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Abstract: The present paper aims to conduct an experiment that compares different methods of detecting 
objects in images. Programs were developed to evaluate the efficiency of SURF, BRISK, MSER, and 
ORB object detection methods. Four static gray images with sufficiently different histograms were used. 
The experiment also highlighted the need for image preprocessing to improve feature extraction and 
detection. Thus, a programmed method for adjusting pixel groups was developed. This method proved 
useful when one of the listed algorithms failed to detect the object in the original image, but succeeded 
after adjustment. The effectiveness of detection methods and the evaluation of their performance depend 
on the application, image preparation, algorithms used, and their implementation. Results of the 
detection methods were presented numerically (similarities, gradients, distances, etc.) and graphically. 

Key Words: feature descriptors, feature detector, image matching, SIFT, SURF, BRIEF, FAST, BRISK, 
ORB, MSER 

1. INTRODUCTION 
The objective of this paper is to conduct an experiment on the behavior of digital methods for 
matching two images. One of the images represents an object contained in the second image, 
here called the scene. In the literature, the operation is called matching and ends with the 
detection of the object in the image [1-2]. In machining processes, the digital image is a matrix 
in which individual pixel processing does not provide information for interpreting the image 
but only for improving its visual appearance [3]. The pixel matrix can be processed to obtain 
relevant features represented by numerical values or descriptors that encode information found 
in different regions of the image [4]. Features are locations in the image with unique, 
repeatable structures and invariant to geometric transformations such as scaling, rotation or 
lighting changes. Features in an image are represented by numerical values or descriptors that 
encode information found in different regions of the image [5]. The feature extraction process 
involves analyzing pixel values and identifying specific patterns that can be used to represent 
the content of the image in a more compact and interpretive way [6]. Selecting and extracting 
features from an image are the most important steps in all computer vision applications 
(detecting, recognizing, and tracking objects in static or mobile images) [2]. Object detection 
has numerous applications in computer vision, such as object tracking, retrieval, video 
surveillance, image captioning, image segmentation, medical imaging, and several other 
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applications [7]. The image processing techniques such as BRISK, SURF, and ORB are crucial 
in enabling precise navigation, obstacle detection, and collision avoidance through visual data 
[1-2], [8-9]. The process of extracting features involves analyzing pixel values and identifying 
appropriate patterns, methods, and algorithms to represent image content in a more compact 
and interpretive way. 

2. IMAGE PROCESSING AND FEATURE DETECTION TECHNIQUES 
In the present experiment, histogram equalization techniques, adjusting image intensity values 
to a specified interval, and filtering were used to improve the image. Equalizing the histogram 
of an image involves obtaining a new image in which the pixel intensity values are within a 
certain range of values. Adjusting the image intensity values to a specified interval involves 
obtaining a new image according to the rule proposed in Table 1. 

Table 1 – Condition on pixel adjusting value 

Pixel value 𝑣𝑣(𝑥𝑥,𝑦𝑦) New pixel value after adjustment 
𝑣𝑣(𝑥𝑥,𝑦𝑦) ≤ 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖𝑖𝑖𝑜𝑜𝑜𝑜𝑜𝑜 
𝑣𝑣(𝑥𝑥,𝑦𝑦) >= 𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖 𝑠𝑠𝑠𝑠𝑠𝑠𝑜𝑜𝑜𝑜𝑜𝑜 

𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 < 𝑣𝑣(𝑥𝑥, 𝑦𝑦) < 𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖𝑖𝑖𝑜𝑜𝑜𝑜𝑜𝑜 +
𝑣𝑣(𝑥𝑥,𝑦𝑦) − 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖 − 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

∗ (𝑠𝑠𝑠𝑠𝑠𝑠𝑜𝑜𝑜𝑜𝑜𝑜 − 𝑖𝑖𝑖𝑖𝑖𝑖𝑜𝑜𝑜𝑜𝑜𝑜) 

Table 2 – Example of image adjustment 

𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 51; 
𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖 = 76; 

𝑖𝑖𝑖𝑖𝑖𝑖𝑜𝑜𝑜𝑜𝑜𝑜   = 102; 
𝑠𝑠𝑠𝑠𝑠𝑠𝑜𝑜𝑜𝑜𝑜𝑜 = 127; 

  234   197     45    155    69 
      1     83    185    49   196 
   118   201   121   189    49 
   109   121    39      62    74 
   118    10      87   234    24 

127   127   102   127   120 
102   127   127   102   127 
127   127   127   127   102 
127   127   102   113   125 
127   102   127   127   102 

The figures below, Fig. 1- 4, show an image to which histogram equalization and pixel 
intensity adjustments have been applied. 

Selecting and extracting features from an image are the most important steps in all 
computer vision applications (detecting, recognizing, and tracking objects in still or moving 
images). The operations involve numerical transformations on the spatial representations of 
the images with the preservation of the essential information from the original images. 

In the context of this paper, the components of feature detection and matching include 
describing, detecting, extracting, and matching features in images. The description looks at 
how certain information is associated around points of interest, such as gradient or intensity. 
Feature detection involves identifying structures, points, and regions of interest. The features 
provide unique information about the image. Feature matching consists of finding pairs of 
similar features from two or more images. To improve the accuracy of correspondences, it 
is common to apply special techniques, including geometric verification. 

Feature extraction is a process of transforming the original features into a new set of 
features with more relevant and compact information. The purpose of the operation is to 
capture the essential information from the original features and represent it in the space of 
smaller features [4], [10]. 
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Image segmentation is the process of partitioning a digital image into multiple image 
“segments”, also known as image regions or objects (discrete groups of pixels) [11]. 
Through segmentation, the image is simplified, becoming easier to analyze and allowing the 
detection of limits in images (lines, curves) as well as the location of objects. Numerous 
algorithms have been developed for segmentation, most of them are oriented and combined 
with information specific to the field of applicability. In order to detect and track objects of 
interest in real time, image segmentation becomes extremely beneficial in video surveillance, 
including both people and vehicles. By applying image segmentation techniques, video 
surveillance systems can easily identify and isolate relevant objects, providing more accurate 
monitoring. 

  

Fig. 1 – Original image and his histogram Fig. 2 – Image after histogram equalization 

  

Fig. 3 – Adjusted image and his histogram Fig. 4 – Adjusted image and his histogram 

Image filtering has brought an evolutionary change in the field of image processing. 
Purpose: reduce noise, intensify the image, and identify features. Filtering is applied locally to 
each pixel in the image by replacing the intensity or color value of the current pixel with a 
value that depends on the intensity or color values of neighboring pixels (filter window). The 
number of neighbors considered determines the size of the filter. A filter can be defined as a 
matrix applied to each pixel and its adjacent neighbors in the given image [12]. This array is 
called a convolution kernel and operates on the image by applying convolutions. If 𝐼𝐼 is an 
image defined as 𝐼𝐼 = �𝑎𝑎𝑖𝑖,𝑗𝑗�𝑖𝑖=1:𝑛𝑛,𝑗𝑗=1:𝑚𝑚

 , then each element 𝑎𝑎𝑖𝑖𝑖𝑖 (except the marginal elements), 
has 8 other elements around it, forming a 3x3 matrix. If 𝐵𝐵 is a 3x3 mask matrix, the element 
𝑐𝑐𝑖𝑖𝑖𝑖 of the convolution matrix 𝐼𝐼 ∙ 𝐵𝐵 is obtained as follows: 

𝑐𝑐𝑖𝑖𝑖𝑖 = 𝑏𝑏𝑖𝑖𝑖𝑖(𝑎𝑎𝑖𝑖−1,𝑗𝑗−1 + 𝑎𝑎𝑖𝑖−1,𝑗𝑗 + 𝑎𝑎𝑖𝑖−1,𝑗𝑗+1 + 𝑎𝑎𝑖𝑖,𝑗𝑗−1 + 𝑎𝑎𝑖𝑖,𝑗𝑗 + 𝑎𝑎𝑖𝑖,𝑗𝑗+1 
+𝑎𝑎𝑖𝑖+1,𝑗𝑗−1 + 𝑎𝑎𝑖𝑖+1,𝑗𝑗 + 𝑎𝑎𝑖𝑖+1,𝑗𝑗+1) 
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𝑖𝑖 ≠ 1, 𝑖𝑖 ≠ 𝑛𝑛, 𝑗𝑗 ≠ 1, 𝑗𝑗 ≠ 𝑚𝑚; 𝑐𝑐(1:𝑛𝑛, 1) = 0; 𝑐𝑐(1:𝑛𝑛,𝑚𝑚) = 0; 
𝑐𝑐(1,1:𝑚𝑚) = 0; 𝑐𝑐(𝑛𝑛, 1:𝑚𝑚) = 0 

Convolutional kernels and filters are the building blocks of many computer vision 
applications [12]. More advanced algorithms and the combination of several types of 
convolutional kernels can lead to remarkable results in the detection and extraction of features 
from images. 
The numerical values for Gauss, Laplace and LoG filters are obtained by known 
formulas: 

∇2𝑓𝑓 =
𝜕𝜕2𝑓𝑓
𝜕𝜕𝑥𝑥2

+
𝜕𝜕2𝑓𝑓
𝜕𝜕𝑦𝑦2

= 𝑓𝑓(𝑥𝑥 + 1,𝑦𝑦) + 𝑓𝑓(𝑥𝑥 − 1,𝑦𝑦) + 𝑓𝑓(𝑥𝑥,𝑦𝑦 + 1) + 𝑓𝑓(𝑥𝑥,𝑦𝑦 − 1) − 4𝑓𝑓(𝑥𝑥,𝑦𝑦) 

𝐺𝐺(𝑥𝑥,𝑦𝑦) = 1
2𝜋𝜋𝜎𝜎2

𝑒𝑒−
𝑥𝑥2+𝑦𝑦2

2𝜎𝜎2 , 𝐿𝐿𝐿𝐿𝐿𝐿(𝑥𝑥,𝑦𝑦) = − 1
𝜋𝜋𝜎𝜎4

�1 − 𝑥𝑥2+𝑦𝑦2

2𝜎𝜎2
� 𝑒𝑒−

𝑥𝑥2+𝑦𝑦2

2𝜎𝜎2  

The filters used in the experiment are common image processing kernels: PREWITT, Sobel, 
Gaussian, Laplacian, Average, Log defined as follows. 

Table 3 – The value of the filters used in the experiment 

 

 
Fig. 5 – Original image and filtered image with Prewitt, Sobel, Gauss, Laplacian and Log filters 

Prewitt 
filter �

   1    1   1
   0   0   0
−1 −1 −1

� 

 Gaussian filter 
approximation 
𝑥𝑥 = −1: 1: 1; 
𝑦𝑦 = 𝑥𝑥;  𝜎𝜎 = 1 

 
1

16 �
1 2 1
2 4 2
1 2 1

� 

Sobel 
Filter �

 1   2    1
 0   0   0
−1 −2 −1

� 

 Gaussian filter 
𝜎𝜎 = 0.5; 

𝑥𝑥 = −1: 1: 1; 
𝑦𝑦 = 𝑥𝑥 

�
0.0113 0.0838 0.0113
0.0838 0.6193 0.0838
0.0113 0.0838 0.0113

� 

 

Laplace 
filter �

0 −1 0
−1   4 −1
0 −1 0

� 

  
Laplacian filter �

0.1667 0.6667 0.1667
0.6667 −3.333 0.6667
0.1667 0.6667 0.1667

� 

Average 
m*n 
filter 

1
𝑚𝑚 ∗ 𝑛𝑛 �

1 1   ⋯ 1
⋮ ⋮ ⋮
1 1  ⋯ 1

� 

  
LoG filter �

0.2835 0.6629 0.2835
0.6629 −4.9006 0.6629
0.2835 0.6629 0.2835

� 
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Edge detection and image segmentation are important applications of gradient orientation 
and magnitude. The magnitude of the gradient is used to identify regions with significant 
changes in intensity, and the orientation of the gradient gives the direction of the edge [5], 
[13]. Image segmentation involves dividing the image into regions that are identified by 
similarity of orientation and magnitude of the gradient [14-15]. 

Popular algorithms for detecting and matching features 

Harris Corner Detection algorithm identifies corners in an image based on changes in intensity 
in different directions. Harris corner detection is widely used for feature-based image detection 
and alignment [1-2], [9]. FAST (Features from Accelerated Segment Test) is a real-time corner 
detection algorithm [2],[9]. SIFT (Scale-Invariant Feature Transform) detects points of interest 
at multiple scales and orientations and provides a robust descriptor for each point of interest, 
making it invariant to changes in scale, rotation, and lighting [2]. SURF (Speeded-Up Robust 
Features) is an effective alternative to SIFT. It uses integral images to accelerate computation 
and provides similar performance in terms of robustness and invariance in scale and rotation 
[10]. BRIEF, which stands for Binary Robust Independent Elementary Features, is a feature 
descriptor algorithm used in computer vision for image processing tasks like object recognition 
and image matching. ORB (Oriented FAST and Rotated BRIEF) is a fusion between FAST 
corner detection and the BRIEF descriptor. It also aims to provide an efficient and real-time 
alternative to SIFT and SURF. ORB captures the characteristics of objects at different scales 
and orientations. FAST identifies points of interest by comparing the brightness of a central 
pixel to the surrounding 16 pixels, and whether more than 8 of these surrounding pixels are 
either darker or brighter than the centre pixel is considered a key point. BRISK (Binary Robust 
Invariant Scalable Keypoints) is a feature detection and description algorithm. BRISK is 
modular. This feature allows it to be combined with other methods or algorithms for detecting 
and extracting features [2]. MSER (Maximally Stable Extremal Regions) identifies regions in 
an image where significant intensity level changes occur [2]. MinEigen is used in feature 
extraction, image recording, and object recognition. MinEigen tests each pixel in an image to 
determine if it corresponds to a corner. It considers a small area centred around the pixel and 
calculates the minimum eigenvalue of the structure tensor in that area [2]. 

3. EXPERIMENTAL RESULTS AND DISCUSSIONS 
The purpose of the experiment is to analyze and compare the results regarding the detection 
of objects in images using several detection methods. Four original and filtered images were 
used for both objects and scenes. 

  
Fig. 6 – Image 1 with object 1 [16] Fig. 7 – Image 2 with object 2 [17] 
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Fig. 8 – Image 3 with object 3 [18] Fig. 9 – Image 4 with object 4 

Below are the histograms of the four objects and scenes of each image. 

  
Fig. 10 – Intensity image 1 (object 1 histogram) Fig. 11 – Intensity image 2 (object 2 histogram) 

  

Fig. 12 – Intensity image 3 (object 3 histogram) Fig. 13 – Intensity image 4 (object 4 histogram) 

The information provided in Table 4 represent the performance of various feature 
detection methods (Harris, MinEigen, SURF, ORB, BRISK and MSER) when applied to 
images processed with different filters (I-orig, PREWITT, Sobel, Gaussian, Laplacian and 
LOG). The values in the tables represent the number of detected features from the original and 
filtered images by each method under the given filter conditions. 

Table 4 – The number of features detected in original and filtered images using different algorithms 

Im
ag

e 
1 

  
 

Method\filters I-orig PREWITT Sobel Gaussian Laplacian LOG 
Harris 62 35 46 64 137 131 
MinEigen 160 132 147 156 309 301 
SURF 16 12 20 15 0 0 
ORB 43 60 82 41 28 91 
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BRISK 30 76 128 23 3 54 
MSER 65 101 146 61 2 32 

Im
ag

e 
2 

 
Method\filters I-orig PREWITT Sobel Gaussian Laplacian LOG 
Harris 68 50 54 61 66 69 
MinEigen 133 111 116 124 115 122 
SURF 36 35 44 33 3 23 

ORB 14 17 23 13 27 38 
BRISK 91 101 142 79 77 153 
MSER 182 165 222 185 39 130 

Im
ag

e 
3 

 

Method\filters I-orig PREWITT Sobel Gaussian Laplacian LOG 
Harris 97 87 104 95 70 96 

MinEigen 147 131 141 156 148 155 
SURF 29 39 52 27 2 13 

ORB 32 29 37 23 41 48 

BRISK 156 226 280 119 175 312 
MSER 167 250 273 177 42 110 

Im
ag

e 
4 

 

Method\filters I-orig PREWITT Sobel Gaussian Laplacian LOG 
Harris 265 287 338 246 247 305 
MinEigen 513 477 503 529 485 516 
SURF 100 154 231 93 17 91 
ORB 800 708 808 636 859 1042 
BRISK 476 813 1106 315 653 1128 
MSER 182 371 507 167 104 262 

From Table 4 we see that Harris performs consistently across all filters, with relatively 
stable feature detection numbers. However, its performance varies depending on the image. In 
Image 1, Harris detects more features with Laplacian and LOG filters, indicating its sensitivity 
to these filters. In Image 5, Harris detects the highest number of features with the Sobel filter. 

MinEigen generally detects the most features across all methods and filters, especially 
under the Gaussian, Laplacian, and LOG filters. This suggests that MinEigen is highly 
sensitive to image features that are enhanced by these filters. SURF tends to detect fewer 
features compared to other methods, especially under the Laplacian and LOG filters, where it 
detects almost no features. This suggests that SURF may not perform well with images 
processed by these filters, possibly due to the nature of the keypoints it identifies. ORB’s 
performance is varied, detecting more features with Sobel and LOG filters in some figures 
(e.g., Image 1 and Image 4). ORB shows significant variability depending on the filter applied, 
which might indicate that ORB is more sensitive to certain types of image transformations. 

BRISK detects a high number of features with the Sobel and LOG filters, especially in 
Image 3 and Image 4. This suggests that BRISK is effective in identifying features in images 
with pronounced edges and noise, as Sobel and LOG often enhance these aspects. Transposed 
graphically, the top results lead to the observation that the efficiency of detection algorithms 



Nicolae APOSTOLESCU, Dragos-Daniel ION-GUTA 10 
 

INCAS BULLETIN, Volume 16, Issue 3/ 2024 

is significantly dependent on the type of filter used. The results in the tables above are 
transposed into the graphs below. 

  
Fig. 14 – The number of features detected in Image 1 Fig. 15 – The number of features detected in Image 2 

  
Fig. 16 – The number of features detected in Image 3 Fig. 17 – The number of features detected in Image 4 

Analyzing the results in the table and graphs above, it can be seen that the efficiency of the 
detection algorithms is significantly dependent on the type of filter used. 

Table 5 – Comparison of feature detection methods 

Sc
en

e 

Method 
Object 

pts. 
Count 

Scene 
pts. 

Count 

N
o 

Pa
irs

 

 

Sc
en

e 

Method 
Object 

pts. 
Count 

Scene 
pts. 

Count 

N
o 

Pa
irs

 

1 

SURF 16 424 15  

3 

SURF 29 601 24 
BRISK 7 259 2  BRISK 39 1059 15 
ORB 43 3265 25  ORB 32 9850 19 
ALMOST 3 85 2  ALMOST 36 609 20 
MinEigen 71 1426 43  MinEigen 44 2853 23 
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MSER 65 308 11  MSER 167 839 28 
Sc

en
e 

Method 
Object 

pts. 
Count 

Scene 
pts. 

Count 

N
o 

Pa
irs

 

 

Sc
en

e 

Method 
Object 

pts. 
Count 

Scene 
pts. 

Count 

N
o 

Pa
irs

 

2 

SURF 36 926 26  

4 

SURF 100 1555 77 
BRISK 26 1923 14  BRISK 259 3737 59 
ORB 14 9043 9  ORB 800 28373 415 

ALMOST 16 1092 12  ALMOST 204 2549 117 
MinEigen 41 1980 19  MinEigen 292 4767 94 
MSER 182 1200 29  MSER 182 1569 39 

Common Object Scene Features Detected with the MinEigen Algorithm 

 
Fig. 18 – Matched points object scene using MinEigen algorithm 

 
Fig. 19 – Matched points object scene using MinEigen algorithm 

 
Fig. 20 – Matched points object scene using MinEigen algorithm 
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Fig. 21 – Matched points object scene using MinEigen algorithm 

In the previous example it was noticed that the “bell” object was not detected in the scene 
containing it using the FAST and BRISK methods, so we proceeded to improve the image by 
applying a set of filters. 
The result is shown in the table below. Since at least three pairs of object-scene points are 
required for detection, it can be seen that only the PREWITT, Sobel, and Sobel-Average filters 
determined at least three matching point perches. 

Table 6 – Feature detection performance comparison of FAST and BRISK methods 

FAST 
 

Object 
pts. 

Count 

Scene 
pts.  

Count 

No 
Pairs BRISK 

Object 
pts.  

Count 

Scene  
pts. 

Count 

No 
Pairs 

Orig Image 1 
object 1 3 85 2 Orig Image 1 

object 1 7 259 2 

Filtered Image with Filtered Image with 
PREWITT 22 427 11 PREWITT 31 752 5 
Sobel 41 648 19 Sobel 53 1104 11 
Gaussian 1 53 1 Gaussian 5 216 1 
Laplacian 0 40 0 Laplacian 0 41 0 
Average 1 12 1 Average 5 129 1 
Log 20 372 0 Log 21 418 1 
Log & Sobel 92 2047 3 Log & Sobel 111 2596 2 
Sobel & Log 83 1774 9 Sobel & Log 104 2216 2 
PREWITT & 
Laplacian 22 468 2 PREWITT & 

Laplacian 26 517 1 

Sobel & 
Gaussian 31 540 18 Sobel & 

Gaussian 38 940 7 

Sobel & 
Average 13 216 9 Sobel & 

Average 14 494 5 

PREWITT & 
Average 4 87 2 PREWITT & 

Average 8 247 1 

By applying a function to increase the contrast of object and scene images (mapping the 
values of the original pixels to new values), the object is detected in the scene even without 
filtering the images. 

The effect of the filters can be analyzed from the table below. 
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Table 7 – Impact of contrast enhancement and filtering on feature detection using ALMOST and BRISK methods 

FAST 
 

Object 
pts. Count 

Scene 
pts. 

Count 

No 
Pairs BRISK Object 

pts. Count 

Scene 
pts. 

Count 

No 
Pairs 

Imadjust 
(Image: bell) 

25 194 5 Imadjust 
(Image: bell) 

28 556 7 

Filtered Image with Filtered Image with 
Gaussian 1 53 1 Gaussian 17 466 4 
Laplacian 0 40 0 Laplacian 21 141 0 
Average 6 39 2 Average 11 306 4 
Log 71 725 3 Log 21 418 1 
Sobel & Log 153 2328 8 Sobel & Log 208 3013 5 

Table 7 presents the number of object points detected, scene points detected and matching 
pairs identified by the ALMOST and BRISK feature detection methods after applying a 
contrast enhancement function (Imadjust [19]) and various image filters to the object and scene 
images. The results highlight how contrast enhancement alone can aid in object detection and 
how different filters further influence the detection and matching effectiveness of each 
method. 

 
Fig. 22 – Matched points object scene using FAST algorithm 

 
Fig. 23 – Detected object using FAST algorithm 
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To detect objects in images, algorithms also use distances between characteristic points 
determined in the object matrix and the scene matrix. It was previously shown that using the 
FAST method, the object Image1 (‘bell’) was detected in Scene1 using the following 5 pairs 
of points: 

[𝑥𝑥𝑥𝑥1,𝑦𝑦𝑦𝑦1] = [80,25]; [𝑥𝑥𝑥𝑥2,𝑦𝑦𝑦𝑦2] = [74,57]; [𝑥𝑥𝑥𝑥3,𝑦𝑦𝑦𝑦3] = [28,94];  
[𝑥𝑥𝑥𝑥4,𝑦𝑦𝑦𝑦4] = [68,105];  [𝑥𝑥𝑥𝑥5,𝑦𝑦𝑦𝑦5] = [67,152] 

 

[𝑥𝑥𝑥𝑥1,𝑦𝑦𝑦𝑦1] = [501,177]; [𝑥𝑥𝑥𝑥2,𝑦𝑦𝑦𝑦2] = [469,171]; [𝑥𝑥𝑥𝑥3,𝑦𝑦𝑦𝑦3] = [432,125];  
[𝑥𝑥𝑥𝑥4,𝑦𝑦𝑦𝑦4] = [420,165]; [𝑥𝑥𝑥𝑥5,𝑦𝑦𝑦𝑦5] = [374,164] 

The pixel values corresponding to the dot pairs are: 
Pixel_value_object = [ 13 233     4   203   246]; 
Pixel_value_scene = [ 17 185    20   170   185]; 

  
Fig. 24 – Object points matched to scene points Fig. 25 – Scene points matched to object points 

Table 8 shows the Euclidean distances between each pair of keypoints in the object image. 
Similarly, Table 9 shows the Euclidean distances between each pair of keypoints in the scene 
image. This table helps in understanding the spatial relationships between keypoints in the 
scene image and can be compared to the distances in the object image (Table 8) to analyze 
how the object has been transformed or deformed in the scene. 

Table 8 – Object point distance 

From point to 
point 1 2 3 4 5 

1 0 32.55 86.40 80.89 127.66 
2 32.55 0 59.03 48.37 95.25 
3 86.40 59.03 0 41.48 69.89 
4 80.89 48.37 41.48 0 47.01 
5 127.66 95.25 69.89 47.01 0 

Table 9 – Scene point distance 

From point to 
point 1 2 3 4 5 

1 0 32.55 86.40 81.29 127.66 
2 32.55 0 59.03 49.87 95.45 
3 86.40 59.03 0 41.48 69.89 
4 80.89 48.37 41.48 0 47.01 
5 127.66 95.25 69.89 47.01 0 
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4. THE EFFECT OF SCALING ON OBJECT DETECTION IN THE IMAGE 
Initial Scenario: Detecting the Object at Scale 1 

In the first scenario, the “bell” object was detected, extracted from a scene at scale 1, using the 
BRISK method. 
After running the detection program, a total of 4 matched points between the object and the 
scene were identified. These matched points are shown in the table below: 

Table 10 – Matched points between object and scene at Scale 1 

Matched Points on Object Matched Points on Scene 
[80.5607, 24.5235] 

[27.6842, 145.8738] 

[68.4013, 107.4979] 

[86.3781, 124.9668] 

[501.4812, 177.5984] 

[379.6916, 124.5747] 

[417.9175, 165.7861] 

[401.0456, 183.6526] 

To assess how well the points on the object match those in the scene, the distances 
between the corresponding points were calculated. 

The results show that the distances are very similar, indicating a correct and robust match 
between the object and the scene in the image. 

Table 11 – Distances between object points at scale 1 

From point to point 1 2 3 4 
1 0 132.098 83.863 100.180 
2 132.098 0 55.902 62.626 
3 83.863 55.902 0 24.759 
4 100.180 62.626 24.759 0 
Table 12 – Distances between scene points at scale 1 

From point to point 1 2 3 4 
1 0 133.015 84.853 100.18 
2 133.015 0 55.902 62.968 
3 84.853 55.902 0 24.083 
4 100.180 62.968 24.083 0 

Scaling Scenario: Detecting the Object Scaled to 1.9x 

In the second scenario, the “bell” object was scaled by 1.9 times, and the detection process 
was repeated using the BRISK method. 

After running the program, 7 matched points between the scaled object and the scene were 
identified. The matched points and corresponding distances are shown in the table below. 

Table 13 – Matched Points between the Object Scaled to 1.9x and the Scene 

Matched Points on Object Matched Points on Scene 
[50.2424, 269.0007] 
[154.1524, 46.1317] 
[130.0989,200.2827] 
[52.9475, 275.9154] 

[384.5775, 123.1958] 
[501.4812, 177.5984] 
[419.9166, 165.3867] 
[379.6916, 124.5747] 
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[130.3662, 202.3903] 
[52.1059, 276.8873] 

[138.0000, 162.0000] 

[417.9175, 165.7861] 
[379.6916, 124.5747] 
[440.3186, 170.4785] 

Table 14 – Distances between Object Points at Scale 1.9 

From 
point to 

point 
1 2 3 4 5 6 7 

1 0 246.0589       105.6456   6.3246   104.3504   7.2801   138.5388   
2 246.0589 0 155.8589        250.6891   157.8354     251.6029   117.0982    
3 105.6456     155.8589   0 108.2081          2.0000   108.9036     38.8330   
4 6.3246   250.6891   108.2081     0 106.8316          1.0000   142.0035    
5 104.3504     157.8354   2.0000   106.8316     0 107.5174          40.7922   
6 7.2801   251.6029   108.9036    1.0000   107.5174    0 142.8006          
7 138.5388 117.0982 38.8330 142.0035 40.7922 142.8006 0 

Table 15 – Distances between Scene Points at Scale 1.9 

From 
point to 

point 

1 2 3 4 5 6 7 

1 0 128.8604          54.6717    5.0990   53.4135    5.0990   73.1095    
2 128.860 0 82.8734          133.0150    84.8528     133.0150    61.4003    
3 54.6717     82.8734   0 57.2800          2.0000    57.2800          21.5870    
4 5.0990    133.0150    57.2800     0 55.9017          0 76.4003    
5 53.4135     84.8528   2.0000    55.9017          0 55.9017          23.5372    
6 5.0990    133.0150    57.2800    0 55.9017    0 76.4003          
7 73.1095 61.40032 21.5870 76.4003 23.5372 76.4003 0 

Analyzing the results obtained after the detection program of the scaled object we notice 
the following: 

• The number of object points detected after scaling is no different from that without 
scaling (there are three almost identical pairs). Small distance between them. 

• Coordinates of object points are multiplied by the scaling factor. 

  

Fig. 26 – Spatial object points matched to scene points Fig. 27 – Spatial scene points matched to object 
points 
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For a good understanding of the role of gradients in the operation of determining pairs of 
similar object-scene points of interest, matrices of 21 x 21 pixels were built around a paired 
point, whose gradients were calculated. 

  
Fig. 28 – Iscontours and gradients in the 21x21 matrix 
around an object point rotated 90 degrees. The point 

is one of those suitable object-scenes 

Fig. 29 – Isocontours and gradients in the 21x21 
matrix around a scene point. The point is one of 

those suitable object-scenes 
This study demonstrates the effectiveness of the BRISK method in detecting and matching 
features between objects and scenes, even under scaling transformations. The algorithm 
showed considerable robustness in identifying and matching keypoints, maintaining accuracy 
during significant scaling. This makes BRISK a solid choice for object detection applications 
where scale variations can be a major challenge. 

5. CONCLUSIONS 
The study demonstrates that preprocessing techniques, such as histogram equalization and 
pixel intensity adjustments, play a crucial role in enhancing feature detection. These 
preprocessing steps are necessary to improve the effectiveness of feature extraction algorithms 
like BRISK and SURF, particularly in scenarios where the original images do not provide 
sufficient detail for accurate object detection. 

The results show that different feature detection algorithms exhibit varying levels of 
effectiveness depending on the image filters applied. For instance, the BRISK algorithm 
performs exceptionally well when combined with filters that enhance edges, such as Sobel and 
LOG, while SURF tends to detect fewer features under certain filtering conditions. This 
highlights the importance of selecting appropriate detection methods and filters based on the 
specific characteristics of the images being analyzed. 

The experiment highlights the robustness of the BRISK algorithm in maintaining 
detection accuracy even under significant scaling transformations. The consistent matching of 
keypoints at both the original and scaled levels indicates that BRISK is a reliable choice for 
applications where objects may vary in size, such as in dynamic imaging environments. 

The study also points out the limitations of certain algorithms, such as FAST and SURF, 
in detecting objects under specific conditions. For example, FAST struggled to detect objects 
without additional filtering, while SURF was less effective when applied to images processed 
with the Laplacian and LOG filters. These limitations suggest the need for a combined 
approach or algorithm selection tailored to the specific requirements of the application. 
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