑃𝑃) + 𝐾𝐾𝑃𝑃 𝑆𝑆 , (16) 
where, ℋ�  is the best possible estimation of ℋ. The lower limit of the difference between ℋ 
and its estimation is represented by ℱ such that, ℱ ≥ �ℋ −ℋ��. We choose ℋ�  to be the 
average of ℋ, 

ℋ� = − 𝑔𝑔 𝑧̂𝑧𝑒𝑒 +  0.5 (∆1𝑈𝑈 + ∆1𝐿𝐿)    , ℱ = 0.5  (∆1𝑈𝑈 − ∆1𝐿𝐿) (17) 
Hence, the effect of 𝜑𝜑𝑃𝑃 will be considered in 𝑢𝑢1uncer so that, the sliding condition is 

always met [28]. The values of 𝑢𝑢1uncer and 𝜑𝜑𝑝𝑝 are determined according to, 

𝑢𝑢1uncer =   (ℱ + 𝜂𝜂𝑃𝑃 − 𝜑̇𝜑𝑃𝑃) 𝑠𝑠𝑠𝑠𝑠𝑠�𝑆𝑆/𝜑𝜑𝑝𝑝� + 𝐾𝐾𝑃𝑃 𝑆𝑆 ,  (18) 

𝜑̇𝜑𝑃𝑃 = (𝐾𝐾𝑃𝑃 − 𝐶𝐶𝑃𝑃)𝜑𝜑𝑃𝑃 + (ℱ + 𝜂𝜂𝑃𝑃)  (19) 
After putting the two terms of 𝑢𝑢1 together we arrive at, 

𝑅𝑅 𝑧̂𝑧𝑏𝑏  𝑢𝑢1 = 𝑚𝑚�𝑟̈𝑟𝑑𝑑𝑑𝑑𝑑𝑑 + 𝐶𝐶𝑝𝑝 𝑒̇𝑒 +  𝑔𝑔 𝑧̂𝑧𝑒𝑒 − 𝛾𝛾2𝑃𝑃 +  (𝜂𝜂𝑃𝑃 − 𝜑̇𝜑𝑃𝑃 +  𝛾𝛾1𝑃𝑃 ) 𝑠𝑠𝑠𝑠𝑠𝑠(𝑆𝑆/𝜑𝜑𝑃𝑃) + 𝐾𝐾𝑃𝑃 𝑆𝑆� (20) 

where, 𝛾𝛾1𝑃𝑃 = 0.5 (∆1𝑈𝑈 − ∆1𝐿𝐿),  𝛾𝛾2𝑃𝑃 = 0.5 (∆1𝑈𝑈 + ∆1𝐿𝐿). 
Obviously, 𝑢𝑢1 which represents the resultant thrust of the four rotors, is a scalar quantity 

applied only along the actual body-frame z-axis i.e. along 𝑧̂𝑧𝑏𝑏 direction. From the inertial-axes 
perspective, 𝑢𝑢1 is along the vector, 

𝑏𝑏�3𝑤𝑤 = 𝑅𝑅 𝑧̂𝑧𝑏𝑏  (21) 

Let the 3D vector of the r.h.s. of Eq. (20) be equal to ℎ𝑣𝑣𝑣𝑣𝑣𝑣, 

ℎ𝑣𝑣𝑣𝑣𝑣𝑣 = 𝑚𝑚�𝑟̈𝑟𝑑𝑑𝑑𝑑𝑑𝑑 +  𝐶𝐶𝑝𝑝 𝑒̇𝑒 +  𝑔𝑔 𝑧̂𝑧𝑒𝑒 +   𝐾𝐾𝑃𝑃 𝑆𝑆 −  𝛾𝛾2𝑃𝑃 + (𝜂𝜂𝑃𝑃 − 𝜑̇𝜑𝑃𝑃 +  𝛾𝛾1𝑃𝑃) 𝑠𝑠𝑠𝑠𝑠𝑠(𝑆𝑆/𝜑𝜑𝑃𝑃)   � (22) 

Since the resultant thrust, 𝑢𝑢1 is acting on the quadrotor along 𝑏𝑏�3𝑤𝑤 therefore, to determine 𝑢𝑢1 
we will project ℎ𝑣𝑣𝑣𝑣𝑣𝑣 onto 𝑏𝑏�3𝑤𝑤 [13]. Therefore, the proposed robust hybrid position-control law 
is determined according to,  

𝑢𝑢1 = 𝑚𝑚( 𝑟̈𝑟𝑑𝑑𝑑𝑑𝑑𝑑 + 𝐶𝐶𝑝𝑝 𝑒̇𝑒 +  𝑔𝑔 𝑧̂𝑧𝑒𝑒 +   𝐾𝐾𝑃𝑃 𝑆𝑆 − 𝛾𝛾2𝑃𝑃 + 𝑠𝑠𝑠𝑠𝑠𝑠(𝑆𝑆/𝜑𝜑𝑃𝑃) (𝜂𝜂𝑃𝑃 − 𝜑̇𝜑𝑃𝑃 +  𝛾𝛾1𝑃𝑃) ).𝑅𝑅 𝑧̂𝑧𝑏𝑏 (23) 

4.1.2 Attitude Control Design 

By following the same procedure conducted in the position control design with,  
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𝑓𝑓3×1 =  𝐼𝐼−1 (−𝜔𝜔 × 𝐼𝐼 𝜔𝜔)  ,      𝑔𝑔3×1 =  𝐼𝐼−1,       𝑒𝑒3×1(𝑡𝑡) = 𝑒𝑒𝑅𝑅(𝑅𝑅𝑑𝑑𝑑𝑑𝑑𝑑 ,𝑅𝑅), 𝑒̇𝑒3×1(𝑡𝑡) = 𝑒𝑒𝜔𝜔(𝜔𝜔𝑑𝑑𝑑𝑑𝑑𝑑 ,𝜔𝜔), 
𝑒̈𝑒3×1(𝑡𝑡) =  𝜔̇𝜔(𝑡𝑡) − 𝜔̇𝜔𝑑𝑑𝑑𝑑𝑑𝑑(𝑡𝑡) 

then, the proposed vector control law of the attitude control, 𝑈𝑈2 ∈ ℝ3 is determined as follows, 

𝑈𝑈2 = 𝜔𝜔 × 𝐼𝐼 𝜔𝜔 + 𝐼𝐼 �𝜔̇𝜔𝑑𝑑𝑑𝑑𝑑𝑑 +  𝐶𝐶𝑅𝑅 𝑒̇𝑒 + 𝐾𝐾𝑅𝑅 𝑆𝑆 −  𝛾𝛾2𝑅𝑅 + (𝜂𝜂𝑅𝑅 − 𝜑̇𝜑𝑅𝑅 + 𝛾𝛾1𝑅𝑅) 𝑠𝑠𝑠𝑠𝑠𝑠(𝑆𝑆/𝜑𝜑𝑅𝑅)  � (24) 

where,  𝛾𝛾1𝑅𝑅 = 0.5 (∆2𝑈𝑈 − ∆2𝐿𝐿), 𝛾𝛾2𝑅𝑅 = 0.5 (∆2𝑈𝑈 + ∆2𝐿𝐿). At this point, an essential aspect to 
be considered is the way in which the rotation error, 𝑒𝑒𝑅𝑅(𝑡𝑡) is calculated. One method to do so 
is by first find a way to determine what’s so-called the desired rotation matrix, 𝑅𝑅𝑑𝑑𝑑𝑑𝑑𝑑, then find 
a way to extract a metric representation for the error between the actual and desired rotation 
matrices. In this context, as the direction of ℎ𝑣𝑣𝑣𝑣𝑣𝑣 is, ℎ�𝑣𝑣𝑣𝑣𝑣𝑣 = ℎ𝑣𝑣𝑣𝑣𝑣𝑣/‖ℎ𝑣𝑣𝑣𝑣𝑣𝑣‖, and generally, ℎ𝑣𝑣𝑣𝑣𝑣𝑣 
is not perfectly aligned with 𝑏𝑏�3𝑤𝑤, and we want the direction of ℎ𝑣𝑣𝑣𝑣𝑣𝑣 to be always aligned with 
𝑏𝑏�3𝑤𝑤. In another meaning, to ensure that 𝑏𝑏�3 is aligned with ℎ�𝑣𝑣𝑣𝑣𝑣𝑣, then we rotate the quadrotor 
by 𝑅𝑅𝑑𝑑𝑑𝑑𝑑𝑑 so that 𝑧̂𝑧b points to the direction of ℎ�𝑣𝑣𝑣𝑣𝑣𝑣, 

ℎ�𝑣𝑣𝑣𝑣𝑣𝑣 = 𝑅𝑅𝑑𝑑𝑑𝑑𝑑𝑑 𝑧̂𝑧b (25) 

By solving the vector Eq. (25), given that the heading angle 𝜓𝜓𝑑𝑑𝑑𝑑𝑑𝑑 is known, we can determine 
𝜑𝜑𝑑𝑑𝑑𝑑𝑑𝑑 & 𝜃𝜃𝑑𝑑𝑑𝑑𝑑𝑑 and thus determine 𝑅𝑅𝑑𝑑𝑑𝑑𝑑𝑑. The next step is to determine, 𝑒𝑒𝑅𝑅(𝑡𝑡). Unfortunately, we 
can’t simply subtract 𝑅𝑅 from 𝑅𝑅𝑑𝑑𝑑𝑑𝑑𝑑 to get 𝑒𝑒𝑅𝑅, since the result is not an orthogonal matrix and 
thus not a rotation matrix. However, we can think of the rotation error as if we were looking 
for the magnitude of rotation required to go from the current to the desired orientation, namely, 
transform 𝑅𝑅 into 𝑅𝑅𝑑𝑑𝑑𝑑𝑑𝑑. Thus, the required rotation is, 

∆𝑅𝑅 = 𝑅𝑅𝑇𝑇𝑅𝑅𝑑𝑑𝑑𝑑𝑑𝑑, (26) 
So that, if you multiply 𝑅𝑅 by ∆𝑅𝑅 you will get 𝑅𝑅𝑑𝑑𝑑𝑑𝑑𝑑. By using Rodrigues formula to transform 
the rotation matrix obtained in Eq. (26) into a vector representing the axis of rotation, we arrive 
at a vector that will be considered as a metric for 𝑒𝑒𝑅𝑅(𝑡𝑡). It is worth mentioning that, the 
proposed control law required full state measurement or estimation, and a smooth 
differentiable desired trajectory, at least up to the 2nd derivative. The derived control scheme 
obtained in Eq. (23) and Eq. (24), illustrated that the chattering dilemma apparently depends 
on (𝜂𝜂 − 𝜑̇𝜑 +  𝛾𝛾1(∆) ), and according to Eq. (19), 𝜑̇𝜑 is function of (𝐾𝐾𝑃𝑃 ,𝐶𝐶𝑃𝑃 ,∆, 𝜂𝜂), which mean 
that, apart from the controller variables ( 𝜂𝜂 , 𝐶𝐶 , 𝐾𝐾), the percentage of parameter uncertainties 
in addition to the sources of disturbances have a great impact on the chattering phenomenon. 

4.2 Convergence and Stability Analysis 

To verify the stability and convergence of our proposed control algorithms, Lyapunov’s 
stability approach will be adopted. The procedure is identical either for the position or 
orientation controllers, here the position control law will be considered. 

If we select Lyapunov function as, 𝑉𝑉 = 1/2 𝑆𝑆2, then according to Lyapunov, to guarantee 
asymptotical stability it’s required that 𝑉̇𝑉 < 0, or 𝑆𝑆 𝑆̇𝑆 < 0. For position control low, 

𝑉̇𝑉 = 𝑆𝑆 �𝑟̈𝑟𝑑𝑑𝑑𝑑𝑑𝑑 − 𝑟̈𝑟 + 𝐶𝐶𝑝𝑝 𝑒̇𝑒� (27) 

By substituting about 𝑟̈𝑟 from (11) and then substitute about (𝑅𝑅 𝑧̂𝑧𝑏𝑏  𝑢𝑢1) from (20), we arrive at, 
𝑉̇𝑉 = 𝑆𝑆 [(𝜑̇𝜑𝑃𝑃 − 𝜂𝜂𝑃𝑃 ) 𝑠𝑠𝑠𝑠𝑠𝑠(𝑆𝑆/𝜑𝜑𝑃𝑃) − 𝐾𝐾𝑃𝑃 𝑆𝑆 + 𝐷𝐷 − 𝛥𝛥1(𝑡𝑡)] (28) 

where, 𝐷𝐷 = 𝛾𝛾2𝑃𝑃 − 𝛾𝛾1𝑃𝑃 𝑠𝑠𝑠𝑠𝑠𝑠(𝑆𝑆/𝜑𝜑𝑃𝑃). The first two terms of Eq. (28) corresponding to Eq. (9), 
and since 𝐷𝐷 − 𝛥𝛥1(𝑡𝑡) is negative for 𝑆𝑆 > 𝜑𝜑𝑃𝑃 and positive for 𝑆𝑆 < −𝜑𝜑𝑃𝑃 hence, Eq. (28) 
satisfying the asymptotical stability; starting from any initial condition, 𝑆𝑆 will enter the 
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transition set and stay there. Inside the interval and based on Eq. (19) 𝑆̇𝑆 will follow a first order 
dynamics and exponentially reaching to zero according to, 

𝑆̇𝑆 = −𝐶𝐶𝑃𝑃 𝑆𝑆 + 𝛾𝛾2𝑃𝑃 − 𝛥𝛥1(𝑡𝑡) (29) 

4.3 Tuning the Controllable Parameters 
Several aspects should be considered during the controllable parameters tuning process of the 
proposed control approaches. For instance, the actuators' physical limits, unmodeled 
dynamics, and key performance indicators (KPIs) such as steady state-error, percent 
overshoot, and time response indicators. All the tuning parameters, 𝐶𝐶, 𝜂𝜂, and 𝐾𝐾 for the 
position and attitude control are positive scalar values. The parameter 𝜑𝜑 is determined 
according to Eq. (19) with an initial value 𝜑𝜑0 ≥ 𝑆𝑆0 to ensure that 𝑆𝑆 is within the interval, 
[−𝜑𝜑,𝜑𝜑] where Eq. (19) is applicable [28]. The parameter 𝜂𝜂 affects the reaching time to the 
sliding surface and thus the chattering phenomenon. Choosing 𝜂𝜂 is a trade-off as if 𝜂𝜂 increases, 
the reaching time decreases but the chattering increases and therefore the tracking error and 
vice versa. For actuators that can endure the chattering effect for example those using the 
pulse-width modulation (PWM), it is desirable to increase 𝜂𝜂 so that faster reaching to the 
sliding surface is achieved from any initial value of 𝑆𝑆. Selecting 𝐶𝐶 value is more obvious, the 
greater the value of 𝐶𝐶, the better the tracking error and the faster the performance, however, 
the control action is proportional to 𝐶𝐶, then the upper limit of 𝐶𝐶 is restricted to the saturation 
point of the actuator. Furthermore, the unmodeled dynamics such as motors dynamics should 
be considered such that 𝐶𝐶 has to be dominant, usually slower by a factor (3 to 5) [28]. Likewise, 
the parameter 𝐾𝐾 has the same influence as 𝐶𝐶 moreover, it introduces a term in the control law 
that is proportional to the error and its derivatives, which result in faster forcing the state to 
reach the sliding manifold when 𝑆𝑆 is large [27]. Our hybrid control scheme is a synthesis of 
NFC, GTC, and SMC which includes ERL and saturation function 𝑠𝑠𝑠𝑠𝑠𝑠(𝑆𝑆/𝜑𝜑), where 𝜑𝜑(𝑡𝑡) is 
a controllable time-varying parameter. So that, asymptotic stability is achieved, improved 
tracking performance is reached, and the chattering effect is almost eliminated. 

5. QUALITATIVE COMPARATIVE ANALYSIS AND SIMULATION 
RESULTS 

The derived robust hybrid control algorithms presented in the previous section are simulated 
using MATLAB to observe and evaluate the performance of the proposed robust controller. 
Quadrotor robot nominal parameters, as well as the initial conditions, are presented in Table 
1. The simulation is performed under two different situations, (𝑖𝑖) without disturbance and/or 
parameter uncertainties, and (𝑖𝑖𝑖𝑖) with disturbance and/or parameter uncertainties. The 
comparative analysis study is carried out for four major control schemes: 

1. The PID controller with a quadrotor nonlinear model. 
2. The nonlinear GTC proposed in [13]. 
3. The conventional SMC with ERL. 
4. The robust hybrid control law proposed in this paper. 

Table 1. Quadrotor Parameters Specification 

Parameter Description Value/Unit 
m Quadrotor mass 1.79 kg 
𝓵𝓵 Motor to c.g. distance 0.18 m. 
𝑰𝑰 Moment of inertia matrix 1.335 ×10−2 [1, 1, 1.85] kg.m2 
g Gravity acceleration 9.81 m/sec2 
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𝐤𝐤𝒇𝒇 Thrust coefficient 8.82  ×10−6 N/(rad/sec)2 
𝐤𝐤𝒎𝒎 Drag coefficient 1.09  ×10−7 N.m/(rad/sec)2 

𝒆𝒆𝟎𝟎(𝒙𝒙,𝒚𝒚, 𝒛𝒛) Initial position error [2, -2, 0] m. 
𝝓𝝓𝟎𝟎 ,𝜽𝜽𝟎𝟎 ,𝝍𝝍𝟎𝟎 Initial Euler angles [0, 0, 0]. rad 

𝓐𝓐 Disturbance amplitudes [3,3,3]. 
𝔀𝔀 Disturbance frequency 5 rad/sec 

For the purpose of the simulation study, the vectors that represent the impact of uncertainty 
and disturbance in Eq. (11) and Eq. (12) are assumed to be time-varying harmonic signals as 
follows, 

Δ1,2(t) = 𝒜𝒜 sin(𝓌𝓌 t), (30) 

where, 𝒜𝒜 ∈ ℝ3 is a vector representing the disturbance amplitudes, 𝓌𝓌 is the disturbance 
frequency. The desired trajectory of quadrotor robot has been chosen to be a trajectory that 
passes sequentially through predefined nine waypoints and at the same time achieving the 
specified yaw angles at each waypoint. Furthermore, the waypoints’ timing can also be 
prespecified or optimized based on the segments lengths and turning angles. The path 
connecting the waypoints is designed such that, the second derivative of acceleration “snap” 
is minimum along the entire segments. The desired mission profile is shown in Fig. 4. The 
waypoints coordinates and instantaneous heading angles are described as follows, 

𝑟𝑟1 = [−5, 0, 0 ]𝑚𝑚 , 𝑟𝑟2 = [10,−5, 15]𝑚𝑚, 𝑟𝑟3 = [25, 15 , 20]𝑚𝑚 , 𝑟𝑟4 = [15 , 20, 30]𝑚𝑚 , 
𝑟𝑟5 = [5, 5 , 30]𝑚𝑚 , 𝑟𝑟6 = [15,−5, 30]𝑚𝑚 , 𝑟𝑟7 = [25, 5 , 30]𝑚𝑚 ,      𝑟𝑟8 = 𝑟𝑟4 ,     𝑟𝑟9 = 𝑟𝑟1 , 

 𝜓𝜓1_𝑡𝑡𝑡𝑡_9 = [00 , 300, 600 , 900 , 900 , 900 , 900 , 900 , 1800]. 

 
Fig. 4 The 3D Trajectory of the Desired Mission Profile 

The mission configuration is to take off from 𝑟𝑟1. Then to climb to 𝑟𝑟4 through 𝑟𝑟2 and 𝑟𝑟3. 
After that, to conduct a circular-like maneuver through 𝑟𝑟5, 𝑟𝑟6, 𝑟𝑟7 and 𝑟𝑟8. Finally, to return to 
land at the same take-off point. The mission completion time is predefined to be 25 sec. The 
controllable parameters of each controller are tuned using our developed search algorithm 
based on the genetic algorithm such that, the integral time of absolute error (ITAE) is minimum 
and the required rotor speeds are within the design limits. 

5.1 Simulation without Parameters Uncertainty and Disturbance Sources 

The simulation is performed for the mentioned four control schemes to evaluate the efficiency 
of each control algorithm in steering quadrotor robots to follow a certain desired trajectory 
based on the nonlinear model illustrated in Eq. (1) and Eq. (4). The desired mission has been 
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chosen such that, the initial position error is relatively large, |𝑒𝑒0| = 2.83 𝑚𝑚, and the trajectory 
is highly manoeuvrable with strict boundary and intermediate conditions in order to arrive at 
a near-real assessment of the different control approaches. The 3D desired trajectory and actual 
dynamical trajectories of each controller are shown in Fig. 5. 

 
Fig. 5  3D-Trajectory Tracking Performance of the Four Control Schemes, Case (i) 

The time history of the robot six state variables, [𝑥𝑥 ,𝑦𝑦 , 𝑧𝑧,𝜙𝜙 ,𝜃𝜃 ,𝜓𝜓] are shown in Fig. 6 and 
Fig. 7 respectively. The three components of linear velocities, [ 𝑥̇𝑥 , 𝑦̇𝑦 , 𝑧̇𝑧 ] as well as the angular 
velocities, [ 𝑝𝑝 , 𝑞𝑞, 𝑟𝑟] are demonstrated in Fig. 8 and Fig. 9, respectively. To clearly illustrate 
the main differences in the performance indicators of each control approach, the qualitative 
analysis also demonstrates the trajectory error history and the necessary rotor speeds, Ω  𝑖𝑖

𝑑𝑑𝑑𝑑𝑑𝑑 
that obtained using the transformation matrix, Eq. (7) as shown in Fig. 10 and Fig. 11, 
respectively. It can be observed from Fig. 10 that, using a linear PID controller with a nonlinear 
model of quadrotor may lead to a relatively high tracking error, especially at the segments 
required high turning angles. 

 
Fig. 6 Comparison of Positions Variation, Case (i) 

 
Fig. 7 Comparison of Euler-Angles Variation, Case (i) 
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Although the conventional SMC with ERL produces good tracking performance, the 
chattering effect clearly appears at the angular velocities and rotor speeds as shown in Fig. 9 
and Fig. 11, respectively. The nonlinear GTC provides satisfactory tracking error and the norm 
of the error reaches zero after 12.5 seconds. However, our robust hybrid control law achieved 
better tracking error, and according to the simulation settings, the error magnitude 
exponentially converges to zero after about 6.5 seconds. 

 
Fig. 8 Comparison of Velocities Variation, Case (i) 

 
Fig. 9 Comparison of Angular-Velocities Variation, Case (i) 

 
Fig. 10 Comparison of Positions Error Variation, Case (i) 

5.2 Simulations with Uncertain Disturbances for Position and Orientation States 
In this subsection, the nonlinear uncertain dynamics model illustrated in Eq. (11) and Eq. (12) 
are adopted. The bounds of uncertain disturbances selected to be relatively large, |𝛥𝛥(𝑡𝑡)| ≤
3m, and affecting all robot states. The 3D trajectories of the four proposed control laws and 
the mission desired trajectory are shown in Fig. 12. 
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Fig. 11 Comparison of Desired Rotor-Speeds Variation, Case (i) 

 
Fig. 12  3D-Trajectory Tracking Performance of the Four Control Schemes, Case (ii)  

 
Fig. 13 Comparison of positions Variation, Case (ii) 

 
Fig. 14 Comparison of Euler-Angles Variation, Case (ii) 

Obviously, the terms representing the uncertainties and disturbances have a significant 
impact on the overall performance to varying degrees. In Fig. 13 and Fig. 14, the quadrotor 
position and attitude states are demonstrated, respectively. The robot linear and angular 
velocities are shown in Fig. 15 and Fig. 16, respectively. 
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Fig. 15 Comparison of velocities Variation, Case (ii) 

Results observations illustrated in Fig. 17 show that the PID controller is no longer a good 
choice to be applied to such settings as it produces a relatively large tracking error, more than 
1.5 meters about the desired trajectory. The conventional SMC has better tracking error by 
exploiting the features of ERL, however, the required rotor speeds fall outside the design 
range, and the switching signum function leads to relatively high oscillation in the attitude 
control as shown in Fig. 14. On the other hand, the simulation results demonstrated that, even 
with the considerable impact of the uncertainties and disturbances, our proposed hybrid control 
laws also provide better tracking performance with a steady-state error of less than 6.6% of 
𝒜𝒜, and robustly achieving asymptotic stability within the design range of rotor speeds. 

 
Fig. 16 Comparison of Angular-Velocities Variation, Case (ii) 

The simulation results also reflected the utility aspects underlying the control concepts 
included in the proposed hybrid control law. Whereas, NFC with GTC improved the attitude 
control performance and ERL enhanced the tracking error. Furthermore, the SMC that uses a 
saturation function with time-varying parameter 𝜑𝜑(𝑡𝑡), dealt with the parameter uncertainties, 
achieved robust stability, treated the chattering phenomenon, provided optimal time control, 
and tackled the sensitivity dilemma of NFC. Due to page limit constrain, supplementary 
material of this work is available in (1), to simulate more animated scenarios and present more 
features of our proposed hybrid control approaches. 

 
(1) https://www.youtube.com/watch?v=Id04qiFTu-c 

https://www.youtube.com/watch?v=Id04qiFTu-c
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Fig. 17 Comparison of positions Error Variation, Case (ii) 

 
Fig. 18 Comparison of Desired rotor-speeds variation, Case (ii) 

6. CONCLUSIONS 
This research paper proposed a novel robust hybrid SMC with GTC and NFC, to efficiently 
address the trajectory tracking problems of aerial robots. The compound control schemes have 
been derived and developed based on the nonlinear dynamic model of quadrotors robot, taking 
into account the model uncertainties as well as the considerable disturbances that may affect 
the system performance. Furthermore, the proposed control algorithms exploited the 
advantages of GTC, ERL, NFC, and SMC with an adjustable saturation function, to overcome 
the chattering uncertainty effect and arrived at enhanced trajectory tracking performance 
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regardless of the external disturbance sources. The QCA along with MATLAB 3D simulation 
results demonstrated the robustness, asymptotic stability, and applicability of the proposed 
controllers in real agile autonomous flying robots to accurately achieve complex trajectory-
tracking missions. 

7. APPENDIX 
A.1 Preliminaries and Notions of SMC 

The mathematical dynamic model of the aerial robot may experience model inaccuracies in 
either of the following two forms: (i) structural uncertainties due to parameters imprecision or 
(ii) unmodeled dynamics resulting from simplifying the model dynamics such as ignoring the 
non-dominant dynamics. Furthermore, in reality, the system dynamics are almost subjected to 
external disturbances. The modeling uncertainty dilemma usually dealt with by adopting one 
of the popular two approaches, (i) employing a time-variant controller to control time-invariant 
system, namely, an adaptive control approach, or (ii) using a time-invariant controller to deal 
with a time-variant system which is commonly known as robust control approach such as 
SMC. The main idea behind the SMC is that, instead of directly dealing with nth order system 
to be controlled, we attempt to define a new intermediate variable 𝑆𝑆 “sliding surface” with 1st 
order dynamics, i.e. the equation that relates the variable, 𝑆𝑆 to the system input, 𝑢𝑢 is a first-
order differential equation. Therefore, the SMC is known as a time-optimal control [20]. In 
other words, since the relation between 𝑆𝑆 and 𝑢𝑢 is a first order dynamics, the control action is 
either positive to increase the output or negative to decrease it. The demerit of such a controller 
property is that, the control action is discontinuous at the sliding surface and thus around the 
desired trajectory leading to the chattering phenomenon [21]. 

A.2 The Problem Formulation of SMC 

The conventional SMC is considered as a nonlinear control algorithm that employs a switching 
or discontinuous control signal to command the system to slide along a prespecified surface 
without any simplification for system dynamics. Consider the nth order dynamic system,  

𝑥𝑥(𝑛𝑛) = 𝑓𝑓�𝑡𝑡, 𝑥𝑥, 𝑥̇𝑥, … , 𝑥𝑥(𝑛𝑛−1)� + 𝑔𝑔(𝑡𝑡, 𝑥𝑥, 𝑥̇𝑥, … ) 𝑢𝑢 + 𝛥𝛥(𝑡𝑡) (31) 

where, 𝑥𝑥 ∊  ℝ𝑚𝑚 is the state vector of m states, 𝑓𝑓(∗) and 𝑔𝑔(∗) are differentiable and uncertain 
nonlinear functions, 𝑢𝑢 is the control vector. The vector 𝛥𝛥(𝑡𝑡) represents the parameter 
uncertainties and/or the external disturbances, such that, ∆𝐿𝐿 ≤ 𝛥𝛥(𝑡𝑡) ≤ ∆𝑈𝑈, where, ∆𝑈𝑈 and ∆𝐿𝐿 
are known upper and lower bounds of the uncertain disturbances. 

A.3 Design Procedures of SMC 

The two major steps during the SMC design procedure are, (i) Determine the sliding surface 
such that, 𝑆̇𝑆 contains the system input 𝑢𝑢, and 𝑆𝑆 tends to zero as the tracking error approaches 
zero, and (ii) Define the control signal 𝑢𝑢 as two terms, the first term is nonlinear feedback to 
cancel the known terms and thus drives 𝑆̇𝑆 of the known system to zero. The second term, to 
compensate for uncertainty and achieve Lyapunov stability and thus satisfy the sliding 
condition. For nth order system, the sliding surface is defined as 

𝑆𝑆 = 𝑒𝑒(𝑡𝑡)(𝑛𝑛−1) + 𝐶𝐶1 𝑒𝑒(𝑡𝑡)(𝑛𝑛−2) + 𝐶𝐶2 𝑒𝑒(𝑡𝑡)(𝑛𝑛−3) + ⋯+ 𝐶𝐶𝑛𝑛−1 𝑒𝑒(𝑡𝑡) (32) 

where, 𝑒𝑒(𝑡𝑡) is the tracking error, 𝑒𝑒(𝑡𝑡) = 𝑥𝑥𝑑𝑑𝑑𝑑𝑑𝑑(𝑡𝑡) − 𝑥𝑥(𝑡𝑡). 
The sliding condition for the classical SMC is, 𝑆𝑆 𝑆̇𝑆 ≤ 0.  
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However, to control the approaching time and velocity to the sliding surface, the sliding 
condition is modified to, 𝑆𝑆 𝑆̇𝑆 ≤ 𝛿𝛿(𝑡𝑡), such that, 𝛿𝛿(𝑡𝑡) ≤ 0. For conventional SMC, 𝛿𝛿(𝑡𝑡) is 
chosen to be, 

𝛿𝛿(𝑡𝑡) = − 𝜂𝜂 𝑆𝑆 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 (𝑆𝑆),     𝜂𝜂 > 0     (33) 
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