
INCAS BULLETIN, Volume 16, Issue 3/ 2024, pp. 3 – 18 (P) ISSN 2066-8201, (E) ISSN 2247-4528

Image processing for feature detection and extraction

Nicolae APOSTOLESCU*,1, Dragos-Daniel ION-GUTA2

*Corresponding author
*,1Aerospace Consulting,

B-dul Iuliu Maniu 220, Bucharest 061126, Romania,
apostolescu.nicolae@incas.ro

2INCAS – National Institute for Aerospace Research “Elie Carafoli”,
B-dul Iuliu Maniu 220, Bucharest 061126, Romania,

DOI: 10.13111/2066-8201.2024.16.3.1

Received: 25 June 2024/ Accepted: 19 August 2024/ Published: September 2024
Copyright © 2024. Published by INCAS. This is an “open access” article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Abstract: The present paper aims to conduct an experiment that compares different methods of detecting
objects in images. Programs were developed to evaluate the efficiency of SURF, BRISK, MSER, and
ORB object detection methods. Four static gray images with sufficiently different histograms were used.
The experiment also highlighted the need for image preprocessing to improve feature extraction and
detection. Thus, a programmed method for adjusting pixel groups was developed. This method proved
useful when one of the listed algorithms failed to detect the object in the original image, but succeeded
after adjustment. The effectiveness of detection methods and the evaluation of their performance depend
on the application, image preparation, algorithms used, and their implementation. Results of the
detection methods were presented numerically (similarities, gradients, distances, etc.) and graphically.

Key Words: feature descriptors, feature detector, image matching, SIFT, SURF, BRIEF, FAST, BRISK,
ORB, MSER

1. INTRODUCTION
The objective of this paper is to conduct an experiment on the behavior of digital methods for
matching two images. One of the images represents an object contained in the second image,
here called the scene. In the literature, the operation is called matching and ends with the
detection of the object in the image [1-2]. In machining processes, the digital image is a matrix
in which individual pixel processing does not provide information for interpreting the image
but only for improving its visual appearance [3]. The pixel matrix can be processed to obtain
relevant features represented by numerical values or descriptors that encode information found
in different regions of the image [4]. Features are locations in the image with unique,
repeatable structures and invariant to geometric transformations such as scaling, rotation or
lighting changes. Features in an image are represented by numerical values or descriptors that
encode information found in different regions of the image [5]. The feature extraction process
involves analyzing pixel values and identifying specific patterns that can be used to represent
the content of the image in a more compact and interpretive way [6]. Selecting and extracting
features from an image are the most important steps in all computer vision applications
(detecting, recognizing, and tracking objects in static or mobile images) [2]. Object detection
has numerous applications in computer vision, such as object tracking, retrieval, video
surveillance, image captioning, image segmentation, medical imaging, and several other

mailto:apostolescu.nicolae@incas.ro
http://creativecommons.org/licenses/by-nc-nd/4.0/

Nicolae APOSTOLESCU, Dragos-Daniel ION-GUTA 4

INCAS BULLETIN, Volume 16, Issue 3/ 2024

applications [7]. The image processing techniques such as BRISK, SURF, and ORB are crucial
in enabling precise navigation, obstacle detection, and collision avoidance through visual data
[1-2], [8-9]. The process of extracting features involves analyzing pixel values and identifying
appropriate patterns, methods, and algorithms to represent image content in a more compact
and interpretive way.

2. IMAGE PROCESSING AND FEATURE DETECTION TECHNIQUES
In the present experiment, histogram equalization techniques, adjusting image intensity values
to a specified interval, and filtering were used to improve the image. Equalizing the histogram
of an image involves obtaining a new image in which the pixel intensity values are within a
certain range of values. Adjusting the image intensity values to a specified interval involves
obtaining a new image according to the rule proposed in Table 1.

Table 1 – Condition on pixel adjusting value

Pixel value 𝑣𝑣(𝑥𝑥,𝑦𝑦) New pixel value after adjustment
𝑣𝑣(𝑥𝑥,𝑦𝑦) ≤ 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖𝑖𝑖𝑜𝑜𝑜𝑜𝑜𝑜
𝑣𝑣(𝑥𝑥,𝑦𝑦) >= 𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖 𝑠𝑠𝑠𝑠𝑠𝑠𝑜𝑜𝑜𝑜𝑜𝑜

𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 < 𝑣𝑣(𝑥𝑥, 𝑦𝑦) < 𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖𝑖𝑖𝑜𝑜𝑜𝑜𝑜𝑜 +
𝑣𝑣(𝑥𝑥,𝑦𝑦) − 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖 − 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

∗ (𝑠𝑠𝑠𝑠𝑠𝑠𝑜𝑜𝑜𝑜𝑜𝑜 − 𝑖𝑖𝑖𝑖𝑖𝑖𝑜𝑜𝑜𝑜𝑜𝑜)

Table 2 – Example of image adjustment

𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 51;
𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖 = 76;

𝑖𝑖𝑖𝑖𝑖𝑖𝑜𝑜𝑜𝑜𝑜𝑜 = 102;
𝑠𝑠𝑠𝑠𝑠𝑠𝑜𝑜𝑜𝑜𝑜𝑜 = 127;

 234 197 45 155 69
 1 83 185 49 196
 118 201 121 189 49
 109 121 39 62 74
 118 10 87 234 24

127 127 102 127 120
102 127 127 102 127
127 127 127 127 102
127 127 102 113 125
127 102 127 127 102

The figures below, Fig. 1- 4, show an image to which histogram equalization and pixel
intensity adjustments have been applied.

Selecting and extracting features from an image are the most important steps in all
computer vision applications (detecting, recognizing, and tracking objects in still or moving
images). The operations involve numerical transformations on the spatial representations of
the images with the preservation of the essential information from the original images.

In the context of this paper, the components of feature detection and matching include
describing, detecting, extracting, and matching features in images. The description looks at
how certain information is associated around points of interest, such as gradient or intensity.
Feature detection involves identifying structures, points, and regions of interest. The features
provide unique information about the image. Feature matching consists of finding pairs of
similar features from two or more images. To improve the accuracy of correspondences, it
is common to apply special techniques, including geometric verification.

Feature extraction is a process of transforming the original features into a new set of
features with more relevant and compact information. The purpose of the operation is to
capture the essential information from the original features and represent it in the space of
smaller features [4], [10].

5 Image processing for feature detection and extraction

INCAS BULLETIN, Volume 16, Issue 3/ 2024

Image segmentation is the process of partitioning a digital image into multiple image
“segments”, also known as image regions or objects (discrete groups of pixels) [11].
Through segmentation, the image is simplified, becoming easier to analyze and allowing the
detection of limits in images (lines, curves) as well as the location of objects. Numerous
algorithms have been developed for segmentation, most of them are oriented and combined
with information specific to the field of applicability. In order to detect and track objects of
interest in real time, image segmentation becomes extremely beneficial in video surveillance,
including both people and vehicles. By applying image segmentation techniques, video
surveillance systems can easily identify and isolate relevant objects, providing more accurate
monitoring.

Fig. 1 – Original image and his histogram Fig. 2 – Image after histogram equalization

Fig. 3 – Adjusted image and his histogram Fig. 4 – Adjusted image and his histogram

Image filtering has brought an evolutionary change in the field of image processing.
Purpose: reduce noise, intensify the image, and identify features. Filtering is applied locally to
each pixel in the image by replacing the intensity or color value of the current pixel with a
value that depends on the intensity or color values of neighboring pixels (filter window). The
number of neighbors considered determines the size of the filter. A filter can be defined as a
matrix applied to each pixel and its adjacent neighbors in the given image [12]. This array is
called a convolution kernel and operates on the image by applying convolutions. If 𝐼𝐼 is an
image defined as 𝐼𝐼 = �𝑎𝑎𝑖𝑖,𝑗𝑗�𝑖𝑖=1:𝑛𝑛,𝑗𝑗=1:𝑚𝑚

 , then each element 𝑎𝑎𝑖𝑖𝑖𝑖 (except the marginal elements),
has 8 other elements around it, forming a 3x3 matrix. If 𝐵𝐵 is a 3x3 mask matrix, the element
𝑐𝑐𝑖𝑖𝑖𝑖 of the convolution matrix 𝐼𝐼 ∙ 𝐵𝐵 is obtained as follows:

𝑐𝑐𝑖𝑖𝑖𝑖 = 𝑏𝑏𝑖𝑖𝑖𝑖(𝑎𝑎𝑖𝑖−1,𝑗𝑗−1 + 𝑎𝑎𝑖𝑖−1,𝑗𝑗 + 𝑎𝑎𝑖𝑖−1,𝑗𝑗+1 + 𝑎𝑎𝑖𝑖,𝑗𝑗−1 + 𝑎𝑎𝑖𝑖,𝑗𝑗 + 𝑎𝑎𝑖𝑖,𝑗𝑗+1
+𝑎𝑎𝑖𝑖+1,𝑗𝑗−1 + 𝑎𝑎𝑖𝑖+1,𝑗𝑗 + 𝑎𝑎𝑖𝑖+1,𝑗𝑗+1)

Nicolae APOSTOLESCU, Dragos-Daniel ION-GUTA 6

INCAS BULLETIN, Volume 16, Issue 3/ 2024

𝑖𝑖 ≠ 1, 𝑖𝑖 ≠ 𝑛𝑛, 𝑗𝑗 ≠ 1, 𝑗𝑗 ≠ 𝑚𝑚; 𝑐𝑐(1:𝑛𝑛, 1) = 0; 𝑐𝑐(1:𝑛𝑛,𝑚𝑚) = 0;
𝑐𝑐(1,1:𝑚𝑚) = 0; 𝑐𝑐(𝑛𝑛, 1:𝑚𝑚) = 0

Convolutional kernels and filters are the building blocks of many computer vision
applications [12]. More advanced algorithms and the combination of several types of
convolutional kernels can lead to remarkable results in the detection and extraction of features
from images.
The numerical values for Gauss, Laplace and LoG filters are obtained by known
formulas:

∇2𝑓𝑓 =
𝜕𝜕2𝑓𝑓
𝜕𝜕𝑥𝑥2

+
𝜕𝜕2𝑓𝑓
𝜕𝜕𝑦𝑦2

= 𝑓𝑓(𝑥𝑥 + 1,𝑦𝑦) + 𝑓𝑓(𝑥𝑥 − 1,𝑦𝑦) + 𝑓𝑓(𝑥𝑥,𝑦𝑦 + 1) + 𝑓𝑓(𝑥𝑥,𝑦𝑦 − 1) − 4𝑓𝑓(𝑥𝑥,𝑦𝑦)

𝐺𝐺(𝑥𝑥,𝑦𝑦) = 1
2𝜋𝜋𝜎𝜎2

𝑒𝑒−
𝑥𝑥2+𝑦𝑦2

2𝜎𝜎2 , 𝐿𝐿𝐿𝐿𝐿𝐿(𝑥𝑥,𝑦𝑦) = − 1
𝜋𝜋𝜎𝜎4

�1 − 𝑥𝑥2+𝑦𝑦2

2𝜎𝜎2
� 𝑒𝑒−

𝑥𝑥2+𝑦𝑦2

2𝜎𝜎2

The filters used in the experiment are common image processing kernels: PREWITT, Sobel,
Gaussian, Laplacian, Average, Log defined as follows.

Table 3 – The value of the filters used in the experiment

Fig. 5 – Original image and filtered image with Prewitt, Sobel, Gauss, Laplacian and Log filters

Prewitt
filter �

 1 1 1
 0 0 0
−1 −1 −1

�

 Gaussian filter
approximation
𝑥𝑥 = −1: 1: 1;
𝑦𝑦 = 𝑥𝑥; 𝜎𝜎 = 1

1

16 �
1 2 1
2 4 2
1 2 1

�

Sobel
Filter �

 1 2 1
 0 0 0
−1 −2 −1

�

 Gaussian filter
𝜎𝜎 = 0.5;

𝑥𝑥 = −1: 1: 1;
𝑦𝑦 = 𝑥𝑥

�
0.0113 0.0838 0.0113
0.0838 0.6193 0.0838
0.0113 0.0838 0.0113

�

Laplace
filter �

0 −1 0
−1 4 −1
0 −1 0

�

Laplacian filter �

0.1667 0.6667 0.1667
0.6667 −3.333 0.6667
0.1667 0.6667 0.1667

�

Average
m*n
filter

1
𝑚𝑚 ∗ 𝑛𝑛 �

1 1 ⋯ 1
⋮ ⋮ ⋮
1 1 ⋯ 1

�

LoG filter �

0.2835 0.6629 0.2835
0.6629 −4.9006 0.6629
0.2835 0.6629 0.2835

�

7 Image processing for feature detection and extraction

INCAS BULLETIN, Volume 16, Issue 3/ 2024

Edge detection and image segmentation are important applications of gradient orientation
and magnitude. The magnitude of the gradient is used to identify regions with significant
changes in intensity, and the orientation of the gradient gives the direction of the edge [5],
[13]. Image segmentation involves dividing the image into regions that are identified by
similarity of orientation and magnitude of the gradient [14-15].

Popular algorithms for detecting and matching features

Harris Corner Detection algorithm identifies corners in an image based on changes in intensity
in different directions. Harris corner detection is widely used for feature-based image detection
and alignment [1-2], [9]. FAST (Features from Accelerated Segment Test) is a real-time corner
detection algorithm [2],[9]. SIFT (Scale-Invariant Feature Transform) detects points of interest
at multiple scales and orientations and provides a robust descriptor for each point of interest,
making it invariant to changes in scale, rotation, and lighting [2]. SURF (Speeded-Up Robust
Features) is an effective alternative to SIFT. It uses integral images to accelerate computation
and provides similar performance in terms of robustness and invariance in scale and rotation
[10]. BRIEF, which stands for Binary Robust Independent Elementary Features, is a feature
descriptor algorithm used in computer vision for image processing tasks like object recognition
and image matching. ORB (Oriented FAST and Rotated BRIEF) is a fusion between FAST
corner detection and the BRIEF descriptor. It also aims to provide an efficient and real-time
alternative to SIFT and SURF. ORB captures the characteristics of objects at different scales
and orientations. FAST identifies points of interest by comparing the brightness of a central
pixel to the surrounding 16 pixels, and whether more than 8 of these surrounding pixels are
either darker or brighter than the centre pixel is considered a key point. BRISK (Binary Robust
Invariant Scalable Keypoints) is a feature detection and description algorithm. BRISK is
modular. This feature allows it to be combined with other methods or algorithms for detecting
and extracting features [2]. MSER (Maximally Stable Extremal Regions) identifies regions in
an image where significant intensity level changes occur [2]. MinEigen is used in feature
extraction, image recording, and object recognition. MinEigen tests each pixel in an image to
determine if it corresponds to a corner. It considers a small area centred around the pixel and
calculates the minimum eigenvalue of the structure tensor in that area [2].

3. EXPERIMENTAL RESULTS AND DISCUSSIONS
The purpose of the experiment is to analyze and compare the results regarding the detection
of objects in images using several detection methods. Four original and filtered images were
used for both objects and scenes.

Fig. 6 – Image 1 with object 1 [16] Fig. 7 – Image 2 with object 2 [17]

Nicolae APOSTOLESCU, Dragos-Daniel ION-GUTA 8

INCAS BULLETIN, Volume 16, Issue 3/ 2024

Fig. 8 – Image 3 with object 3 [18] Fig. 9 – Image 4 with object 4

Below are the histograms of the four objects and scenes of each image.

Fig. 10 – Intensity image 1 (object 1 histogram) Fig. 11 – Intensity image 2 (object 2 histogram)

Fig. 12 – Intensity image 3 (object 3 histogram) Fig. 13 – Intensity image 4 (object 4 histogram)

The information provided in Table 4 represent the performance of various feature
detection methods (Harris, MinEigen, SURF, ORB, BRISK and MSER) when applied to
images processed with different filters (I-orig, PREWITT, Sobel, Gaussian, Laplacian and
LOG). The values in the tables represent the number of detected features from the original and
filtered images by each method under the given filter conditions.

Table 4 – The number of features detected in original and filtered images using different algorithms

Im
ag

e
1

Method\filters I-orig PREWITT Sobel Gaussian Laplacian LOG
Harris 62 35 46 64 137 131
MinEigen 160 132 147 156 309 301
SURF 16 12 20 15 0 0
ORB 43 60 82 41 28 91

9 Image processing for feature detection and extraction

INCAS BULLETIN, Volume 16, Issue 3/ 2024

BRISK 30 76 128 23 3 54
MSER 65 101 146 61 2 32

Im
ag

e
2

Method\filters I-orig PREWITT Sobel Gaussian Laplacian LOG
Harris 68 50 54 61 66 69
MinEigen 133 111 116 124 115 122
SURF 36 35 44 33 3 23

ORB 14 17 23 13 27 38
BRISK 91 101 142 79 77 153
MSER 182 165 222 185 39 130

Im
ag

e
3

Method\filters I-orig PREWITT Sobel Gaussian Laplacian LOG
Harris 97 87 104 95 70 96

MinEigen 147 131 141 156 148 155
SURF 29 39 52 27 2 13

ORB 32 29 37 23 41 48

BRISK 156 226 280 119 175 312
MSER 167 250 273 177 42 110

Im
ag

e
4

Method\filters I-orig PREWITT Sobel Gaussian Laplacian LOG
Harris 265 287 338 246 247 305
MinEigen 513 477 503 529 485 516
SURF 100 154 231 93 17 91
ORB 800 708 808 636 859 1042
BRISK 476 813 1106 315 653 1128
MSER 182 371 507 167 104 262

From Table 4 we see that Harris performs consistently across all filters, with relatively
stable feature detection numbers. However, its performance varies depending on the image. In
Image 1, Harris detects more features with Laplacian and LOG filters, indicating its sensitivity
to these filters. In Image 5, Harris detects the highest number of features with the Sobel filter.

MinEigen generally detects the most features across all methods and filters, especially
under the Gaussian, Laplacian, and LOG filters. This suggests that MinEigen is highly
sensitive to image features that are enhanced by these filters. SURF tends to detect fewer
features compared to other methods, especially under the Laplacian and LOG filters, where it
detects almost no features. This suggests that SURF may not perform well with images
processed by these filters, possibly due to the nature of the keypoints it identifies. ORB’s
performance is varied, detecting more features with Sobel and LOG filters in some figures
(e.g., Image 1 and Image 4). ORB shows significant variability depending on the filter applied,
which might indicate that ORB is more sensitive to certain types of image transformations.

BRISK detects a high number of features with the Sobel and LOG filters, especially in
Image 3 and Image 4. This suggests that BRISK is effective in identifying features in images
with pronounced edges and noise, as Sobel and LOG often enhance these aspects. Transposed
graphically, the top results lead to the observation that the efficiency of detection algorithms

Nicolae APOSTOLESCU, Dragos-Daniel ION-GUTA 10

INCAS BULLETIN, Volume 16, Issue 3/ 2024

is significantly dependent on the type of filter used. The results in the tables above are
transposed into the graphs below.

Fig. 14 – The number of features detected in Image 1 Fig. 15 – The number of features detected in Image 2

Fig. 16 – The number of features detected in Image 3 Fig. 17 – The number of features detected in Image 4

Analyzing the results in the table and graphs above, it can be seen that the efficiency of the
detection algorithms is significantly dependent on the type of filter used.

Table 5 – Comparison of feature detection methods

Sc
en

e

Method
Object

pts.
Count

Scene
pts.

Count

N
o

Pa
irs

Sc
en

e

Method
Object

pts.
Count

Scene
pts.

Count

N
o

Pa
irs

1

SURF 16 424 15

3

SURF 29 601 24
BRISK 7 259 2 BRISK 39 1059 15
ORB 43 3265 25 ORB 32 9850 19
ALMOST 3 85 2 ALMOST 36 609 20
MinEigen 71 1426 43 MinEigen 44 2853 23

11 Image processing for feature detection and extraction

INCAS BULLETIN, Volume 16, Issue 3/ 2024

MSER 65 308 11 MSER 167 839 28
Sc

en
e

Method
Object

pts.
Count

Scene
pts.

Count

N
o

Pa
irs

Sc
en

e

Method
Object

pts.
Count

Scene
pts.

Count

N
o

Pa
irs

2

SURF 36 926 26

4

SURF 100 1555 77
BRISK 26 1923 14 BRISK 259 3737 59
ORB 14 9043 9 ORB 800 28373 415

ALMOST 16 1092 12 ALMOST 204 2549 117
MinEigen 41 1980 19 MinEigen 292 4767 94
MSER 182 1200 29 MSER 182 1569 39

Common Object Scene Features Detected with the MinEigen Algorithm

Fig. 18 – Matched points object scene using MinEigen algorithm

Fig. 19 – Matched points object scene using MinEigen algorithm

Fig. 20 – Matched points object scene using MinEigen algorithm

Nicolae APOSTOLESCU, Dragos-Daniel ION-GUTA 12

INCAS BULLETIN, Volume 16, Issue 3/ 2024

Fig. 21 – Matched points object scene using MinEigen algorithm

In the previous example it was noticed that the “bell” object was not detected in the scene
containing it using the FAST and BRISK methods, so we proceeded to improve the image by
applying a set of filters.
The result is shown in the table below. Since at least three pairs of object-scene points are
required for detection, it can be seen that only the PREWITT, Sobel, and Sobel-Average filters
determined at least three matching point perches.

Table 6 – Feature detection performance comparison of FAST and BRISK methods

FAST

Object
pts.

Count

Scene
pts.

Count

No
Pairs BRISK

Object
pts.

Count

Scene
pts.

Count

No
Pairs

Orig Image 1
object 1 3 85 2 Orig Image 1

object 1 7 259 2

Filtered Image with Filtered Image with
PREWITT 22 427 11 PREWITT 31 752 5
Sobel 41 648 19 Sobel 53 1104 11
Gaussian 1 53 1 Gaussian 5 216 1
Laplacian 0 40 0 Laplacian 0 41 0
Average 1 12 1 Average 5 129 1
Log 20 372 0 Log 21 418 1
Log & Sobel 92 2047 3 Log & Sobel 111 2596 2
Sobel & Log 83 1774 9 Sobel & Log 104 2216 2
PREWITT &
Laplacian 22 468 2 PREWITT &

Laplacian 26 517 1

Sobel &
Gaussian 31 540 18 Sobel &

Gaussian 38 940 7

Sobel &
Average 13 216 9 Sobel &

Average 14 494 5

PREWITT &
Average 4 87 2 PREWITT &

Average 8 247 1

By applying a function to increase the contrast of object and scene images (mapping the
values of the original pixels to new values), the object is detected in the scene even without
filtering the images.

The effect of the filters can be analyzed from the table below.

13 Image processing for feature detection and extraction

INCAS BULLETIN, Volume 16, Issue 3/ 2024

Table 7 – Impact of contrast enhancement and filtering on feature detection using ALMOST and BRISK methods

FAST

Object
pts. Count

Scene
pts.

Count

No
Pairs BRISK Object

pts. Count

Scene
pts.

Count

No
Pairs

Imadjust
(Image: bell)

25 194 5 Imadjust
(Image: bell)

28 556 7

Filtered Image with Filtered Image with
Gaussian 1 53 1 Gaussian 17 466 4
Laplacian 0 40 0 Laplacian 21 141 0
Average 6 39 2 Average 11 306 4
Log 71 725 3 Log 21 418 1
Sobel & Log 153 2328 8 Sobel & Log 208 3013 5

Table 7 presents the number of object points detected, scene points detected and matching
pairs identified by the ALMOST and BRISK feature detection methods after applying a
contrast enhancement function (Imadjust [19]) and various image filters to the object and scene
images. The results highlight how contrast enhancement alone can aid in object detection and
how different filters further influence the detection and matching effectiveness of each
method.

Fig. 22 – Matched points object scene using FAST algorithm

Fig. 23 – Detected object using FAST algorithm

Nicolae APOSTOLESCU, Dragos-Daniel ION-GUTA 14

INCAS BULLETIN, Volume 16, Issue 3/ 2024

To detect objects in images, algorithms also use distances between characteristic points
determined in the object matrix and the scene matrix. It was previously shown that using the
FAST method, the object Image1 (‘bell’) was detected in Scene1 using the following 5 pairs
of points:

[𝑥𝑥𝑥𝑥1,𝑦𝑦𝑦𝑦1] = [80,25]; [𝑥𝑥𝑥𝑥2,𝑦𝑦𝑦𝑦2] = [74,57]; [𝑥𝑥𝑥𝑥3,𝑦𝑦𝑦𝑦3] = [28,94];
[𝑥𝑥𝑥𝑥4,𝑦𝑦𝑦𝑦4] = [68,105]; [𝑥𝑥𝑥𝑥5,𝑦𝑦𝑦𝑦5] = [67,152]

[𝑥𝑥𝑥𝑥1,𝑦𝑦𝑦𝑦1] = [501,177]; [𝑥𝑥𝑥𝑥2,𝑦𝑦𝑦𝑦2] = [469,171]; [𝑥𝑥𝑥𝑥3,𝑦𝑦𝑦𝑦3] = [432,125];
[𝑥𝑥𝑥𝑥4,𝑦𝑦𝑦𝑦4] = [420,165]; [𝑥𝑥𝑥𝑥5,𝑦𝑦𝑦𝑦5] = [374,164]

The pixel values corresponding to the dot pairs are:
Pixel_value_object = [13 233 4 203 246];
Pixel_value_scene = [17 185 20 170 185];

Fig. 24 – Object points matched to scene points Fig. 25 – Scene points matched to object points

Table 8 shows the Euclidean distances between each pair of keypoints in the object image.
Similarly, Table 9 shows the Euclidean distances between each pair of keypoints in the scene
image. This table helps in understanding the spatial relationships between keypoints in the
scene image and can be compared to the distances in the object image (Table 8) to analyze
how the object has been transformed or deformed in the scene.

Table 8 – Object point distance

From point to
point 1 2 3 4 5

1 0 32.55 86.40 80.89 127.66
2 32.55 0 59.03 48.37 95.25
3 86.40 59.03 0 41.48 69.89
4 80.89 48.37 41.48 0 47.01
5 127.66 95.25 69.89 47.01 0

Table 9 – Scene point distance

From point to
point 1 2 3 4 5

1 0 32.55 86.40 81.29 127.66
2 32.55 0 59.03 49.87 95.45
3 86.40 59.03 0 41.48 69.89
4 80.89 48.37 41.48 0 47.01
5 127.66 95.25 69.89 47.01 0

15 Image processing for feature detection and extraction

INCAS BULLETIN, Volume 16, Issue 3/ 2024

4. THE EFFECT OF SCALING ON OBJECT DETECTION IN THE IMAGE
Initial Scenario: Detecting the Object at Scale 1

In the first scenario, the “bell” object was detected, extracted from a scene at scale 1, using the
BRISK method.
After running the detection program, a total of 4 matched points between the object and the
scene were identified. These matched points are shown in the table below:

Table 10 – Matched points between object and scene at Scale 1

Matched Points on Object Matched Points on Scene
[80.5607, 24.5235]

[27.6842, 145.8738]

[68.4013, 107.4979]

[86.3781, 124.9668]

[501.4812, 177.5984]

[379.6916, 124.5747]

[417.9175, 165.7861]

[401.0456, 183.6526]

To assess how well the points on the object match those in the scene, the distances
between the corresponding points were calculated.

The results show that the distances are very similar, indicating a correct and robust match
between the object and the scene in the image.

Table 11 – Distances between object points at scale 1

From point to point 1 2 3 4
1 0 132.098 83.863 100.180
2 132.098 0 55.902 62.626
3 83.863 55.902 0 24.759
4 100.180 62.626 24.759 0
Table 12 – Distances between scene points at scale 1

From point to point 1 2 3 4
1 0 133.015 84.853 100.18
2 133.015 0 55.902 62.968
3 84.853 55.902 0 24.083
4 100.180 62.968 24.083 0

Scaling Scenario: Detecting the Object Scaled to 1.9x

In the second scenario, the “bell” object was scaled by 1.9 times, and the detection process
was repeated using the BRISK method.

After running the program, 7 matched points between the scaled object and the scene were
identified. The matched points and corresponding distances are shown in the table below.

Table 13 – Matched Points between the Object Scaled to 1.9x and the Scene

Matched Points on Object Matched Points on Scene
[50.2424, 269.0007]
[154.1524, 46.1317]
[130.0989,200.2827]
[52.9475, 275.9154]

[384.5775, 123.1958]
[501.4812, 177.5984]
[419.9166, 165.3867]
[379.6916, 124.5747]

Nicolae APOSTOLESCU, Dragos-Daniel ION-GUTA 16

INCAS BULLETIN, Volume 16, Issue 3/ 2024

[130.3662, 202.3903]
[52.1059, 276.8873]

[138.0000, 162.0000]

[417.9175, 165.7861]
[379.6916, 124.5747]
[440.3186, 170.4785]

Table 14 – Distances between Object Points at Scale 1.9

From
point to

point
1 2 3 4 5 6 7

1 0 246.0589 105.6456 6.3246 104.3504 7.2801 138.5388
2 246.0589 0 155.8589 250.6891 157.8354 251.6029 117.0982
3 105.6456 155.8589 0 108.2081 2.0000 108.9036 38.8330
4 6.3246 250.6891 108.2081 0 106.8316 1.0000 142.0035
5 104.3504 157.8354 2.0000 106.8316 0 107.5174 40.7922
6 7.2801 251.6029 108.9036 1.0000 107.5174 0 142.8006
7 138.5388 117.0982 38.8330 142.0035 40.7922 142.8006 0

Table 15 – Distances between Scene Points at Scale 1.9

From
point to

point

1 2 3 4 5 6 7

1 0 128.8604 54.6717 5.0990 53.4135 5.0990 73.1095
2 128.860 0 82.8734 133.0150 84.8528 133.0150 61.4003
3 54.6717 82.8734 0 57.2800 2.0000 57.2800 21.5870
4 5.0990 133.0150 57.2800 0 55.9017 0 76.4003
5 53.4135 84.8528 2.0000 55.9017 0 55.9017 23.5372
6 5.0990 133.0150 57.2800 0 55.9017 0 76.4003
7 73.1095 61.40032 21.5870 76.4003 23.5372 76.4003 0

Analyzing the results obtained after the detection program of the scaled object we notice
the following:

• The number of object points detected after scaling is no different from that without
scaling (there are three almost identical pairs). Small distance between them.

• Coordinates of object points are multiplied by the scaling factor.

Fig. 26 – Spatial object points matched to scene points Fig. 27 – Spatial scene points matched to object
points

17 Image processing for feature detection and extraction

INCAS BULLETIN, Volume 16, Issue 3/ 2024

For a good understanding of the role of gradients in the operation of determining pairs of
similar object-scene points of interest, matrices of 21 x 21 pixels were built around a paired
point, whose gradients were calculated.

Fig. 28 – Iscontours and gradients in the 21x21 matrix
around an object point rotated 90 degrees. The point

is one of those suitable object-scenes

Fig. 29 – Isocontours and gradients in the 21x21
matrix around a scene point. The point is one of

those suitable object-scenes
This study demonstrates the effectiveness of the BRISK method in detecting and matching
features between objects and scenes, even under scaling transformations. The algorithm
showed considerable robustness in identifying and matching keypoints, maintaining accuracy
during significant scaling. This makes BRISK a solid choice for object detection applications
where scale variations can be a major challenge.

5. CONCLUSIONS
The study demonstrates that preprocessing techniques, such as histogram equalization and
pixel intensity adjustments, play a crucial role in enhancing feature detection. These
preprocessing steps are necessary to improve the effectiveness of feature extraction algorithms
like BRISK and SURF, particularly in scenarios where the original images do not provide
sufficient detail for accurate object detection.

The results show that different feature detection algorithms exhibit varying levels of
effectiveness depending on the image filters applied. For instance, the BRISK algorithm
performs exceptionally well when combined with filters that enhance edges, such as Sobel and
LOG, while SURF tends to detect fewer features under certain filtering conditions. This
highlights the importance of selecting appropriate detection methods and filters based on the
specific characteristics of the images being analyzed.

The experiment highlights the robustness of the BRISK algorithm in maintaining
detection accuracy even under significant scaling transformations. The consistent matching of
keypoints at both the original and scaled levels indicates that BRISK is a reliable choice for
applications where objects may vary in size, such as in dynamic imaging environments.

The study also points out the limitations of certain algorithms, such as FAST and SURF,
in detecting objects under specific conditions. For example, FAST struggled to detect objects
without additional filtering, while SURF was less effective when applied to images processed
with the Laplacian and LOG filters. These limitations suggest the need for a combined
approach or algorithm selection tailored to the specific requirements of the application.

Nicolae APOSTOLESCU, Dragos-Daniel ION-GUTA 18

INCAS BULLETIN, Volume 16, Issue 3/ 2024

ACKNOWLEDGEMENT
This research is supported by INCAS – National Institute for Aerospace Research “Elie
Carafoli”, as a beneficiary of the NUCLEU Program, project code PN-23-17-06-03, Ctr. no.
36 N/12.01.2023, with the Ministry of Research, Innovation and Digitalization.

REFERENCES
[1] H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool, Speeded-Up Robust Features (SURF), Computer Vision and

Image Understanding (CVIU), vol. 110, no. 3, pp. 346-359, 2008.
[2] A. Mohapatra, S. Sarangi, S. Patnaik, S. Sabut, Comparative study of corner and feature extractors for real-time

object recognition in image processing, Journal of information and communication convergence
engineering, vol.12, no. 4, pp. 263-270, 2014.

[3] B. Jähne, Digital Image Processing; 6th revised and extended edition, Springer Science & Business Media,
2005, ISBN 978-3-540-24035-8.

[4] K. Mikolajczyk, C. Schmid, A Performance Evaluation of Local Descriptors, IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 27, no. 10, pp. 1615-1630, 2005.

[5] K. Mikolajczyk, T. Tuytelaars, Local Features in Images: A Survey, Foundations and Trends in Computer
Graphics and Vision, vol. 3, no. 3, pp. 177-280, 2007.

[6] R. C. Gonzalez and R. E. Woods, Digital Image Processing, 3rd Edition, Prentice Hall, 2008.
[7] S. Mallat, A Wavelet Tour of Signal Processing, 2nd Edition, Academic Press, 1999.
[8] K. P. Valavanis and G. J. Vachtsevanos, Handbook of Unmanned Aerial Vehicles, Springer, 2015.
[9] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski, ORB: An Efficient Alternative to SIFT or SURF, in

Proceedings of the 2011 International Conference on Computer Vision (ICCV), 2011, pp. 2564-2571.
[10] D. G. Lowe, Distinctive Image Features from Scale-Invariant Keypoints, International Journal of Computer

Vision, vol. 60, no. 2, pp. 91-110, 2004.
[11] W. K. Pratt; Digital Image Processing, Fourth Edition, Wiley Interscience A John Wiley & Sons, Inc.,

Publication 2007.
[12] R. Szeliski, Computer Vision: Algorithms and Applications, Springer, London, 2010.
[13] B. K. P. Horn, Robot Vision, MIT Press, Cambridge, MA, 1986.
[14] C. Harris and M. Stephens, A Combined Corner and Edge Detector, in Proceedings of the 4th Alvey Vision

Conference, 1988, pp. 147-151.
[15] E. Rosten and T. Drummond, Machine learning for high-speed corner detection, in Proceedings of the 9th

European Conference on Computer Vision (ECCV), 2006, pp. 430-443.
[16] * * * Matlab ImageDataStore, https://www.mathworks.com/help/vision/ug/monocular-visual-odometry.html
[17] * * * MeetFrank Platform, https://meetfrank.com/
[18] * * * https://www.samsung.com/
[19] * * * Matlab-Computer Vision System Toolbox™.

https://www.mathworks.com/help/vision/ug/monocular-visual-odometry.html
https://meetfrank.com/
https://www.samsung.com/

