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Abstract: Resin-based fiber composite materials have received attention in aerospace composite 
engineering, particularly in aircraft morphing structures, due to their high mechanical characteristics, 
such as stiffness, and because of their potential to highly reduce the structural mass of modern aircraft. 
Aircraft morphing is referred to as the ability of an aircraft’s surface to change its geometry in flight. 
The modelling of a dynamic morphing wing system is here studied. The morphing wing was controlled 
using four electric actuators situated inside of the wing model. The main role of these actuators was to 
modify the wing upper surface shape designed and manufactured with a flexible material, so that the 
laminar-to-turbulent flow transition point can move closer to the wing trailing edge, thus causing a 
minimum viscous drag, for various flow conditions. To determine the skin deflections in the four 
actuators points, both LVDT and dial indicator gages were positioned on the wing. Four Linear 
Variable Differential Transducers (LVDTs) were used to indicate the positions of the four actuators, 
and four Dial Indicators gages were positioned on the wing to measure the real deflections of the 
flexible composite skin in the four actuation points. The relationship between the Dial Indicators’ values 
and the LVDTs’ values for a same set-point command signal had a nondeterministic and unpredictable 
behavior (not a linear one). The values of the displacements given by the LVDTs were different than the 
values given by the Dial Indicators. In this paper, an Artificial Neural Network (ANN) model was 
investigated created with the aim to predict the displacements of the wing upper surface skin in real 
time using four actuators. The proposed model was trained using the Extended Great Deluge (EGD) 
algorithm. 
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1. INTRODUCTION 
Since October 2010, the International Civil Aviation Organization (ICAO), the Canadian 
government and Canadian aerospace industries have been working towards a Greenhouse Gas 
(GHG) reduction of 17% percent below the levels observed in 2005, and an average fuel 
efficiency improvement of 2% (Transport Canada, Aviation Emissions, 2012). One way of 
achieving those goals is to produce a continuously laminar flow on the wing surface over an 
operating range of flow conditions characterized by Mach numbers, airspeeds, and incidence 
angles [1, 2]. In the aerospace vehicle field, ‘‘wing morphing’’ refers to the ability of an aircraft 
wing to change its shape during flight phases consisting of take-off, climb, cruise, descent and 
landing, thereby providing aerodynamic performance advantages at each step of the flight. The 
“wing morphing’’ approach is referred to as the variation in a wing’s shape. In this way, a 
“morphing wing” can be characterized as falling within three classifications: i) Wing platform 
alternation (wing span resizing, chord length change, and sweep angles variation); ii) Out-of-
plane transformation of the wing (airfoil camber changing, lateral wing bending and twisting); 
or iii) Airfoil shape adjustment (reshaping of the upper and/ or lower surface of the airfoil) [3]. 
Detailed investigations of composite materials, and the wide range of applications in modern 
aeronautics have made the reshaping of a flexible upper surface composed of composite 
material a realistic possibility that could allow future aircraft and Unmanned Aerial Vehicles 
(UAV’s) to fly long distances with minimum fuel consumption. Fuel efficiency requirements 
have emphasized the importance of improving aerodynamic efficiency through wing geometry 
modifications that can move the laminar-to-turbulent transition point close to the wing trailing 
edge, thereby reducing drag. A high number of theoretical and experimental studies on 
morphing wings have been developed. These studies began with work on independent 
aerofoils and have been extended to different airplane configurations [3]. In this paper, we 
focus on the last type of morphing wing definition given by Consortium for Research and 
Innovation in Aerospace in Quebec (CRIAQ) 7.1 project, the modification of the upper surface 
of the airfoil shape. The approach in this paper uses four Brushless Servo Motors to change 
the airfoil’s upper surface, producing a drag reduction following to a modification of the 
laminar-to-turbulent flow transition point position. This transition point was situated as close 
as possible to the trailing edge of the airfoil model in order to delay the flow transition. 

The Consortium for Research and Innovation in Aerospace in Québec (CRIAQ) launched 
the MDO-505 Morphing Architectures and related Technologies to improve the Wings 
Efficiency project in 2012. MDO-505’s objective was to design and manufacture a morphing 
wing with a flexible upper surface in composite materials, controlled using electric actuators 
and highly specialized miniature pressure sensors. “Linear interpolation” is simple to use but 
is not well-suited for nonlinear modelling. “Polynomial regression” is a method used to obtain 
an empirical equation that predicts observed results, but it is time-consuming; and it is difficult 
to develop an empirical generalization to fit the experimental data by using polynomial 
regression. An Artificial Neural Network (ANN) model was investigated, and further created 
using the Matlab Neural Network toolbox, and also trained using the Extended Great Deluge 
(EGD) back propagation algorithm. The application of ANNs to solve engineering problems 
has received increasing interest during recent years because of their ability to learn and 
generalize complex, multivariate, multidimensional and nonlinear relationships by training 
using sample data that contain noisy or incomplete information. ANNs also have a clear 
advantage because of the fact that a multilayer neural network can describe experimental data 
with fewer numbers of iterations and less computation time per iteration. The proposed ANN 
model was designed in this paper to be integrated in the control loop of the actuators used to 
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deform the morphing wing upper surface skin. For a good precision, a robust controller is 
essential. Authors in [4, 5] proposed and validated a closed-loop controller for a morphing 
wing model. The same authors proposed an open-loop control system to validate a morphing 
wing model [6]. Authors in [7, 8] proposed a control system based on a combination of 
Proportional-Integral (PI) and bi-positional laws optimum, and used it in the control of a 
morphing wing model. Another controller based on On/ Off Proportional-Integral (PI) 
methodology developed in [9, 10] was tested and validated experimentally. 

Neural Networks are used in various fields such as classification problem, control or 
manufacturing [11 to 16], an example is the aerodynamic coefficients estimations [17] and 
calibration of wind tunnels [18]. Authors in [16] developed a wind velocity control for a low-
speed wind tunnel based on ANNs and fuzzy logic hybridization. Another type of 
hybridization was presented in [19], in which they proposed a controller for a Smart Material 
Actuator (SMA) based on an Adaptive Neuro-Fuzzy Inference System (ANFIS). ANNs were 
used in [20] to design a model for fault detection in aircrafts. ANNs have also been used to 
develop identification and prediction models to calculate and predict aerodynamic coefficients 
[21, 22, 23]. Authors in [24] used ANNs to design controllers for autopilot systems. Many 
other detection and identification models are presented in [25, 26, 27]. 

The motivation in this work is the finding of a numerical description of the non-linear 
relationships between the Linear Variable Differential Transducer’s (LVDT) values and the 
Dial Indicator gauge’s values that allowed the validation of simulated airfoils using ANN-EGD 
methodology. The Xfoil software combined with a real time optimization of the morphing 
wing in the Wind Tunnel Tests (WTTs) with the aim to validate the whole morphing system. 

2. MORPHING WING PROJECT 
2.1 Morphing wing model 

The objective of this paper is to validate a morphing wing’s ability to improve aircraft 
aerodynamic performance. The morphing wing model was designed based on a real airplane 
wing-tip model. This wing-tip was not equipped with a winglet; it was composed of a wing 
and an aileron. The reference wing was manufactured from aluminum; its upper surface (from 
20% to 65% of the chord) was then replaced by a morphing skin optimized and manufactured 
from different composite materials. A mechanical actuator system was fixed inside the wing 
to modify the wing shape. Four actuators were designed and manufactured to achieve the 
desired skin deformations. The four actuators were fixed directly on two ribs at 32% and 48% 
of the chord (two actuators on each line); the mobile parts of the actuators were fixed on the 
morphing part of the wing with the aim to attain the expected skin deformations. The wing 
model was also equipped with a rigid aileron, and later, with an adaptive morphing aileron. 
The rotation centers of these ailerons were located at 72 % of the chord. The rigid and adaptive 
ailerons installed on the wing were used during three sets of Wind Tunnel Tests (WTTs). Their 
geometrical characteristics and the airfoil of the wing model are presented in Figures 1 and 2. 

This paper shows research methodologies and results obtained in the CRIAQ MDO 505 
project. This project was realized following a collaborative international effort among 
participants in Canada and in Italy, representing academia, industry and government agencies. 
The participants in Canada were teams from Bombardier Aerospace, Thales, the École de 
Téchnologie Supérieure, and the École Polytechnique de Montréal. The Italian participants 
were teams from the University of Naples Federico II (Italy), the Italian Aerospace Research 
Center CIRA, and Alenia Aeronautica. He project was funded by the industrial participants as 
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well as by the Consortium de Recherche et d'Innovationen Aérospatiale au Québec (CRIAQ) 
and Natural Sciences and Engineering Research Council of Canada (NSERC). The wind tunnel 
tests on the full wing-tip were done at the National Research Council- Institute of Aerospace 
Research of Canada’s (NRC-IAR). 

 
Fig. 1 CRIAQ MDO 505 Morphing Wing 

 
Fig. 2 CRIAQ MDO 505 Morphing Wing Profile 

The CRIAQ MDO505 project involved the theoretical and numerical determination of 
optimized airfoils needed to maintain laminar flow over the upper wing surface for different 
flight conditions by means of 2D and 3D simulations using CDF software (Xfoil and Fluent). 
Each simulated airfoil represented the shape that the flexible skin has to achieve by using the 
four actuation points. The next step of the project is to design of the actuation control system 
for the four linear actuators that reshape the composite skin into the simulated optimized airfoil 
within an error displacement under 4 thousandth of an inch (0.1 mm). 

Two architectures were considered to control the morphing wing’s skin, using open and 
closed loop methodologies; these architectures are next explained. An open loop control 
commanded the four actuators inside the wing until the theoretical airfoil’s shape was 
obtained. Four dial indicators placed outside the wing measured the real skin’s displacement, 
and four LVDT sensors measured the displacements of the actuators’ rods. Each airfoil had its 
four LVDT values corresponding to experimental actuators displacements as above 
mentioned, validated by the dial indicators shown on Fig.3. During the wind tunnel tests, real 
time pressure data signals provided by the 32 XCQ-062-5D Kulite sensors placed over the 
wing’s upper surface were recorded to determine if any experimental relationship could be 
found between the dial indicators and the LVDT measured sensors values. Fig. 4 shows the 
wing’s installation during the wind tunnel tests that was done on April 2015 at the National 
Research Council’s NRC-IAR in Ottawa. 

http://www.nserc-crsng.gc.ca/index_eng.asp


17 Artificial Neural Networks-Extended Great Deluge Model to predict Actuators Displacements for a Morphing Wing 
 

INCAS BULLETIN, Volume 12, Issue 4/ 2020 

 
Fig. 3 Airfoil validation by dial indicators 

 
Fig. 4 Open loop control test at the NRC-IAR subsonic wind tunnel 

For the closed loop, pressure feedback from the 32 Kulite sensors were taken into account 
to displace the composite skin to a desired airfoil shape. In this set up, it was not possible to 
use an LVDT dial indicator correspondence tracking database because, in a real-time closed 
loop, the skin displacement responded only to the specific flow conditions over the wing’s 
surface. Given that there was not found a linear relationship between the Linear Variable 
Differential Transformers (LVDTs) and the upper surface of the wing, there was no way to be 
certain if the desired skin’s position has been reached, and thus the wind tunnel tests results 
could be compromised. 
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2.2 Instrumentation 

The Data Acquisition System used was a 24-bit analog-to-digital converter with four NI PXIe-
4330 modules, able to simultaneously sample 32 analog input channels (Kulite pressure 
sensors) at 20 kHz. This data acquisition system is compatible with Matlab Simulink program 
codes. The 32 Kulite sensors, capable of measuring differential pressures, are suited for both 
dynamic and static pressure measurements in wind tunnel applications. These sensors are 
mounted on the wing’s upper surface. Each XCQ-062 sensor can measure pressures up to 5 
PSI with an accuracy of ± 0.025 PSI, has a bandwidth up to 20 KHz suitable for flow transition 
measurement, has a housing of 0.066 inches in diameter, and a weight of 0.2 grams. Four very 
compact (5-inch housings) and 1500N push/pull force linear actuators were custom (in-house) 
made at the LARCASE. All the instrumentation inside the morphing wing is shown on Fig. 5. 
The CRIAQ MDO505 project used the NRC–IAR’s (National Research Council – Institute 
for Aeronautical Research) subsonic 2 × 3 meters Wind Tunnel, with a maximum airspeed of 
140 m/s, and a turbulence level of 0.13%, for validation of numerical results. 

 
Fig. 5 Sensors inside the morphing wing 

3. EXTENDED GREAT DELUGE OPTIMIZER 
A meta-heuristic algorithm, called the Extended Great Deluge (EGD) algorithm, was used to 
optimize and train the Neural Network model. This algorithm was introduced in [28]. The 
EGD algorithm has been utilized to resolve different problems such as timetabling [28], 
optimization of manufacturing cell formation and scheduling [29, 30], optimization of neural 
networks for calculation of aerodynamic coefficients [17], as well as in Wind Tunnel 
calibration [18]. The EGD algorithm has shown a very good performance. As described in 
[28], the steps of EGD algorithm are: 
-Initialization of the solution S 
-Calculation of the objective function f(S) 
-Initialization of the limit B= f(S) 
-Specification of the parameter ΔB 
-While the stop condition is not satisfied, do 

• Define the neighborhood N(S) 
• Select randomly the solution S*ϵ N(S) 
• If (f(s*) ≤ f(s)) or (f(s*) ≤ B) 
 Accept S* 
 B=B- ΔB 
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• End if 
-End of while. 

4. ANN-EGD ALGORITHM 
The EGD algorithm was used to optimize the number of neurons in each layer. The 
optimization process is normally required in order to obtain a robust and optimal neural 
network, and to minimize the output error as much as possible. The objective function used in 
the process of training and optimization was the Mean Squared Error (MSE), expressed as 
follows: 

𝑀𝑀𝑀𝑀𝑀𝑀 =
1
𝑁𝑁�(𝑥𝑥𝑖𝑖 − 𝑦𝑦𝑖𝑖)2

𝑖𝑖∈𝑁𝑁

  

where xi are the desired values, yi are the predicted values of the Neural Networks and N is the 
number of the training data points. To use the EGD algorithm, we need to specify the 
neighborhood research method to find a solution for this problem. The optimal neural network 
configuration was investigated using testing solutions by performing changes in the motions 
in neighborhoods of solutions with a minimal modification. To limit the neural network 
execution time and thus to avoid the need to use a high number of neurons, the maximum 
number of neurons was limited to 10 neurons per layer. The neighborhood algorithm is given 
below [31]: 
1) Initialization of a number of layers at 1; 
2) Random selection of a number of neurons between 1 and 10; 
3) Training and testing of the network; 
4) Number of layers=Number of layers + 1; and 
5) If the number of iterations has not been reached, then one layer is chosen randomly and algorithm 

continues from step 2). 

5. DESIGN OF AN ANN-EGD PREDICTION SYSTEM 
The objective of this study was to design a prediction system model based on ANNs 
methodologies with the aim to predict the deformation of CRIAQ MDO505 project’s carbon 
skin using an actuator system. This system is composed of four different ANN-EGDs 
algorithm, one for each actuator. The input parameters are the LVDT’s displacements and the 
outputs are the displacement values of the upper surface of the wing (Fig. 6). A huge database 
of LVDT’s and dial indicator values was created for simulation purposes. 161 cases were used 
for the learning phase and 24 for the variation testing phase. Using the EGD algorithm, in the 
optimization phase found the optimal configuration of our ANN model was found. The 
architectures of the proposed neural networks for each actuator are presented in Tables 1 to 4. 

 
Fig. 6 Prediction system 
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Table 1. Neural Network architecture for actuator number 1 

Layer number Number of neurons Transfer function 
1 6 

Tangent sigmoid 
2 5 
3 10 
4 5 
5 4 

Table 2. Neural Network architecture for actuator number 2 

Layer number Number of neurons Transfer function 
1 10 

Tangent sigmoid 
2 6 
3 9 
4 6 
5 2 

Table 3. Neural Network architecture for actuator number 3 

Layer number Number of neurons Transfer function 
1 5 

Tangent sigmoid 
2 7 
3 7 
4 7 
5 6 

Table 4. Neural Network architecture for actuator number 4 

Layer number Number of neurons Transfer function 
1 5 

Tangent sigmoid 
2 9 
3 10 
4 6 
5 10 

6. VALIDATION RESULTS 
The ANN models were converted using Matlab/ Simulink blocks for the open loop control. 
The Simulink model architecture of the first of the ANN-EGD prediction models is presented 
in Fig. 7. 

 
7. Simulink model of a neural network 
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Fig. 8 General model of our system 

The variable a(i) corresponds to the outputs of Layer i, and to the inputs of Layer i+1.The 
Inputs correspond to the LVDT values, and the Outputs are the prediction values. Finally, a 
general Simulink model is obtained, as displayed in Fig. 8. 

In order to validate the proposed ANN models, new measurements of the LVDT values 
and dial indicators were used; their values are different than those used earlier. The dial 
indicator values were used as inputs in the general model. 

The prediction LVDT displacements were compared to the LVDT measurements, and 
then the difference (comparison) between the predicted and the measured deformation values 
for all actuators were realized in a visual display. These results are presented in Figures 9, 10, 
11 and 12. 

 
Fig. 9 Experimental and predicted displacements for actuator 1 
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Fig. 10 Experimental and predicted displaments for actuator 2 

 
Fig. 11 Experimental and predicted displaments for actuator 3 

 
Fig. 12 Experimental and predicted displaments for actuator 
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It can be observed that there is only a minimal difference between the experimental and 
the predicted values; the average difference between the ANN-EGD predicted values and the 
experimental displacements did not exceed 0.08 mm. The mean errors for each ANN-EGD 
prediction model are presented in Table 5. 

Table 5. Mean errors between experimental and predicted values 

Mean error (mm) 
Actuator 1 Actuator 2 Actuator 3 Actuator 4 

0.05 0.08 0.06 0.06 

7. CONCLUSIONS 
In this research, a Neural Network Model optimized and trained using the EGD algorithm was 
proposed to be implemented in the control loop of four actuators; this loop was used to change 
the morphing wing model shape in the CRIAQ MDO-505 project. The proposed model was 
tested, and further validated using experimental data. Four Neural Networks algorithms were 
used, one for each actuator, the obtained results were very good because of the fact the 
prediction of the displacements was found to be very close to the displacements obtained using 
Dial Indicators gauges. 
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