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Abstract: In their in-depth study on cardiac tissue modeling, Clayton and Panfilov [1] present several 
monodomain or bidomain approaches for the mathematical description of the cardiac tissue action 
potential dynamics. For simulation of wave propagation in the cardiac tissue, the monodomain 
descriptions which use integer order derivatives reproduce many of the phenomena that are observed 
experimentally and are thus an appropriate analysis tool. The main objection concerning the 
monodomain approaches is that the electrical circuit capacitor, appearing in these descriptions, is 
considered ideal (the space between the capacitor plates is vacuum) and the Curie effect is ignored. 
The Curie effect consists of the fact that in case of a dielectric material, if at a moment of time a constant 
external voltage is applied, due to the capacitance of the capacitor and the properties of the dielectric, 
a supplementary electrical current is produced, besides the ohmic current. This supplementary 
contribution cannot be neglected in some cases. 
In this paper, the Curie effect, describing the action potential dynamics in cardiac tissue, assumed 
isotropic, is incorporated in the monodomain equation. The novelty is that this approach does not use 
fractional order derivatives and the obtained mathematical description with these equations is 
objective. 
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1. INTRODUCTION 
In their in-depth study on cardiac tissue modeling, Clayton and Panfilov [1] present several 
mathematical descriptions of the cardiac tissue action potential dynamics. 

It is highlighted that the currently used and available tissue level descriptions are 
monodomain or bidomain approaches. In a monodomain description it is assumed that cardiac 
tissue behaves as an excitable medium, with diffusion and local excitation of membrane 
voltage. It provides the simplest description of action potential propagation: 

𝜕𝜕𝑉𝑉𝑚𝑚
𝜕𝜕𝜕𝜕

= 𝛻𝛻 ⋅ (𝐷𝐷𝛻𝛻𝑉𝑉𝑚𝑚)−
𝐼𝐼𝑖𝑖𝑖𝑖𝑖𝑖 + 𝐼𝐼𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

𝐶𝐶𝑚𝑚
 (1) 
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Here 𝛻𝛻 is the gradient operator, and 𝐷𝐷 is a coefficient with units of distance2 time-1 that 
describes the effective diffusion of voltage through the medium. 

The currents 𝐼𝐼𝑖𝑖𝑖𝑖𝑖𝑖 and 𝐼𝐼𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 are conventional, so they represent the flow of positive ions 
from inside to outside the cell (i.e. flow of Na+ into the cell during the action potential upstroke 
is a negative current) through the membrane and any applied stimulus, respectively. 

For models describing an isotropic tissue, 𝐷𝐷 is a scalar quantity, and is given by: 

𝐷𝐷 =
1

𝑆𝑆𝑣𝑣𝑅𝑅𝑖𝑖𝐶𝐶𝑚𝑚
=

𝐺𝐺𝑖𝑖
𝑆𝑆𝑣𝑣𝐶𝐶𝑚𝑚

 (2) 

where 𝑆𝑆𝑣𝑣 is the surface volume ratio of cells, 𝑅𝑅𝑖𝑖 the bulk cytoplasmic resistivity of the tissue, 
𝐶𝐶𝑚𝑚 the specific capacitance and 𝐺𝐺𝑖𝑖 the bulk intracellular conductivity. 

Cardiac tissue anisotropy in monodomain descriptions is given by the diffusion tensor 𝐷𝐷 
which can be found from the fiber direction and orientation of the sheet plane. 

For simulation of wave propagation in the cardiac tissue, monodomain descriptions, 
which use integer order derivatives, reproduce many of the phenomena that are observed 
experimentally, and are thus an appropriate tool. This description is objective. For more details 
see [2], [3]. The main objection concerning the monodomain approaches is that the electrical 
circuit capacitor, appearing in these descriptions, is ideal (the space between the capacitor 
plates is vacuum) and the Curie effect is ignored. 

2. THE CURIE EFFECT 
Concerning Curie effect, in [4] it is shown that in case of a dielectric material, if at the moment 
of time 𝑡𝑡 = 0 a constant 𝑉𝑉0 external voltage is applied, the current intensity produced in that 
material is: 

𝑖𝑖𝐶𝐶(𝑡𝑡) =
𝑉𝑉0
ℎ𝑡𝑡𝛼𝛼

 (3) 

with 0 < 𝛼𝛼 < 1, 𝑡𝑡 > 0 and ℎ a constant related to the capacitance of the capacitor and the 
properties of the dielectric. 

In this mathematical description of current intensity, a moment of time 𝑀𝑀 is represented 
by a real number 𝑡𝑡 > 0 (for what this means see [2], [3], [5]). 

This representation assumes (implicitly) that Curie, the investigator of this phenomenon 
(observer 𝑂𝑂), has chosen the moment of time 𝑀𝑀𝑂𝑂 corresponding to the event “stopwatch start” 
as origin for the time measurement (see [2], [3], [5]). 

Moreover, it is assumed (implicitly) that the event “stopwatch starts” is simultaneous with 
the event “the constant 𝑉𝑉0 external voltage is applied to the circuit”. 

3. THE CURIE EFFECT INCORPORATION IN THE EQUATION OF THE 
ACTION POTENTIAL PROPAGATION IN MONODOMAIN MODEL, FOR 

ISOTROPIC TISSUE AND CONSTANT DIFFUSION 
In [6], Schweidler shows that, due to the Curie effect, the current intensity in the electrical 
circuit is: 

𝑖𝑖(𝑡𝑡) = 𝐼𝐼(𝑡𝑡) + 𝑖𝑖𝐶𝐶(𝑡𝑡) (4) 
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where )(tiC  is the Curie current and ( )I I t=  is the ohmic current. 
Extending these considerations to the Eq. (1), which describes the action potential 

propagation in monodomain model, for isotropic tissue and constant diffusion the following 
equation is found: 

𝐶𝐶𝑚𝑚
𝜕𝜕𝑉𝑉𝑚𝑚
𝜕𝜕𝜕𝜕

=
1

𝑆𝑆𝑣𝑣𝑅𝑅𝑖𝑖
𝛥𝛥𝑉𝑉𝑚𝑚 − 𝐼𝐼𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑖𝑖𝐶𝐶(𝑡𝑡) (5) 

where )(tiC  is the Curie current given by (3). 
Eq. (5) incorporates the Curie effect and describes the action potential propagation in 

monodomain approach in case of isotropic tissue.  
Proposition 1. The mathematical description of the action potential dynamics in isotropic 

cardiac tissue with constant diffusion coefficient, using formula (5) is objective. 
Proof. Consider two observers 𝑂𝑂 and 𝑂𝑂∗ with their fixed orthogonal reference frame 𝑅𝑅𝑂𝑂 =

(𝑂𝑂; 𝑒𝑒1, 𝑒𝑒2, 𝑒𝑒3) and  𝑅𝑅𝑂𝑂 = (𝑂𝑂∗; 𝑒𝑒1∗, 𝑒𝑒2∗, 𝑒𝑒3∗), respectively. 
The moment of time 𝑀𝑀𝑂𝑂, corresponding to the event “the stopwatch of observer 𝑂𝑂 starts”, 

coincides with the moment of time 𝑀𝑀𝑂𝑂∗, corresponding to the event “the stopwatch of observer 
𝑂𝑂∗ starts”. That is because, these events are simultaneous with the event “the constant 𝑉𝑉0 
external voltage is applied to the circuit”. 

Therefore, an arbitrary moment of time 𝑀𝑀 for both observers is described mathematically 
by the same real number 𝑡𝑡 > 0 (for details see [2], [3]). 

Observer 𝑂𝑂 describes the action potential dynamics by the real valued function 𝑉𝑉𝑚𝑚 =
𝑉𝑉𝑚𝑚(𝑡𝑡, 𝑥𝑥1,𝑥𝑥2,𝑥𝑥3) which checks the following partial differential equation:  

𝐶𝐶𝑚𝑚
𝜕𝜕𝑉𝑉𝑚𝑚
𝜕𝜕𝜕𝜕

=
1

𝑆𝑆𝑣𝑣𝑅𝑅𝑖𝑖
𝛥𝛥𝑉𝑉𝑚𝑚 − 𝐼𝐼(𝑡𝑡)𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑖𝑖𝐶𝐶(𝑡𝑡) (6) 

Observer 𝑂𝑂∗ describes the action potential dynamics by the real valued function 
𝑉𝑉𝑚𝑚∗ = 𝑉𝑉𝑚𝑚∗(𝑡𝑡, 𝑥𝑥1∗, 𝑥𝑥2∗,𝑥𝑥3∗) which checks the following partial differential equation: 

𝐶𝐶𝑚𝑚
𝜕𝜕𝑉𝑉𝑚𝑚∗

𝜕𝜕𝜕𝜕
=

1
𝑆𝑆𝑣𝑣𝑅𝑅𝑖𝑖

𝛥𝛥𝑉𝑉𝑚𝑚∗ − 𝐼𝐼(𝑡𝑡)𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑖𝑖𝐶𝐶∗(𝑡𝑡) (7) 

From this point for the proof of objectivity see [2], [3]. 
For anisotropic cardiac tissue and variable diffusion extending Schweidler considerations 

to Eq. (1) for the dynamics of the action potential the following equation is found: 

𝐶𝐶𝑚𝑚
𝜕𝜕𝑉𝑉𝑚𝑚
𝜕𝜕𝜕𝜕

= 𝐶𝐶𝑚𝑚𝛻𝛻 ⋅ (𝐷𝐷𝛻𝛻𝑉𝑉𝑚𝑚) − 𝐼𝐼(𝑡𝑡)𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑖𝑖𝐶𝐶(𝑡𝑡) (8) 

Proposition 2. The mathematical description of the action potential dynamics in 
anisotropic cardiac tissue with variable diffusion, using formula (8) is objective. 

4. ON THE MATHEMATICAL DESCRIPTION OF THE CARDIAC TISSUE 
ACTION POTENTIAL DYNAMICS USING CLASSIC FRACTIONAL 

ORDER DERIVATIVES 
In references [7-13], mathematical descriptions of the dynamics of the action potential in 
cardiac tissue using equations with fractional order partial derivatives, are presented. 



Agneta M. BALINT, Stefan BALINT, Adrian NECULAE 38 
 

INCAS BULLETIN, Volume 15, Issue 4/ 2023 

The main idea in these papers is that the Curie effect and the cardiac tissue heterogeneities 
can be incorporated in classic description, directly substituting the integer order temporal 
derivatives with classic Caputo or classic Riemann-Liouville temporal fractional order 
derivatives. 

For classic Caputo or classic Riemann-Liouville temporal fractional order derivatives see 
[14]. In the referred descriptions using fractional order derivatives, the analysis of the 
objectivity is missing. 

In the following it is shown that the mathematical description of the action potential 
dynamics in isotropic cardiac tissue with constant diffusion coefficient, using classic temporal 
Caputo or classic temporal Riemann-Liouville fractional order derivatives is not objective. 

That is, two observers describing the same dynamics with these tools, obtain two different 
results. 

This is not an academic curiosity! It is rather a problem: which one of the obtained results 
is correct? 

Consider first the use of the temporal classic Caputo fractional partial derivative of order 
𝛼𝛼, 0 < 𝛼𝛼 < 1 ([2], [3]). 

Assume that the reference frames of observers 𝑂𝑂 and 𝑂𝑂∗ coincide and only the moment of 
times of the start of stopwatches 𝑀𝑀𝑂𝑂 and 𝑀𝑀𝑂𝑂∗ are different. 

In this case, for isotropic cardiac tissue and constant diffusion coefficient, equation (1) for 
observers 𝑂𝑂 and 𝑂𝑂∗  becomes: 

𝐷𝐷0𝐶𝐶 𝑡𝑡𝑀𝑀
𝛼𝛼 𝑉𝑉𝑚𝑚 = 𝐷𝐷�

𝜕𝜕2𝑉𝑉𝑚𝑚
𝜕𝜕𝑥𝑥𝑖𝑖2

3

𝑖𝑖=1

−
𝐼𝐼𝑖𝑖𝑖𝑖𝑖𝑖 + 𝐼𝐼𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

𝐶𝐶𝑚𝑚
 (9) 

𝐷𝐷0𝐶𝐶 𝑡𝑡𝑀𝑀
∗
𝛼𝛼 𝑉𝑉𝑚𝑚∗ = 𝐷𝐷�

𝜕𝜕2𝑉𝑉𝑚𝑚∗

𝜕𝜕𝑥𝑥𝑖𝑖2

3

𝑖𝑖=1

−
𝐼𝐼𝑖𝑖𝑖𝑖𝑖𝑖∗ + 𝐼𝐼𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎∗

𝐶𝐶𝑚𝑚
 (10) 

Proposition 3. The mathematical description with equations (9), (10) is not objective. 
For details and proof see [2], [3]. 
Therefore, two observers who describe the same cardiac tissue action potential dynamics 

with (9) and (10) respectively, obtain two different results. The problem is: which one of the 
obtained results is correct? 

Consider now the use of classic Riemann-Liouville temporal fractional partial derivative 
of order 𝛼𝛼, 0 < 𝛼𝛼 < 1. 

Assume that the reference frames of the two observers coincide. In this case, for isotropic 
cardiac tissue and constant diffusion, equation (1) for observers 𝑂𝑂 and 𝑂𝑂∗ becomes: 

𝐷𝐷0𝑅𝑅−𝐿𝐿
𝑡𝑡𝑀𝑀
𝛼𝛼 𝑉𝑉𝑚𝑚 = 𝐷𝐷�

𝜕𝜕2𝑉𝑉𝑚𝑚
𝜕𝜕𝑥𝑥𝑖𝑖2

3

𝑖𝑖=1

−
𝐼𝐼𝑖𝑖𝑖𝑖𝑖𝑖 + 𝐼𝐼𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

𝐶𝐶𝑚𝑚
 (11) 

𝐷𝐷0𝑅𝑅−𝐿𝐿
𝑡𝑡𝑀𝑀
∗
𝛼𝛼 𝑉𝑉𝑚𝑚∗ = 𝐷𝐷�

𝜕𝜕2𝑉𝑉𝑚𝑚∗

𝜕𝜕𝑥𝑥𝑖𝑖2

3

𝑖𝑖=1

−
𝐼𝐼𝑖𝑖𝑖𝑖𝑖𝑖∗ + 𝐼𝐼𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎∗

𝐶𝐶𝑚𝑚
 (12) 

Proposition 4. The mathematical description with equations (11), (12) is not objective. 
For details and the proof see [2], [3]. 
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5. CONCLUSIONS AND COMMENTS 
1. Simulation of wave propagation in the cardiac tissue using monodomain models 

reproduce many of the phenomena that are observed experimentally and are thus an 
appropriate tool. These models are objective. Their main weakness is that the electrical 
circuit capacitor, appearing in these models, is ideal (the space between the capacitor 
plates is a vacuum) and the Curie effect is ignored. In this paper, the Curie effect is 
incorporated in the monodomain cardiac tissue model. For isotropic constant 
diffusion tissue, the new monodomain model is defined by Eq. (6), and for general 
monodomain model by Eq. (11). These mathematical descriptions are objective. 

2. Mathematical description of the cardiac tissue potential dynamics in case of isotropic 
and constant diffusion coefficient, using classic temporal Caputo or classic Riemann-
Liouville fractional order derivatives, is not objective. The non-objectivity is 
originated in the incompatibility of the classical temporal Caputo and classical 
temporal Riemann-Liouville fractional order derivatives with the understanding of the 
mathematical description of “time” used in case of the mathematical description the 
evolution of real-world phenomena [5]. Even if, for certain numerical cases, the 
computed results fit the experimental data well, do not use the classical fractional order 
model [13] to explain the experimental results. The explanation is questionable 
because, by changing the origin of the time measurement, the computed results will 
be different. 

3. The relevance of this work to cardiologists performing experiments is: Do not use the 
fractional order model to explain the experimental results in case of the cardiac tissue 
potential dynamics. 
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