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Section 1 – Launchers propulsion technologies and simulations of rocket engines 

Abstract: Following the demands of the design and performance analysis in case of liquid fuel 

propelled rocket engines, as well as the trajectory optimization, the development of efficient codes, 

which frequently need to call the Fuel Combustion Charts, became an important matter. This paper 

presents an efficient solution to the issue; the author has developed an original approach to determine 

the non-linear approximation function of two variables: the chamber pressure and the nozzle exit 

pressure ratio. The numerical algorithm based on this two variable approximation function is more 

efficient due to its simplicity, capability to providing numerical accuracy and prospects for an 

increased convergence rate of the optimization codes. 

Key Words: approximation of two-variable functions, Propellant Combustion Charts, liquid 

propulsion, rocket engines  

1. INTRODUCTION 

Thrust evaluation or thrust prediction at different flight regimes, as well as the analysis of 

flight dynamics and trajectory optimization are important milestones for both the design and 

performance analysis of liquid propelled rocket engines. 

For a realistic and accurate prediction of the rocket engines global on- and off-design 

performances, the Propellant Combustion Charts [1] are required which provide 

graphically the correlations between the chamber pressure cp , exit pressure conditions ep  

(i.e. burned gas expelled at ambient pressure or in vacuum) and mixture ratio r  (which 

expresses the ratio of Oxygen to Fuel O/F), adiabatic flame temperature cT  (also referred as 

the Chamber Temperature), gas molecular weight wM  and specific heat ratio  , (also 

referred as the adiabatic power coefficient), for different types and combinations of fuel and 

oxidizer, [1]. 

Fig. 1 ÷ Fig. 4 shows the Combustion Charts for the study case: Liquid Oxygen and 

Kerosene (n-Dodecane, 12 26C H ), [1]. 
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Fig. 1 - Optimum mixture ratio, LOX-K, [1]  Fig. 2 - Adiabatic flame temperature, LOX-K, [1]  

As one can easily notice from Fig. 1 ÷ Fig. 4, the variation with the chamber pressure of 

the mixture ratio, see Fig. 1, the adiabatic flame temperature, see Fig. 2, the gas molecular 

weight, see Fig. 3, and the specific heat ratio, see Fig. 4, is non-linear, irregardless of the exit 

conditions.  

  

Fig. 3 - Gas Molecular Weight, LOX-K, [1]  Fig. 4 - Specific Heat Ratio, LOX-K, [1]  

An investigation of the liquid propelled rocket engines, which has been carried on as a 

part of an INCAS project for the European Space Agency ESA, focused on Liquid Oxygen 

LOX as oxidizer and Kerosene 
12 26C H , Liquid Methane 

4CH and Ethyl Alcohol 

3 2CH CH OH  as potential fuel; the selection followed the consideration of lower costs, 

operational safety, more environmental friendly in comparison with other combinations, 

such as LOX - Liquid Hydrogen, LOX - UDMH, Red - Fuming Nitric Acid - Kerosene, Red 

- Fuming Nitric Acid - MMH, Red - Fuming Nitric Acid - UDMH, Nitrogen Tetroxide - 

MMH, Nitrogen Tetroxide - Aerozine 50, Hydrogen Peroxide - Kerosene. 

Therefore, since the input data are the combustion chamber pressure 
cp  [atm] and the 

nozzle exit pressure 
ep  [atm], then the two-variable approximation is necessary. As 

mentioned above and as one can notice from Fig. 1 ÷ Fig. 4, the variation is non-linear, so 

the two-dimensional non-linear approximation is in question. 

Although the bilinear approximation is more often used and it is detailed in many papers 

and books [7-12], the applications of 2D non-linear approximation are less used, since the 

algorithm associated to numerical simulation can be very complex, intricate, requiring large 

memory capacities. 
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The problems of ill-conditioning and divergence can be ameliorated by either finding 

initial parameter estimations that are near to the optimal values, which can be difficult 

sometimes, or by using analytical functions or accurate approximation methods, customized 

for the analyzed applications. 

The focus in this paper is to determine a non-linear approximation function, of two 

variables, so as to be as accurate as possible numerically and less time consuming for the 

flight dynamics and trajectory optimization code. 

2. STUDY CASE 

The research presented in this paper is focused on the LOX - Kerosene Charts, which are 

shown in Figs. 1 ÷ 4; in order to highlight the proposed methodology, only the Targeted 

Investingation TI # 1 (i.e. the variation of the mixture ratio r  versus the combustion 

chamber pressure 
cp  [atm] and the nozzle exit pressure ep  [atm] ) is presented in this paper. 

3. METHODOLOGY 

For the particular case of the two-variable approximation of the Propellant Combustion 

Charts, the author proposes a methodology based on a hybrid approach, which consists in 

fulfilling two steps:  

1. the 1
st
 step refers to the least squares approximation of the variation of mixture ratio 

(and adiabatic flame temperature, gas molecular weight and specific heat ratio, 

respectively), with the chamber pressure; also, a comparison between the linear 

regression and non-linear curve fitting for the least squares approximation method 

was done; 

2. the 2
nd

 step refers to the determination of the variation with the exit pressure, based 

on interpolating the coefficients of the function calculated at the 1
st
 step. 

 The selection of the approximation method, which can be the interpolation or the least 

squares approximation (by either linear on non-linear curve fitting) is done by taking into 

consideration both criteria: the numerical accuracy provided by the chosen method and the 

prospective for minimizing the computational time for an in-house developed code dedicated 

to design and optimization of launch vehicles, Huzel [2], Sutton [3], flight dynamics 

optimization and control, Balesdent [4], Brevault [5], Casiano [6]. 

 In case of small perturbation in input data (e.g. from reading), the least squares 

approximation smoothens the errors of the resulting function, while any interpolation method 

amplifies them; this feature represents an additional reason for considering the least squares 

approximation. The global polynomial interpolation methods are often used for the single 

variable approximation, e.g. Newton polynomial, Lagrange polynomial, Berbente [7], which 

are simpler, but sometimes fail on numerical accuracy. More accurate are the split interval 

polynomial interpolation methods (again, for single variable interpolation), such as the spline 

functions, Berbente [7]. 

The best accuracy is provided by the 3
rd

 order spline function (cubic spline), and then, 

following the decreasing order of the accuracy, are 2
nd

 order (parabolic spline) and 1
st
 order 

(linear) spline functions. 

Note that in case of a trajectory optimization code based on genetic algorithm, the spline 

function must be called repeatedly, at each iteration, for a general number of iterations of 

about 10000 or even larger. 
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4. LEAST SQUARES APPROXIMATION BASED ON LINEAR 

REGRESSION VERSUS NON-LINEAR CURVE FITIING  

4.1 Least Squares Approximation by Linear Regression  

The linear regression is the simplest way to determine a least squares approximation, but in 

certain cases, it is not convenient, due to the lack of accuracy. 

The linear regression (3) determined for a general function: 

 y f x  (1) 

which for many practical applications is not given analytically, but is defines on nodes: 

 
1,i i i n

y f x


  (2) 

which crosses the mean values point  ,x y , is determined by the correlation coefficient c  

(4) , the x-variation x  (5), and the mean values x  (7) and y  (8), as follows: 

   
x

c
g x x x y


     (3) 

c xy x y    (4) 

 
22 2

x x x    (5) 

 
22 2

y y y    (6) 

1

1 n

i

i

x x
n 

   (7) 

1

1 n

i

i

y y
n 

   (8) 

4.2 Least Squares Approximation by Non-Linear Curve Fitting 

The non-linear curve fitting is basically a non-linear regression determined for the least 

squares approximation, based on non-linear functions, such as the logarithm or the 

exponential functions. 

Next is presented the case of non-linear curve fitting, by using the exponential function 

(9), where k  and   are both constant, which will be further determined: 

 expy k x    (9) 

Following the coordinate transformation (10) and (11), then the problem of non-linear 

regression in coordinates (x,y) turns into the determination of a linear regression in the new 

coordinates (X,Y). With respect to the new coordinates X(10) and Y(11), one obtained the 

linear regression as (12): 

X x  (10) 
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 lnY y  (11) 

     ln lnY k X    (12) 

Relation (12) can be expressed as (13), which is similar to the equation of the linear 

regression (3): 

     lng y x k    (13) 

5. NUMERICAL RESULTS AND CONCLUSIONS 

Application # 1 introduces a comparison between the linear regression (14) and non-linear 

regression (non-linear curve fitting) (9) used for the least squares method, [13,14]: 

y a x b    (14) 

Table 1 – Generic test function, defined (2) by nodes, [13,14] 

i  ix  iy  

1 1 2 

2 2 1 

3 4 4 

4 5.5 5 

5 7 9 

 

  

Fig. 5 – Generic Test Function, [13,14]  
Fig. 6 – Least squares approximation, linear 

regression, [13,14] 

The coefficients calculated for the linear regression (14) and for the non-linear 

regression (9) are summarized in Table 2. 

Table 2 – Coefficients of linear and non-linear regressions 

Linear regression  Non-linear regression  

y a x b      expy k x    

1.1818a    0.9667k    

0.4091b     0.3105    
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Fig. 7 – Least squares approximation, non-linear 

regression, [13,14] 

Fig. 8 – Least squares approximation, linear versus 

non-linear regression, [13,14] 

Application # 2 refers to the study case, presenting the step by step determination of the 

two-variable non-linear approximation of mixture ratio r  with the chamber pressure cp  and 

nozzle exit pressure ep ; the methodology for developing the hybrid function comes forward.  

Fig. 1 expresses the variation of the mixture ratio with the chamber pressure, for the 

given nozzle exit pressure, in case of Liquid Oxygen and Kerosene LOX-K, [1], 

summarized in Table 3: 

Table 3 – Mixture ratio, chamber pressure, nozzle exit pressure, defined (2) by nodes, for LOX-K 

Index 
Chamber pressure 

cp  [atm] 

Mixture ratio [---]  

at given nozzle exit pressure 

ep  = 1 [atm]  

Mixture ratio [---]  

at given nozzle exit 

pressure ep  =0.1 [atm] 

i  ix   1iy   2iy   

1 6 2.100 2.140 

2 25 2.200 2.240 

3 50 2.265 2.315 

4 75 2.300 2.340 

5 100 2.335 2.370 

6 125 2.350 2.395 

7 150 2.370 2.410 

8 175 2.380 2.430 

9 200 2.395 2.440 

10 225 2.410 2.445 

11 250 2.420 2.455 

The approach of the proposed methodology is to determine distinct one-variable 

approximations of the mixture ratio versus the chamber pressure for each value of the nozzle 

exit pressure. 

As one can notice in Fig. 10, the linear regression used for the least squares 

approximation of the mixture ratio with respect to the chamber pressure, for both cases of the 

nozzle exit pressure (in blue contours, the nozzle exit pressure = 1 [atm], while in red 

contours, the nozzle exit pressure = 0.1 [atm]), is not satisfactory, since it provides only a 

rough approximation. 
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Fig. 9 – Input data for LOX-K: Mixture ratio, 

chamber pressure, nozzle exit pressure =1 [atm] - 

blue contour, and = 0.1 [atm] – red contour 

Fig. 10 – Least squares approximation, linear regression, 

LOX-K 

Therefore, a non-linear regression (15) is proposed for the single variable 

approximation, and the results are concluded in Table 4: 

   lnc cy f p a p b     (15) 

   ln
e

c cp const
f p a p b


    (16) 

Table 4 – Non-linear single variable approximation 

Nozzle exit 

pressure ep  

[atm]  

Chamber 

pressure cp  

[atm] range  

Approximation functions 

 
e

c p const
f p


, (16)  

Coefficients  

a  b  

ep  = 1  
 0,250cp       ln

e
c cp const

f p a p b


    
0.089332 1.926167 

ep  = 0.1  0.089332 1.966167 
 

The first step of the proposed methodology is completed by the determination of the 

non-linear single variable approximations (16) which are verified and shown graphically in 

Fig. 11; in blue contour is the non-linear approximation determined for the nozzle exit 

pressure = 1 [atm], and in red contour is the one corresponding to the nozzle exit pressure = 

0.1 [atm]. 

The nozzle exit pressure is considered as given constant, while the chamber pressure is 

an input variable. 

The second step consists in determining the non-linear two-variable approximation 

function (17) or equivalent (28) and its verification. In this case, both nozzle exit pressure 

and chamber pressure are input variables: 

       , lnc e e c ef p p a p p b p    (17) 

The two-variable non linear approximation function is expressed by relation (17) or its 

equivalent (28). 

The coefficients  ea p  depending on the nozzle exit pressure ep  are defined by 

expressions (18) ÷ (20): 
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1 2

0.1 1

1 0.1 1 0.1

e ep p
a a a

    
      

    
  (18) 

1 2

0.1 1

0.9 0.9

e ep p
a a a

    
      
   

 (19) 

   1 2

10
0.1 1

9
e ea p a p a

 
          
 

 (20) 

There have been introduced the notations 
1a  (21) and 1b  (22) corresponding to the 

values a and b for the case that the nozzle exit pressure is 1 [atm], while 
2a  (23) and 

2b  (24) 

match the case that the nozzle exit pressure is 0.1 [atm]: 

1 1ep
a a


   (21) 

1 1ep
b b


  (22) 

2 0.1ep
a a


   (23) 

2 0.1ep
b b


  (24) 

The coefficients  eb p  also depending on the nozzle exit pressure 
ep  are defined by 

expressions (25) ÷ (27): 

1 2

0.1 1

1 0.1 1 0.1

e ep p
b b b

    
      

    
  (25) 

1 2

0.1 1

0.9 0.9

e ep p
b b b

    
      
   

 (26) 

   1 2

10
0.1 1

9
e eb p b p b

 
          
 

 (27) 

Table 5 – Non-linear two variable approximation 

Input variables  
Approximation functions  

 ,c ef p p , (17), (28)  

Coefficients  

Nozzle exit 

pressure ep  

[atm] range 

Chamber 

pressure cp  

[atm] range  

 ea p   eb p  

 0.1,1ep    0,250cp          , lnc e e c ef p p a p p b p    0.089332 1.943945 

 

Eventually, the expression of the two-variable non linear approximation function can be 

deduced as (28): 

            1 2 1 2

10
, 0.1 1 ln 0.1 1

9
c e e e c e ef p p p a p a p p b p b

 
                     
 

 (28) 
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Additionally Fig. 11 shows in purple contour an intermediate approximation which was 

calculated from relation (28), for the nozzle exit pressure considered equal to 0.5 [atm]. 

  

Fig. 11 – One variable least squares 

approximation, non-linear regression, LOX-K  

Fig. 12 – Generated Two Variable Non-Linear 

Approximating functions. Input variables: Chamber 

Pressure and Nozzle Exit Pressure, LOX-K  

 

The two-variable non-linear approximation (17), (28) was used to generate the 

intermediate functions for other different values of the nozzle exit pressure, e.g. 0.2, 0.4, 0.6 

and 0.8 [atm], which were depicted in Fig. 12. 

REFERENCES 

[1] * * * www.braeunig.us/space/comb/, Rocket and Space Technology, Propellant Combustion Charts. 

[2] D. K. Huzel, D. H. Huang, Design of Liquid Propelled Rocket Engines, NASA SP-125, Rocketdyne Division, 

North American Aviation, Inc., Scientific and Technical Information Division, Office of Technology 

Utilization National Aeronautics and Space Administration, Washington, 2nd Edition, 1967. 

[3] G. Sutton, O. Biblarz, Rocket Propulsion Elements, 8th Edition, John Wiley & Sons, New Jersey, 2010. 

[4] M. Balesdent, Multidisciplinary Design Optimization of Launch Vehicles, Optimization and Control, 

[math.OC], Ecole Centrale de Nantes (ECN) (ECN) (ECN), 2011, English, HAL Id: tel-00659362, 

https://tel.archives-ouvertes.fr/tel-00659362, submitted on 12 Jan 2012. 

[5] L. Brevault, M. Balesdent, N. Bérend, R. Le Riche, Multi-level hierarchical MDO formulation with functional 

coupling satisfaction under uncertainty, application to sounding rocket design, World Congress on 

Structural and Multidisciplinary Optimization, 7-12 June 2015, Sydney, Australia . 

[6] M. Casiano, J. Hulka, V. Yang, Liquid Propellant Rocket Engine Throttling: A Comprehensive Review, AIAA 

2009-5135, 45th AIAA/ ASME/ SAE/ ASEE Joint Propulsion Conference & Exibit, 2-5 August 2009, 

Denver, Colorado; Journal of Propulsion and Power, Vol. 26, No. 5 (2010), pp. 897-923. 

[7] C. Berbente, S. Mitran, S. Zancu, Metode Numerice, Editura Tehnica, 1997. 

[8] J. M. Hure, D. Pelat, Methodes Numeriques, Univ. Paris 7, version 2, Novembre 2002. 

[9] F. Jedrzejewsky, Introduction aux Methodes Numeriques, deuxieme edition, Springer Verlag, Paris 2005, 

ISBN 978-2-287-25203-7. 

[10] S. Chapra, Applied Numerical Methods with MATLAB for Engineers and Scientists, Mc Graw Hill, New 

York, 2012, ISBN 978-0-07-340110-2. 

[11] W. Press, S. Teukolsky, W. Vetterking, B. Flannery, Numerical Recipes in Fortran 77, The Art of Scientific 

Computing, 2nd Edition, vol. 1, Cambridge University Press, New York, 1992. 

[12] J. Chasnov, Introduction to Numerical Methods, Lecture notes for MATH 3311, The Hong Kong University 

of Science and Technology, Department of Mathematics, 2012. 

[13] I. C. Andrei, Methodes Numeriques, Note de curs si Aplicatii Laborator/ Moodle, UPB, FILS, Filiera 

Franceza, 2006-2012. 

[14] I. C. Andrei, Numerische Berechnungsverfahren, Note de curs si Aplicatii Laborator/ Moodle, UPB, FILS, 

Filiera Germana, 2006-2012. 

 


