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Abstract: In the field of fractional calculus applications, there is a tendency to admit that “integer-
order derivatives cannot simply be replaced by fractional-order derivatives to develop fractional-order
theories”. There are different arguments for that: initialization problem, inconsistency, use of
nonsingular or singular kernels, loss of objectivity. In this paper it is shown that the mathematical
description of the bulk fluid flow and that of the content impurity spread replacing integer order
temporal derivatives with general temporal Caputo or general temporal Riemann-Liouville fractional
order derivatives, are objective. More precisely, it is proven that, the mathematical description of the
bulk fluid 2D flow and that of the content impurity spread, in a horizontal unconfined aquifer, obtained
replacing integer order temporal derivatives with general temporal Caputo or general temporal
Riemann-Liouville fractional order derivatives, are objective. It is also proven that, the mathematical
description of a Newtonian, incompressible, viscous bulk fluid 3D flow and that of the contained
impurity dispersion, obtained replacing integer order temporal derivatives with general temporal
Caputo or general temporal Riemann-Liouville fractional order derivatives, are objective. The obtained
results show the compatibility of the general temporal Caputo and general temporal Riemann-Liouville
fractional order derivatives with the understanding of the “measured time” evolution. In the same time
these results reveal that, the objectivity violation, when integer order temporal derivatives are replaced
by classic temporal Caputo or classic temporal Riemann-Liouville fractional order derivatives, is
originated in the incompatibility of the classic fractional order derivatives, with the understanding of
the “measured time” evolution.

Key Words: mathematical description, groundwater flow, impurity spread, fractional order derivative,
“measured time” evolution

1. INTRODUCTION

In the early 2000s a discussion has started on the initialization problems when classic temporal
Caputo and classic temporal Riemann-Liouville fractional order derivatives are used [1, 2, 3,
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4, 5, 6]. Some published results in [7] and [8] concluded to the inconsistency of classic
temporal Caputo and classic temporal Riemann-Liouville fractional order derivatives
definition to take into account initial conditions if these definitions are used in fractional order
partial differential equations or in fractional order ordinary differential equations. In [7, 9, 10]
a time shift was used to highlight the above mentioned problem. In [11] the use of non-singular
kernels versus the use of singular kernels in fractional calculus is discussed in a similar
context. The approach, developed in [12] and [13] to the question: “why integer-order
derivatives cannot be simply replaced by fractional-order derivatives to develop the
fractional-order theories?”, is different. In [12] an answer is given to this question, in the case
of the 2D-flow of a fluid to the well in an unconfined horizontal aquifer and the spread of the
contained impurity. In [13] an answer is given to the question in the case of a Newtonian
incompressible, viscous bulk fluid 3D-flow and the dispersion of the contained impurity. In
[12] and [13] the description is made replacing directly integer order temporal derivatives with
fractional order classic temporal Caputo or classic temporal Riemann-Liouville derivatives. It
is proven that the so-obtained mathematical descriptions are non-objective. The objectivity
violation is originated in the incompatibility of the classic Caputo and classic Riemann-
Liouville fractional order derivatives definition with the understanding of the “measured time”
evolution. Remember that in the classical theory of the 2D-flow to the well, in a horizontal,
unconfined, homogeneous, isotropic, aquifer [12], [14], [15] the piezometric head hy =

—

ho (ty, x1, x,) and the vector valued function 170 = Uy (tpy, x1, X3) that describe the 2D flow
velocity, in terms of the observer O, verify equations:

dhy 92h, 92h,
S 24T | —4+ 2= 1
Oty <6x12 dx3 Cs M
bt _ K (aho - ohy )
o(tmr X1, %) = ¢ \ox, € %, € 2)

here: S - is the storage coefficient; T - is the transmissivity of the aquifer; Qg - is the leakage
rate; K - is the hydraulic conductivity and ¢ - is the porosity. The piezometric head hy =
ho+(tm, x1,x3) and the vector valued function ﬁo* = Flo*(t}f,,,xi‘,x;), that describe the 2D-
flow in terms of the observer O* verify equations:

S-ahf*+T-(ih';+&hoz*)= s 3)
Oty ox; ox;
— K 0hgr ,, Ohyp- ,
Uo+(ty, x1,%3) = _5' (TI e +6_x;. € 4)
In the above equations
i=2 k=2
tm =ty ttuges Xk = Xkot + ) Q- X[, k=12 & = Z agiér,i =1,2; )
=1 =1
=2 k=2
tm =tm +tyy Xk = Xpo t+ Z aixi, k=12; e/ = ) ayér,i=12 (6)
i=1 k=1
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5 Flow and impurity dispersion description using fractional order derivatives

ty and ty. are the real numbers, that represent the moments M and Mo+ in the system of time
measurement of the observer O, respectively; ¢y and ty,, are the real numbers, that represent
the moments M and M, in the system of time measurement of the observer O*, respectively;
Xy and xj o+ are real numbers that represent the coordinate of the fluid particle P and the point
O* in the reference frame R, = (0; €;, €,) of observer 0, respectively. xj and xj, are real
numbers that represent the coordinate of the fluid particle P and the point O in the reference
frame Ro+ = (0%; €5, €;) of observer 0, respectively.

The spread of an impurity, contained in the bulk fluid, flowing to the well in case of the 2D
flow, in a horizontal unconfined aquifer, for observer O is described by equation:

= j=2 =
aco_‘i 0 ZD” 9% Lia Ugi(t Co) +S 7
EVRVATIAV. 0 dx; ‘ axl-( 0i(tay, X1, %2) - Cop) 0 (7
i=1 j=1 i=1
Under the same hypothesis for observer O* the spread of the impurity is described by equation:
0Co Do (S ace) S
o _ ij o* | wox 8
=N 2N pi. Z_U*'t” - Co) + So (®)
at;, Zax; Z 0" ox; ' axi( o i(ty, X1, %2) - Co*) + So
i=1 j=1 i=1

For a continuously differentiable function f: (—o0,0) X (—o0,0) = R the general temporal
Caputo fractional derivative of order a, 0 < a is defined with the following integral
representation (see [16]):

onf
R S A A L ©)
rm—a) J_, (t—r7)*timn
The general temporal Riemann-Liouville fractional derivative of order a, 0 < g, is defined with
the following integral representation (see [16]):

am (v f(rx)
F'n—a) ot")_, (t —)*+i-n

In formulas (9) and (10), I is the Euler gamma functionand n = [a] + 1, [a] being the integer
part of a

EDEf(tx) =

RIEDEf(tx) = d§ (10)

2. IN CASE OF THE 2D FLOW TO THE WELL, IN AN UNCONFINED
HORIZONTAL HOMOGENEOUS AND ISOTROPIC AQUIFER, THE
PIEZOMETRIC HEAD DYNAMICS DESCRIPTION, WHICH USES
GENERAL TEMPORAL CAPUTO FRACTIONAL ORDER DERIVATIVE,
IS OBJECTIVE

Assume that, in case of the 2D flow to a well in a horizontal unconfined isotropic homogeneous
aquifer, in the piezo metric head dynamics description, the general temporal Caputo fractional
derivative of order a, 0 < a < 1 is used. In this case, Eq. (1) for observer O and Eq. (2) for
observer 0" become:

(In

0%hy  0%h
5-_CDg‘MhO+T-< > 0>=Qs

2 2
0xj 0x5
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azho* azho*
S - !DEhy 4+ T - (—+——) = 12
ty' 0 (ax;Z axzz) QS ( )
The piezometric head dynamics description with Eq. (11) and Eq. (12) is objective if the
solutions of the fractional partial differential equations (11) and (12) describe the same
dynamics. This means that the following statements hold:
1). if hg (tpy, X1, x,) verifies Eq. (11), then function hy+(ty, x1, X3), defined by
i=2 i=2
ho+(ty, x1,%3) = ho(tay + tm,. X107 + Z i1 - X[, Xz0" + Z iz - X;)
i=1 i=1
verifies Eq. (12), and
i1). if ho«(ty, x1, x3) verifies Eq. (12), then function hy (ty, X1, X3), defined by

i=2 i=2
ho(ty, x1,%2) = ho+ |ty + tyy X10 + z ayi - Xy X30 + Z azi * X |,
i=1 i=1

verifies the Eq. (11). The proof of the statement i) is the following: start with a solution
ho (ty, x1,x3) of the Eq. (11) and consider function hy+(ty, X1, x3), defined by

=2 i=2
ho=(ty, x1,%3) = ho | tar + taryer X107 + 2 i1 * Xi, X20° + 2 iz - X;
i=1 i=1
Remark that, the following equalities hold:
—CDéx&ho*(tIT/h x1,%3) = 2D ho(tu, %1, %2) (13)
T(azho azho) _7 (azho* azho*)
ox2  axZ’ " “oaxit oxg?

Using equalities (13) and replacing the terms in (11), it follows that: if function hg (ty, x4, X2)
verifies Eq. (11), then function hy=(tpy, x1, x5 ) defined by
i=2 i=2
ho+(tm, X1, %2) = ho | ty + tay ., X10+ + z Qi1 - Xi, X0 + Z Qiz " X |,
i=1 i=1
verifies Eq. (12).
So, the statement i) was proven. The proof of the statement ii) is similar. Remark that the
objectivity of the 2-D flow description with Eq. 2 and Eq. 4. is a consequence of equality
K aho N K aho* Sk ahO* -
L R . PR
3. IN CASE OF THE 2D FLOW TO THE WELL, IN AN UNCONFINED
HORIZONTAL, HOMOGENEOUS AND ISOTROPIC AQUIFER, THE
PIEZOMETRIC HEAD DYNAMICS DESCRIPTION, WHICH USES
GENERAL TEMPORAL RIEMANN-LIOUVILLE FRACTIONAL ORDER
DERIVATIVE, IS OBJECTIVE

Assume that, in case of the 2D flow to the well, in a horizontal, unconfined, isotropic,
homogeneous, aquifer, in the piezometric head dynamics description, the general temporal
Riemann-Liouville fractional derivative of order @, 0 < a < 1 is used. In this case Eq. (1) for
observer O and Eq. (2) for observer O* become:
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7 Flow and impurity dispersion description using fractional order derivatives

S-RZLp&p 4T “ho | Oho 14

—tMO+'a_12+622 = Qs (14)
02hy-  92hy-

S FEDE hoe +T - (a *"2 — *2)—05 (15)

The piezometric head dynamics description is Ob] ective 1f equations (14) and (15) describe the
same dynamics. This means that the following statements hold:
1). if ho (ty, X1, x,) verifies Eq. (14), then function hy+(ty, x1, X3), defined by
i=2 i=2
ho+(ty, x1,%3) = ho(tay + tm,. X107 + Z i1 - X{, Xz0" + Z iz - X;)
i=1 i=1
verifies Eq. (15) and
il). if ho=(ty, x1, x3) verifies Eq. (15), then function hy (ty, X1, X2), defined by

i=2 i=2
ho (ty, %1, %2) = ho* | ty + tyyr X10 + Z ayi - Xy X30 + Z azi * X;
i=1 i=1

verifies Eq. (14). The proof of the statement i) is the following: start with a solution
ho (ty, x1,x3) of Eq. (14) and consider function hy«(ty, x1, X3), defined by

=2 i=2

* *

ho=(ty, x1,%3) = ho | tar + taryer X107 + 2 aj1 * Xj, X0+ + 2 Qiz * X;
i=1 i=1

Remark that, the following equalities hold:
R:O%Df;lho*(t&, x{,xé‘) = R__LDtho(tM, X1, XZ) (16)

0%hy  0%h 0%hy.  0%hy,
r.(Zhoy Tho) . (Zho: e,

Using equalities (16) and replacing the terms in (14), it follows that: if function hg (ty, x4, X3)

verifies Eq. (14), then function hy«(ty, x1, X5), defined by
i=2 i=2

ho-(ty, x1,%3) = ho | tar + tay. X107 + Z Qi1 - Xi, X20° + 2 iz - x; ),
i=1 i=1
verifies Eq. (15). So, the statement i) was proven. The proof of the statement ii) is similar.
Remark that the objectivity of the 2-D flow description with Eq. 2 and Eq. 4. is a consequence

of equality
_5.<%.* oho g)z_i. aho*.g*+ah0* Fi
9x, ax, 2 o \ox; ' oax;

4. IN CASE OF THE 2D FLOW TO THE WELL, IN AN UNCONFINED
HORIZONTAL, HOMOGENEOUS AND ISOTROPIC AQUIFER, THE
IMPURITY SPREAD DESCRIPTION, WHICH USES GENERAL
TEMPORAL CAPUTO FRACTIONAL ORDER DERIVATIVE, IS
OBJECTIVE

Assume that in the impurity spread dynamics description the general temporal Caputo
fractional derivative of order &, 0 < a < 1 is used. In this case, Eq. (7) for observer O and Eq.
(8) for observer O* becomes:
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9%, ac,
EDECo =D D =2 = Uoiltu, 11, %) - 52+ S (17)
=1 1 =1 i
<o
D Co» =D - 02 z Uo+i(ty, x1,%3) - : (18)
M Liox? L a
=1

The impurity spread description is objective if the fractional partial differential equations (17)
and (18) describe the same dynamics. This means that the following two statements hold:
1) if Co (ty, x4, x3) verifies Eq. (17), then function Cp+(ty, X1, x5 ), defined by

i=2 i=2
* *
Cor(ty, x1,%2) = Co | tar + tayr X107 + z Qi1 X, X204 + z AizX; |,
i=1 i=1

verifies Eq. (18) and

i) if Cp=(tp, x1, x3) verifies Eq. (18), then function Cy (ty, x4, X3), defined by
i=2 i=2

Co(tum, x1,%2) = Co+(ty + tay,, X10 + Z ayiXi, X309 + 2 aziX;),

verifies Eq. (17). The proof of the statement i) 1s the followmg start with a solution
Co(ty, x1, %) of the Eq. (17) and consider function Cy«(ty, X1, X3), defined by

=2 i=2
Co-(ty,x1,x3) = Co | ty + ty,. X10* + Z i1 - Xi, X20* + Z iz - X;
i=1 i=1
Remark that, the following equalities hold:
_O%Df‘& Co+(ta %1, %3), = _ZDE, Co(tu, X1, X2) (19)
< 02C, o oc <03,y o ac
0 0 _n. 0" _ o (15 2 Y. 0"
i= 1= = i=

Using equalities (19) and replacing the terms in (17) it follows that function Cy+(ty, X1, X5)
defined, by

i=2 i=2
* *
Co-(ty,x1,%3) = Co | ty + ty,. X10* + 2 aj1 * Xi, X20* + Z Qiz " X; |,
i=1 i=1

verifies Eq. (18). The proof of the statement ii) is similar.

5. IN CASE OF THE 2D FLOW TO THE WELL, IN AN UNCONFINED
HORIZONTAL, ISOTROPIC AND HOMOGENEOUS AQUIFER, THE
IMPURITY SPREAD DESCRIPTION, WHICH USES GENERAL
TEMPORAL RIEMANN-LIOUVILLE FRACTIONAL ORDER
DERIVATIVE, IS OBJECTIVE

Assume that, in the impurity spread dynamics description, the general temporal Riemann-
Liouville fractional partial derivative of order a, 0 < a < 1 is used. In this case, Eq. (7) for
observer O and Eq. (8) for observer O* become:

INCAS BULLETIN, Volume 13, Issue 4/ 2021



9 Flow and impurity dispersion description using fractional order derivatives

i=2 i=2

92C ac
RLD& Co =D Z 0 —z Upi(tars X1 %) -2 + S (20)
i=1 0x; i=1 0x;
< 0%C; © ac
RZLDE Cor =D - 0= ) Uoiltin %1, x3)  ——=+S Q1)
= 0% i=1 0xi

The impurity spread description is objective if equations (20) and (21) describe the same
dynamics.

This means that the following two statements hold:

1) if Cp (ty, x4, x3) verifies Eq. (20), then function Cp+(ty, X1, x5 ), defined by

i=2 i=2
* *
Co+(tr, x1,%3) = Co | tar + tamy X107 + z ai1X;, X20* + z QizX; |,
i=1 i=1

verifies Eq. (21) and
i1) if Cp+(tp, X1, x5 ) verifies equation (21), then function Cy (ty, X1, X,), defined by

i=2 i=2
_ * * *
Co(ty, x1,x2) = Co+(ty + ty, X10 + z ayiXj, X20 t Z aziXi),
i=1 i=1

verifies Eq. (20).
The proof of the above statements is similar to that presented in section 4.

6. IN CASE OF THE 3D FLOW OF A NEWTONIAN INCOMPRESSIBLE
VISCOUS FLUID IN A CONTAINER, THE FLOW DESCRIPTION WHICH
USES GENERAL TEMPORAL CAPUTO FRACTIONAL ORDER
DERIVATIVE, IS OBJECTIVE

Observer O describes the 3D flow of the Newtonian incompressible viscous bulk fluid with a
vector valued function (70 = 170 (tu, x1, x5, x3), representing the velocity field, and a real
valued function py = po (ty, X1, X2, X3), representing the pressure field.

In the classical theory of fluid mechanics [13], [17], [18] the functions l70 =
170 (tyy X1, X2,%3), Po = Po(ty, X1, %5, x3) which describe, the 3D flow of a Newtonian
incompressible viscous bulk fluid having constant viscosity and density, verify the Navier-
Stokes equations:

k=3 k=
dUop; Uy, 1 apo %
Upp - =2t = £ z =123
DI ety v P 7 *ou 1=
k=1 fes (22)
AUy,
= axk

In the Navier-Stokes equations: py - constant is the fluid density, p - constant is the fluid
viscosity, fp; are the components of the mass force divided by the fluid density.

Observer 0" describes the same 3D flow with functions (70* = Up+(ty, X1, %3, X3), Po* =
po+(ty, X1, x5, x3) which verify the equations:
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k=3 k=3
aU o aU *x 1 a % azU*
daty, & 0xp, Po 0x; po &= 0Ox;
=1 k=1 (23)
k=3
igﬂ? — 0
=t P

In (24) a moment of time M is described by the real number t;, and in (25) the same moment
M is described by the real number t,;. For the numbers t,, and t,, the following relations hold:
tm =ty + ty,., tm = ty + ta,; where ty . is the real number which represents the moment
My- in the system of time measuring of the observer O and ¢y, is the real number which
represents the moment M, in the system of time measuring of the observer 0*. At any moment
of time M, the coordinates (x1 ' ,x3) with respect to the reference frame R, and the
coordinates (x7, x5, x3) with respect to the reference frame R+, represent the same position P

in the affine Euclidian space E5. Therefore, for the coordinates the following relations hold:
i=3

Xp = Xpo* + Z Aix * X; =1,23; x; =230+ 2 agix; k=123
i=1
The significance of the quantities appearing in the above relations are:
a;; = (é;,€;) = constant = scalar product of the unit vectors €; and ¢; in E; i.e.

k=3 k=3

>k - > —>x

e = Aik€x € = Agi€y
k=1 k=1

(x10% X20*, X30+) are the coordinates of the point 0* with respect to the reference frame R, =
(0; €1, 6,,€3), (x10, %30, X50) are the coordinates of the point O with respect to the reference
frame Ro+ = (0%; €1, €5,€3).

Because functions fp, and fo: represent the same force field (in two different reference

frames) the components verify the following relations:

fork = akafo1 + arafoz + arzfos fox = aakfor1 + aakfora + askfors k=12.3;
Assume that in the 3D flow description the temporal Caputo fractional partial derivative of
order a, 0 < a < 1is used. Eq. (22) for observer O and Eq. (23) for observer O* become:

k=3 k=3
oUy; 1 dpy u 0*Uoy
_CDa'U . U . 0L=__. —_ P '=1,2,3
tyYoi T 21 Ok " G e ox; +p0 kE-l o2 + foi i

_ (24)
Z (ZUOL =0
= Xk
S U 1 9 < 92U
—OCOD?‘UO*i-i_ZUO*k' 0*l=—_ pO* +£ 02k+fol i=123
M = 0x; po 0x;  po = 0xy
_3 (25)
AUy~ _
ax;

k=1
The 3D flow description is objective if equations (24) and (25) describe the same dynamics.
This means that the following statements hold:

INCAS BULLETIN, Volume 13, Issue 4/ 2021



11 Flow and impurity dispersion description using fractional order derivatives

1). if functions Upy (tp, X1, X2, x3);  k = 1,2,3, po(ty, X1, X3, x3) verify equations (24), then
functions Up« (ty, X1, x3,%x3);  k = 1,2,3, po+(ty, x1, X3, x3), defined by:
UO*k(tIT/I; xi x;! x;)

i=3 j=3 j=3
— *
= Z ariUoi | th + tuy X10° + ) Q1" X, X204+ ) Az " X}, X304
=) = =
=3
2 ajs - x k=123
*
Po*(tm xl,xz,x3)
i=3 i=3
_ * * *
= po(tm + tm,., X10" + z Ai1 * Xj, X0 + z Qiz " X , X30*
i=1 i=1

i=3
+ 2 3 - X;)
i=1
verify equations (25).

i1). if functions Ug« (ty, X1, X2, %X3); k = 1,2,3, po+(ta, X1, X3, X3) verify equations (25), then
functions (ty, X1, %5,%3); k = 1,2,3, po (ty, X1, X, X3) defined by:

Uok (tm, X1, X2, X3) '
i=3 = j=3
— * * * *
—Zaika*i ty + tu, %10 +2a1j-xj,x20 + Az * Xj,X30
i=1 = =1
j=3
+ asj k=123
j=1
i=3 i=3 i=3
Po (tm, X1, X2, X3) = Po+(ty + tay,, X10 + 2 ayiX;, X390 + 2 aziXi,X30 + 2 azix;)
i=1 i=1 i=1

verify equations (24). The proof of the statement i) is the following: start with a solution
Uor (tay, X1, %2, x3); k= 1,2,3, po(ty, X1, X2, x3) of equations (24) and consider functions
Uo . (ty, X1, x5, x3); k = 1,2,3, po+(ty, tar, X1, x5, x3) defined by:
Uok (ty, X1, X3, %3) .
i=3 Jj=3

— * * %
= ) apUoi| ty + tym o X10* + ) Q1 Xj, X0+ + Z Qjz * Xj , X30*

W =
—.
-

j
Po+(ta, X1, X2, %3)

...
1l
w
-
1l
w

* *
=Ppo(ty + tuyer X10* + ) Qi1 " X{,Xz0* + ) @iz " X, X30*

i
*
+2ai3 " Xi)
i=1

I
_
~

Il
=
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Remark that the following equalities hold:

k=3 k=3 k=3 m=3

D2 Upi = > ai- D& Upis > Up - 21- Ny ok y,,n ;2P0

—o©o tl’t/l o'i — ik —oMtyYOoir O’k ax;c: - ik axm om » ax::
=1 = k=1 m=1

apo
- z ik - axk

= k=3 k=3
Z Z 02Uy o+ O 9Uop;
axl’zz B £ ik Tox2 dx;y, _k:1 dxy

Using the above equalities and replacing the terms in (25) via (24) it follows that functions
Uor(ty, X1, x5, x3); k = 1,2,3 and po+(tp, X1, x5, x3) verify the equations (25).
The proof of the statement ii) is similar.

7. IN CASE OF THE 3D FLOW OF A NEWTONIAN INCOMPRESSIBLE
VISCOUS FLUID IN A CONTAINER, THE FLOW DESCRIPTION WHICH
USES GENERAL TEMPORAL RIEMANN-LIOUVILLE FRACTIONAL
ORDER DERIVATIVE, IS OBJECTIVE.

When in the description of the 3D flow, the temporal Riemann-Liouville fractional partial
derivative of order a, 0 < a < 1 is used then Eq. (22) for observer O and Eq. (23) for observer
0 become:

k=3
dUop; 1 0po 1
DtMUOL+2U0k axl:__'ﬁ —Z +f011—123
=1 k Po i Po =1 (26)
=3
ZUOL' —0
= 9k
U 19 < o2y
RLDaUOL‘l‘ZUOk 0*l= Po '{'ﬁ 0k+foll—123
axk p() ax ,00 =1 axk
k=3 27)

ZGUOL—
k=

The 3D flow description is objective if equations (26) and (27) describe the same dynamics.
This means that the following statements hold:
i). if functions Ugy (ty, X1, X2, X3); k = 1,2,3, po (tum, X1, X2, x3) verify equations (26), then
functions Up« (ty, X1, x5, %3); k = 1,2,3, po+(ty, X1, X3, x3), defined by:

Uok (ty, X1, X3, %3)

—_ *
= ) ayUp; (tM + tugo X10* + ) G X, X0t + Z @z * X}, X30°
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13 Flow and impurity dispersion description using fractional order derivatives

Po*(ty, X1, X2, X3)
i=3 i=3

_ * * *
= po(tym + tm,., X10" + z Ai1 * Xi, X0 + z Qiz " X , X30*

. i=1 i=1
i=3
+ Z iz - X7)
i=1
verify equations (27).

ii). if the functions Uy« (ty, X1, %3, %x3); k = 1,2,3, po+(ty, x1, x5, x3) verify equations (27),
then functions Upy (ty, X1, X2, x3); k = 1,2,3, po (ty, X1, X3, x3) defined by:
Uok (ty, X1, X2, X3)
i= Jj=3 j=3
@i Uo*i | tm + tyyr X10 + Z Qj X Xa0 + ) Az Xj,X30
j=1 ] 1

w
-
1l

I
'M

— ~
11
w R,

+

as; =123

[N

~.

i=3 =
Po (tm, X1, X2, X3) = Po+(tm + tyy X10 + Z ayiXi, X390 + Z AziXi,X30 + Z aziX;)
i=1 i=1 i
verify equations (26).
The proof of the statements 1). and ii). is similar with the proof of the same statements when
general temporal Caputo derivatives are used in the description.

8. IN CASE OF THE 3D FLOW OF A NEWTONIAN INCOMPRESSIBLE
VISCOUS FLUID IN A CONTAINER, THE CONTAINED IMPURITY
DISPERSION DESCRIPTION WHICH USES GENERAL TEMPORAL

CAPUTO OR GENERAL TEMPORAL RIEMANN-LIOUVILLE
FRACTIONAL ORDER DERIVATIVE, IS OBJECTIVE

The dispersion of the impurity contained in the bulk fluid, is described with the concentration
of that impurity. Observer O describes the concentration with the real valued function Cp =

Co (s x1, X2, x3) which verifies the partial differential equation:

i=3
ac, 9 aco
E (')xl — (Do - ) Z o, (Uoi(tm, x1,%2,x3) - Cp) + Sp (28)
i=

where: Dy = Do(xl,xz,xg) is the d1ffus1V1ty (also called diffusion coefficient),

. . ]
Upi(ty, x1, X2, x3) are the components of the bulk fluid flow Velomty, the term Zf 3 = P ( 0"

i= 1ax (UOL(tMlleXZJx3)
Cp) describes the impurity dispersion by convection, Sy = Sp(ty, X1, X3, X3) describes the
source or the sinks of the impurity. See [19] and [20].

In equation (28) Dy = Dg(xq,%5,%3), So = So(ty,%1,%2,%3), Upi(ty,xq,x5,%x3) are
assumed to be known and C, = Cy(tpy, X1, X3, X3) is unknown.

Observer O* describes the dispersion of the impurity by the real valued function Cp+ =
Co+(ty, X1, x5, x3) which verifies the partial differential equation:
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i=3

9Cor O 0 aCo a
= i=

where:

ty =tu +tyy Xk =Xgo + Z agix; k=1,23; Do = Dp(x7,x3,%3)

= Do (x1,%2,%3); So+ = So*(ty, X1, %2, X3) = So(ty, X1, X2, X3)
Assume that in the impurity spread dynamics description the general temporal Caputo
fractional partial derivative of order @, 0 < a < 1 is used. In this case Eq. (28) for observer O
and Eq. (29) for observer O* become:

=3
ac, d
D8, Co= ) 3 (D050 - Z —— Woitw, ¥1,%2,%5) - Co) + S (30)
i= i=1 ¢
i=3
d dCp+ d
D¢ Cov = ZW(DO* =5 - z ox: (Wori(ty, x1,x2,%3) - Co*) + So- (31
i=1 * *i =1

The impurity dispersion description is objective if equations (30) and (31) describe the same
dispersion. This means that the following statements hold:

i) if Co = Cy(tpy, X1, %2, x3) is a solution of equation (30) then function Cy«(ty, X1, X3, X3)
defined by:

i=3 i=3 i=3
* * *
Co+(tm, X1, %3,x3) = Co(ty + tyy, X10* + z ai1Xi, X0+ + Z Aj2X;, X30* T z aix;)
i=1 i=1 ‘

verifies equation (31), and
i) if Cp=(ty, x1, x5, x3) is a solution of equation (31) then function Cy (ty, X1, X5, x3) defined
by:

i=3 i=3
Co(ty, x1,%2,%3) = Ce,. (ty + tayy X10 + z a1iX;, x50 + Z aziXi, X30 + z aziX;)
i=1 i= i=1

verifies equation (30).

In the following we give a short proof of the objectivity of the description using equations (30)
and (31) in the case Dy = Dy, So = Sp+ constant and the bulk fluid is a Newtonian,
incompressible, viscous fluid having constant viscosity and density.

Proof of the statement i). Start with the function Cy = Cy(ty, X1, X2, x3) solution of the
equation (30) and consider function Cy=(ty, x7, x5, x3) defined by:

i=3 i=3 i=3
Co~(tn, x1,%2,%3) = Co(ty + ty,., X10° + z ai1X;, X20* + Z AiaX{, X30* + z aizx;)
_ _ _ N i=1 i=1 i=1
For this function the following equalities hold:
o = oC
0* 0
D¢ Cor = _2Df, Co; Fra Z Qige * 5~
X e Xk
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3 i=3 [/j=3 k=3

~
1l

aCy
Uo~i(ty, X1, x3, 3) Z Eaionj(tM,xl,xz,xg) : Zaik e
i=1 =1 \j=1 k=1 k
j=3k=3 i=3
aCy
=z Ug;j(tum, X1, X2, X3) e Zaij " Qg
¢ Xk c
j=1k=1 =1
j=3 k=3 k=3
aCy aCo
= 0j (ta, X1, X2, X3) ErS i = z Uok (Emy X1, X2, X3) * =—
Xk axk
j=1 k=1 k=1
i=3 i=3 i=3 k=3 i=3 k=31=3 )
a CO* a (aCO) a (2 aCO) a CO
= = a- " — - a. . a. .
Coax;  Luox;oxp’  Luox; Yooxy, T Ll T axgx
i=1 i=1 k=3 i=1 k=1 i=1k=11=1
=392
_ 3“Co
B 0x,2
=1k

Using the above equalities and replacing the terms in (31) it follows that function
Co+(ty, x1, x5, x3) verifies (31).

The proof of the statement ii). is similar. When in the impurity dispersion description the
general temporal Riemann-Liouville fractional partial derivative of order a, 0 < a < 11isused
then Eq. (28) for observer O and Eq. (29) for observer 0* become:

Rl - 0 aco
~4Dty, Co = E ox; (Do - ) § o, —— (Uoi(tm, X1, %2,%3) - Co) + So (32)
i=

R-Lpa HCO*
<D Cor = Za - (Do~ ) Za *(Uo i(Er, X1, x3,x3) - Co*) + Spr (33)

The proof of the objectivity, of the impurity dispersion description, with Eq. 32 and Eq. 33 is
similar to that with the proof from the previous section.

9. CONCLUSIONS AND COMMENTS

1. The mathematical descriptions of the bulk groundwater 2D flow to the well, in a horizontal
unconfined homogeneous and isotropic aquifer and the description of the spread of the
contained impurity, which uses general temporal Caputo or general temporal Riemann-
Liouville fractional order derivatives, are objective; i.e. independent on the choice of the origin
of time measurement and on the reference frame. Due to that, two observers describing the
groundwater flow and the spread of impurity using these tools, obtain results that can be
reconciled; i.e. transformed into each other using formulas (5), (6) that link the numbers
representing a moment of time in two different choices of the origin of time measurement and
coordinates of a point in two different reference frames.

2. The mathematical descriptions of the bulk fluid 3D flow, in container and the description of
the dispersion of the contained impurity, which uses general temporal Caputo or general
temporal Riemann-Liouville fractional order derivatives, are objective.

3. The obtained results show the compatibility of the general temporal Caputo and general
temporal Riemann-Liouville fractional order derivatives with the understanding of the
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measured time evolution. At the same time these results support the idea that the objectivity
violation is originated in the incompatibility of the definition of the classic temporal Caputo
and classic temporal Riemann-Liouville fractional order derivatives with the understanding of
the measured time evolution.
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