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Section 1 – Aerodynamics 

Abstract: Supersonic/hypersonic flows with strong shocks need special treatment in Computational 

Fluid Dynamics (CFD) in order to accurately capture the discontinuity location and his magnitude. 

To avoid numerical instabilities in the presence of discontinuities, the numerical schemes must 

generate low dissipation and low dispersion error. Consequently, the algorithms used to calculate the 

time and space-derivatives, should exhibit a low amplitude and phase error. This paper focuses on the 

comparison of the numerical results obtained by simulations with some high resolution numerical 

schemes applied on linear and non-linear one-dimensional conservation low. The analytical solutions 

are provided for all benchmark tests considering smooth periodical conditions. All the schemes 

converge to the proper weak solution for linear flux and smooth initial conditions. However, when the 

flux is non-linear, the discontinuities may develop from smooth initial conditions and the shock must 

be correctly captured. All the schemes accurately identify the shock position, with the price of  the 

numerical oscillation in the vicinity of the sudden variation. We believe that the identification of this 

pure numerical behavior, without physical relevance, in 1D case is extremely useful to avoid problems 

related to the stability and convergence of the solution in the general 3D case. 

Key Words: Conservative law, Riemann problem, compact numerical schemes, Runge-Kutta schemes  

1. INTRODUCTION

It is a well known fact that numerical simulations, especially DNS and LES, require high 

resolution discretization techniques in both space and time domains. One major purpose in 

applying these techniques is the constant pursuit for reducing the numerical dispersion and 

diffusion bellow the dispersion and diffusion inherent to the physical phenomenon modeled 

by the numerical scheme. On the other hand, the increased the order of accuracy necessitates 

enlarging the numerical stencil which leads to a larger computational effort. Another 

drawback of the high order schemes is associated with the unphysical oscillations generated 

in the vicinity of discontinuities (shock waves or shear flows). Hence, a thorough analysis of 

the accuracy of various numerical schemes is required to pinpoint the behavior of these 
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techniques in the presence of flow discontinuities. In the present paper, we suggest a series 

of test cases for which the exact analytical solution has been produced and could serve as a 

better ground for accuracy prediction of the tested high order numerical schemes. For the 

calculation of the space derivatives, high-order spatial discretization schemes have gained 

considerable interests in computational acoustics, among them the explicit dispersion 

relation preserving (DRP) [2], [12] or compact schemes [1],[3-8]. Time integration in CFD is 

usually done with higher-order Runge-Kutta schemes. In order to improve the dissipation 

and dispersion characteristics of these schemes, several other schemes were proposed [12], 

[13]. In many applications, popular time advancing schemes are the classical 3rd- and 4th-

order Runge-Kutta schemes because they provide relatively large stability limits. However, 

for acoustic calculations the stability consideration alone is not sufficient [13], since the 

Runge-Kutta schemes distribute both dissipation and dispersion errors. Traditionally, the 

coefficients of the Runge-Kutta schemes are chosen such that the maximum possible order of 

accuracy is obtained for a given number of stages. It is possible to choose the coefficients of 

the Runge-Kutta schemes so as to minimize the dissipation and dispersion errors for the 

propagating waves, rather than to obtain the maximum possible formal order of accuracy. 

The optimized schemes will be referred to as Low-Dissipation and Dispersion Runge-Kutta 

(LDDRK) schemes. 

In the first part of this paper, the basic concepts of the numerical schemes for space and time 

integration are discussed and different numerical schemes are used for solving the one-

dimensional problem for the convective wave equation and the conservative equation. A 

comparison between the different methods and different initial conditions is performed in the 

last part of this paper. 

Let us consider the one-dimensional scalar conservative equation: 

( ) [ ( )]
0

U x,t f U x,t

t x

 
 

 
, (1) 

where ( )U x,t  is a conserved quantity and  ( )f U x,t  describes its flux and ( )x,t  denotes space 

and time, respectively. The numerical solution is obtained by discretizing the equation in 

space and time to obtain the finite difference or finite volume formulation, respectively. 

Discretizing the differential form of the conservation law in space, we get the semi-discrete 

equation as  

0

j

j

x x

dU f

dt x 


 


, 
1/2 1/2

ˆ ˆ
0,

j j jdU f f

dt x

 
 


 (2) 

where ( , )j jU U x t , , 0,jx j x j N    and the term 1/2
ˆ

jf   is the numerical flux at the edge 

of each cell 1/2 1/2[ , ]j j jI x x   that must satisfy the consistency requirement: 

1/2
ˆ ˆ( ,..., )j j r j sf f u u   , ˆ( ,..., ) ( )f u u f u . The numerical flux function ˆ ( )f x  is required to 

satisfy exactly 

1/2 1/2
ˆ ˆ[ ( , ) ( , )] /

j
x j jx x

f f x t f x t x 
   ,  

/2

/2

1 ˆ( ) .

x x

x x

f x f d
x

 





   (3) 

The solution of the conservative finite difference formulation of eq. (1), written in the 

semi-discrete eq. (2), consists of two steps: spatial discretization and time marching. 
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2. SPATIAL DISCRETIZATION 

There are two main classes of high-order accuracy finite difference schemes: explicit 

schemes and compact or implicit schemes. One of the important differences between the two 

schemes is that the explicit schemes employ large computational stencils for a given level of 

accuracy, while implicit schemes use less stencil points and have less dispersion errors 

compared to explicit schemes of same order of accuracy.  In this context, a scheme is 

regarded as high-order if it has a formal spatial (and temporal accuracy also) higher than 

three. In the frame of spatial discretization, we are interested in the reconstruction step that 

computes the solution at the interfaces from the cell-centered solution to the desired order of 

accuracy. The Padé type scheme approximates the derivatives implicitly from the use of the 

Taylor series and a tri-diagonal system must be solved. If we consider the general form of a 

compact scheme with a general order of accuracy ( )rO x we get 

4

4

1 1 /   i j i j

j

ii iu u u a u x 



 
        . (4) 

A reminder of the coefficients of the classical Padé schemes is presented in Table 1. 

Table 1 – Coefficients of numerical schemes for evaluating 

Scheme 
Padé Zhong 

Pade6 Pade8 Pade10 5-2-3-1 7-3-3-1 9-4-1-0 

Order r 6 8 10 5 7 7 

α 1/3 3/8 2/5 25 45 0 

β 1 1 1 60 60 60 

γ 1/3 3/8 2/5 15 0 0 

4i
a


 0 0 -1/4200 0 0 15/56 

3i
a


 0 1/480 1/210 0 1/2 -19/7 

2i
a


 -1/36 -1/20 -1/15 -5/2 -9 27/2 

1i
a


 -14/36 -75/96 -39/50 -160/3 -285/4 -51 

ia  0 0 0 15 60 15/4 

1i
a


 14/36 75/96 39/50 40 45/2 45 

2i
a


 1/36 1/20 1/15 5/6 -3 -21/2 

3i
a


 0 -1/480 -1/210 0 1/4 13/7 

4i
a


 0 0 1/4200 0 0 -9/56 

The spatial resolution of the numerical scheme is dictated by the sound waves with the 

shortest wavelengths and a minimum number of grid-points per wavelength is required. The 

development of finite difference algorithms that give an adequate solution for this important 

issue was first proposed in 1992 by Lele [1] who showed the spectral-like resolution of the 

compact schemes for the evaluation of spatial derivatives. 

The idea was not only to  increase the order of accuracy but also to  expand the  range of 

wavenumbers. This relates to considering the dissipation and dispersion errors of numerical 

schemes in the framework of Fourier analysis. These schemes called Dispersion-Relation-

Preserving (DRP) schemes seek the best compromise between accuracy and resolution 

producing the most potentially efficient schemes. Following the work of Tam et al. [2] and 

Kim et al. [3], a series of high-order optimized compact schemes are derived by Zhu et al. 

[4]. The schemes are written in a general form: 
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1 1 2 2 3 3 4 41 1( ) ( ) ( ) ( ) ( )i i i i i i i iii ix u u u a u u b u u c u u d u u        
               (5) 

and the coefficients are provided in Table 2. 

Most high-order central finite-difference schemes can be used for the viscous flux terms 

and introduce only phase errors but no dissipative errors in the numerical solutions. 

The drawback of central schemes is that they are not robust enough for convection 

dominated flow simulations. 

Extra filtering procedures are needed in order to stabilize the computations and control 

the aliasing errors, which are equivalent to adding numerical dissipation in an ad- hoc 

manner. 

Table 2 – Coefficients of DRP numerical schemes[4] for evaluating iu . 

 Order 6 Order 8 Order 10 

α 0.4111403764203249 0.4278627893013504 0.4388871532438393 

a 0.7842616980350271 0.7786068605349324 0.7748150462341548 

b 0.0692748674241733 0.0852418595342336 0.0962949739000680 

c -0.0038903521543495 -0.0077472036156208 -0.0110116258189503 

d 0 0.0005034551362033 0.0012257054792086 

e 0 0 -0.0000771570500869 

Taking into account these facts, Zhong [5] obtained a family of finite-difference high-

order upwind compact and explicit schemes for the discretization of convective terms for the 

direct numerical simulations of hypersonic flows with strong shocks. The upwind schemes 

are determined such that the order of the schemes is one order lower than the maximum 

achievable order for the central stencil and, as a result, the coefficient of the leading 

truncation comes as a free parameter to be set. 

We have selected only three schemes: a fifth-order upwind compact scheme, Zhong 5-2-

3-1, a seventh-order upwind compact inner scheme, denoted Zhong-7-3-3-1 and a seventh-

order upwind explicit scheme, Zhong-9-4-1-0. The coefficients are presented in Table 1. 

Another family of numerical schemes considered is a combination of cell-node and cell 

centered compact schemes for the evaluation of 1 2i /u  . We have considered the sixth order 

compact interpolation scheme given by Lele [1], then three compact schemes of sixth, eighth 

and tenth order deduced by Zhang [6], the explicit fifth order upstream difference scheme,  

the fifth-order upwind compact scheme given by Pirozzoli [7] and the 5th-order upwind 

compact bi-diagonal scheme given by Fu [8]. The general form is the following 
4

/2 /2

4
1/2 /2 1/2 /2 3/2 /2( )   i j i j

j
i k i k i kx u u u a u 


     
        , (6) 

where the coefficients are displayed in Table 3. 

As the compact interpolation introduces errors that could significantly decrease the 

resolution for high wave numbers, Zhang schemes stored the values at the cell centers as 

independent computational variables and used the same scheme for computing the updating 

values on cell nodes to compute the updating values on cell centers, by simply shifting the 

indices in (8) by 1/2.  

3. TEMPORAL DISCRETIZATIONS 

The method of lines is a widely used technique for approximating partial differential 

equations with large systems of ordinary differential equations (ODEs) in time. The 
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numerical solution of the scalar conservation law is semi-discretized in the spatial domain 

using a discrete set of points and after the spatial partial derivatives have been replaced with 

appropriate finite differences in 
jx , we get a system of ODEs  

  
d

L t
dt


u

u , (7) 

where the he discrete operator is defined in each jx  

     1/2 1/2( ) , , /j j jL u f U x t f U x t x 
    
 

. (8) 

Here, we associate the time dependent vector ( )tu  with each of these spatial points, 

specifically ( ) ( , ), 0,j ju t U x t j N  . System (7) can be solved by a wide variety of standard 

numerical techniques, explicit or implicit, which have been developed over the years for 

large systems of ordinary differential equations. 

Table 3 – Coefficients of numerical schemes for evaluating 1 2i /u   

Scheme 
Lele Fu Zhang Pirozzoli 

Lele6 Fu5 CCS-T6 CCS-T8 CCS-T10 Pirozzoli5E Pirozzoli5I 

Order r  6 5 6 8 10 5 5 

k 0 0 1 1 1 0 0 

α 1/3 2/3 -1/12 -3/20 -1/5 0 3 

β 1 1 1 1 1 1 6 

γ 1/3 0 -1/12 -3/20 -1/5 0 1 

2i
a


 0 0 0 0 -1/420 1/30 0 

3/2i
a


 0 0 0 2/75 32/525 0 0 

1i
a


 1/36 1/12 17/36 61/100 34/50 -13/60 1/3 

1/2i
a


 0 0 -16/9 -2 -32/15 0 0 

ia  29/36 47/36 0 0 0 47/60 19/3 

1/2i
a


 0 0 16/9 2 32/15 0 0 

1i
a


 29/36 11/36 -17/18 -61/100 -34/50 27/60 10/3 

3/2i
a


 1/36 0 0 -2/75 -32/525 0 0 

2i
a


 0 -1/36 0 0 1/420 -1/20 0 

The explicit Runge-Kutta (RK) schemes offer the potential for high order with low 

storage. Hence, especially for acoustics, high order schemes can be optimized to reduce 

dissipation and dispersion to form what are known as LDDRK schemes. For an explicit low 

storage p -stage Runge-Kutta scheme which, in general, advances the solution from time nt  

to 1nt   can be expressed as follows: 

 0 nu u , (9) 

    1
, 1,...,

s sn
sc tL s p


   u u u , (10) 

 1 pn u u , (11) 

where n
u  represent the solution at time step nt . 
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The time discretization will be implemented using four different classes of high order 

Runge–Kutta methods. The first class tested is a third-order TVD Runge–Kutta (TVDRK3) 

developed by Shu and Osher [10]. 
 1

( )n ntL  u u u  (12) 

     2 1 1
0.75 0.25 ( )n tL  u u u u  (13) 

   2 21 / 3 2 / 3 2 ( ) / 3n n tL    u u u u  (14) 

Another method, although not TVD, is the fourth-order classical Runge–Kutta scheme: 

 1
0.5 ( )n ntL  u u u , (15) 

   2 1
0.5 ( )n tL  u u u , (16) 

   3 2
( )n tL u u u , (17) 

       1 2 3 31 [ 2 ] / 3 ( ) / 6n n tL      u u u u u u . (18) 

The third class consists in a group of three schemes: the 4, 5, 6 standard p-stage schemes 

of thp -order (for linear operator L ). The coefficients sc for the standard 4, 5 and 6 stage 

Runge-Kutta (SRK) are written in Table 4. 

Table 4 – Runge-Kutta scheme coefficients 

Stages c1 c2 c3 c4 c5 c6 

SRK4 

 

1/2 1/3 1/4 -  -  

SRK5 1 1/2 1/3 1/4 1/5 -  

SRK6 1 1/2 1/3 1/4 1/5 1/6 

LDDRK4-Hu 1 1/2 0.325994 0.25005000 -  -  

LDDRK5-Hu 1 1/2 0.333116 0.23717924 0.197707993 -  

LDDRK6-Hu 1 1/2 1/3. 1/4. 0.187441200 0.169193539 

LDDRK5-BB 1 1/2 0.330500707 0.23826022 0.1815754860 - 

LDDRK6-BB 1 1/2 0.331839543 0.24662360 0.1846469670 0.1179799020 

Next, we analyzed three optimized time marching schemes from the class of Low 

Dispersion and Dissipation Runge-Kutta LDDRK5, LDDRK6 (4th-order) and LDDRK4-6 of 

Hu[13] minimizing the dissipation and dispersion errors for wave propagation. The 4-6 

notation signifies a two-step alternating cycle, where a four stage standard SRK4 is used for 

the odd time step and a six stage LDDRK6-Hu for the even time step in the cycle. The 

scheme is a fourth-order accurate scheme in time for linear problem and second-order 

accurate for  nonlinear problem. The advantage of the alternating schemes is that, when the 

two steps are combined, the dispersion and the dissipation errors can be reduced and higher 

order of accuracy can be maintained. 

Accordingly to Hu [13], the optimized 6-stage scheme has a smaller stability limit than 

the 5-stage scheme. On the other hand, LDDRK6-Hu and LDDRK4-6 are 4th-order accurate 

whereas the optimized single-step 5-stage scheme is 2nd order. LDDRK4-Hu was tested but 

the results are not satisfactory. 

Finally, we tested two LDDRK method obtained by Bogey and Bailly [12]. They used 

the same idea of combining the Taylor series expansion method with the Fourier transform 
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optimization technique as Hu et al. [13] and  computed the relative dissipation and the 

dispersion errors separately obtaining different coefficients LDDRK5-BB, LDDRK6-BB. 

We mainly used these Runge–Kutta schemes in our numerical tests because even there were 

tested other numerical time-marching schemes the results were not encouraging to be 

reported. 

4. NUMERICAL SIMULATIONS 

In this section we present the results of the testing and comparison campaign for all schemes 

summarized in the previous sections. The numerical accuracy and stability of the high-order 

numerical schemes are analyzed  by solving the scalar conservation law equation for 

different conservative fluxes with periodic conditions. 

Test A: A linear conservation law: the advection equation 

We start from a single scalar equation where we numerically compute the 1L , 2L  and L  

errors and the order of accuracy (or convergence rate) of all the schemes. 

The norm of each error is computed by comparison with the exact solution at a certain 

time that will be indicated for each test. 

,1
0

1 N

exact i exact i

i

u u
N 

  u u ,  
2

,2
0

1 N

exact i exact i

i

u u
N 

  u u , (19) 

,
0,

maxexact i exact i
i N

u u
 

  u u . (20) 

Table 5 – Advection equation. Test A1b.    0 sin 2 , 10u x x T    

Method N  1L  error 
1L  order 

2L  error 
2L  error L

 error L
 error 

Pade6 

20 2.29E-03 0 1.91E-03 0 1.92E-03 0 

40 4.31E-05 5.731 3.46E-05 5.787 3.52E-05 5.765 

80 9.76E-07 5.465 7.73E-07 5.485 7.76E-07 5.503 

160 2.67E-08 5.194 2.10E-08 5.202 2.10E-08 5.208 

320 8.24E-10 5.017 6.48E-10 5.019 6.48E-10 5.019 

DRPO -6 

20 1.84E-03 0 1.49E-03 0 1.53E-03 0 

40 3.79E-05 5.6 3.01E-05 5.631 3.04E-05 5.651 

80 9.19E-07 5.364 7.26E-07 5.374 7.28E-07 5.385 

160 2.62E-08 5.134 2.06E-08 5.14 2.06E-08 5.144 

320 7.97E-10 5.037 6.26E-10 5.04 6.26E-10 5.04 

Zhang-

CCST6 

20 8.54E-04 0 6.72E-04 0 6.74E-04 0 

40 2.61E-05 5.032 2.05E-05 5.033 2.03E-05 5.054 

80 8.10E-07 5.011 6.36E-07 5.012 6.35E-07 4.999 

160 2.53E-08 5.003 1.98E-08 5.003 1.98E-08 5.001 

320 8.01E-10 4.978 6.30E-10 4.977 6.29E-10 4.977 

Zhong- 

9-4-1-0 

20 3.96E-03 0 3.26E-03 0 3.23E-03 0 

40 4.77E-05 6.378 3.77E-05 6.433 3.76E-05 6.422 

80 9.75E-07 5.611 7.66E-07 5.621 7.65E-07 5.62 

160 2.65E-08 5.199 2.09E-08 5.199 2.09E-08 5.198 

320 8.10E-10 5.034 6.36E-10 5.034 6.36E-10 5.035 
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The grid was progressively refined from 20N   points to .. points, by multiplying with 

a factor of 2. The initial CFL (for the grid of 20 points) is 0.1. A low CFL number is chosen 

to ensure that the errors due to time discretization are significantly lower than those due to 

space discretization. We study the performance of all the schemes by applying them to the 

four classical test problems ([5], [11]) considering periodic boundary conditions on  11, , 

the advection velocity 1a   and the final time of simulation is T . 

0t xu au   (21) 

In Table 5 are presented the results obtained with Test A1 at the final simulation time 

10T   for the first five best schemes. Given an initial periodical condition 0( ,0) ( )u x u x , the 

exact solution at any time for smooth data is given by 0( , ) ( )u x t u x at  . 

Test A1. This test is made to check the convergence rate at large times. Integration 

times are 1T   and 10T  . 

   0 sin , 2u x x    (22) 

Table 6 – Advection equation. Test A1a.    0 sin 2 , 1u x x T   

Method N  1L  error 
1L  order 

2L  error 
2L  order L

 error L
 order 

 

Pade6 

 

20 2.29E-03 0 1.91E-03 0 1.92E-03 0 

40 4.31E-05 5.731 3.46E-05 5.787 3.52E-05 5.765 

80 9.76E-07 5.465 7.73E-07 5.485 7.76E-07 5.503 

160 2.67E-08 5.194 2.10E-08 5.202 2.10E-08 5.208 

320 8.24E-10 5.017 6.48E-10 5.019 6.48E-10 5.019 

DRPO -6 

 

20 1.84E-04 0 1.49E-04 0 1.53E-04 0 

40 3.78E-06 5.601 3.01E-06 5.632 3.04E-06 5.652 

80 9.19E-08 5.364 7.26E-08 5.374 7.28E-08 5.384 

160 2.62E-09 5.135 2.06E-09 5.141 2.06E-09 5.144 

320 8.04E-11 5.023 6.32E-11 5.025 6.32E-11 5.025 

Zhang- 

CCS-T6 

 

20 8.54E-05 0 6.72E-05 0 6.74E-05 0 

40 2.61E-06 5.034 2.05E-06 5.035 2.03E-06 5.056 

80 8.10E-08 5.009 6.36E-08 5.01 6.35E-08 4.998 

160 2.53E-09 5.003 1.98E-09 5.003 1.98E-09 5 

320 7.96E-11 4.987 6.26E-11 4.987 6.25E-11 4.987 

Zhong- 

9-4-1-0 

 

20 3.96E-03 0 3.26E-03 0 3.23E-03 0 

40 4.77E-05 6.378 3.77E-05 6.433 3.76E-05 6.422 

80 9.75E-07 5.611 7.66E-07 5.621 7.65E-07 5.62 

160 2.65E-08 5.199 2.09E-08 5.199 2.09E-08 5.198 

320 8.10E-10 5.034 6.36E-10 5.034 6.36E-10 5.035 

In Table 6, the used criteria was to select the scheme that gives similar result but with 

low computational cost from different families of schemes. For example, we choose the 6-th 

order Padé scheme, because from the 8-th and 10-th order Padé scheme we get the similar 
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order of accuracy but with larger stencils. In case of Zhong’s family it can be seen that we 

select to present the explicit 9-4-1-0 Zhong’s scheme despite the 7-3-3-1 scheme even the 

accuracy is bigger with an order of magnitude but the effort of calculation is much 

decreased. 

The same reasons generate the choices for the rest of the schemes. As a general 

consideration, the expected formal order of accuracy described in the next tables is given by 

the expression 

2

2log ( / )N N

i i in L L  (23) 

where the index successively takes the values 1,2,i   . 

The initial CFL is reduced by a factor of 5 32 2 //  at each refinement (since the spatial 

interpolation is fifth order and time marching is third order, this ensures that time 

discretization errors converge at the same rate as the space discretization ones). The errors 

due to time discretization are significantly lower than those due to space discretization and 

therefore all the simulations were ruled by TVDRK3. 

Table 7 – Advection equation. Test A2.    4

0 sin , 1u x x T   

Method N  1L  error 
1L  order 

2L  error 
2L  order L

 error L
 order 

Pade6 

 

20 4.43E-03 0 3.56E-03 0 3.51E-03 0 

40 6.07E-05 6.19 4.83E-05 6.203 4.87E-05 6.175 

80 9.40E-07 6.012 7.38E-07 6.032 7.69E-07 5.984 

160 1.52E-08 5.951 1.20E-08 5.946 1.29E-08 5.893 

320 2.74E-10 5.791 2.17E-10 5.786 2.45E-10 5.721 

DRPO -6 

 

20 2.29E-03 0 1.83E-03 0 1.85E-03 0 

40 4.43E-05 5.694 3.50E-05 5.708 3.58E-05 5.688 

80 7.36E-07 5.911 5.80E-07 5.917 6.12E-07 5.87 

160 1.24E-08 5.892 9.79E-09 5.888 1.07E-08 5.836 

320 2.39E-10 5.699 1.89E-10 5.694 2.17E-10 5.626 

Zhang-

CCST6 

 

20 4.05E-04 0 3.22E-04 0 3.52E-04 0 

40 8.38E-06 5.594 6.75E-06 5.576 7.43E-06 5.565 

80 1.96E-07 5.414 1.57E-07 5.43 1.85E-07 5.328 

160 5.38E-09 5.191 4.30E-09 5.186 5.18E-09 5.157 

320 1.62E-10 5.053 1.29E-10 5.055 1.57E-10 5.043 

Zhong- 

9-4-1-0 

 

20 1.33E-02 0 1.06E-02 0 1.08E-02 0 

40 9.28E-05 7.166 7.40E-05 7.165 7.55E-05 7.16 

80 7.32E-07 6.986 5.79E-07 6.997 6.19E-07 6.929 

160 9.27E-09 6.303 7.34E-09 6.302 8.34E-09 6.215 

320 1.92E-10 5.592 1.53E-10 5.587 1.82E-10 5.521 

Test A2. This test is performed to locate possible deteriorations of accuracy due to 

strong oscillations in the parameters that determine the stencil. 

Moreover, this wave is more complex because it has critical points of third degree: 

0 0 0 0( ) ( ) ( ) 0, ( ) 0cr cr cr cru x u x u x u x       

   4

0
sin , 1, 1u x x T    , (24) 

In Table 7 it should be noted that the hierarchy between numerical schemes is 

maintained. 
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We can remark a good convergence for Zhang-CCST6 even for a coarser grid. 

Test A3. This test is performed to detect possible decrease in accuracy, due to non-

linear argument in the trigonometric function, of the schemes: 

    0 sin sin / , 1u x x x T      . (25) 

In Table 8 it should be noted that the hierarchy between numerical schemes is also 

maintained. 

We can remark a good convergence for Zhang-CCST6 even for a coarser grid. 

Table 8 – Advection equation. Test A3.     0 sin sin / , 1u x x x T      . 

Method N  1L  error 
1L  order 

2L  error 
2L  order  L

 error L
 order 

 

Padé 

classic 

 

20 5.92E-05 0 5.75E-05 0 9.83E-05 0 

40 9.05E-07 6.032 8.97E-07 6.002 1.45E-06 6.082 

80 1.70E-08 5.733 1.70E-08 5.719 2.77E-08 5.713 

160 4.30E-10 5.307 4.09E-10 5.382 6.61E-10 5.388 

320 1.28E-11 5.071 1.19E-11 5.104 1.85E-11 5.156 

 

DRPO -6 

 

20 4.07E-05 0 3.89E-05 0 6.27E-05 0 

40 7.26E-07 5.811 7.27E-07 5.741 1.15E-06 5.764 

80 1.54E-08 5.559 1.52E-08 5.58 2.49E-08 5.537 

160 4.18E-10 5.201 3.91E-10 5.281 6.22E-10 5.321 

320 1.27E-11 5.037 1.18E-11 5.055 1.77E-11 5.133 

 

Zhang-

CCST6 

 

20 1.38E-05 0 1.29E-05 0 1.97E-05 0 

40 4.14E-07 5.057 3.78E-07 5.09 5.77E-07 5.094 

80 1.28E-08 5.016 1.16E-08 5.031 1.70E-08 5.089 

160 3.99E-10 5.004 3.59E-10 5.009 5.15E-10 5.042 

320 1.26E-11 4.987 1.15E-11 4.965 1.66E-11 4.954 

 

Zhong- 

9-4-1-0 

 

20 1.33E-04 0 1.33E-04 0 1.97E-04 0 

40 1.01E-06 7.035 1.06E-06 6.966 1.80E-06 6.777 

80 1.60E-08 5.979 1.55E-08 6.092 2.50E-08 6.171 

160 4.21E-10 5.251 3.87E-10 5.329 5.64E-10 5.469 

320 1.27E-11 5.046 1.17E-11 5.046 1.68E-11 5.067 

Test A4. This test is implemented to present the resolution properties of the schemes 

and the period of integration is 8T  . The initial condition contains a smooth combination 

of a Gaussian, a triangle, a square-wave and a half-ellipse, given by 

 

       

 

   

       

0

, , 4 , / 6, 0.8, 0.6

1, 0.4, 0.2

1 10 0.1 , 0,0.2

, , 4 , / 6, 0.4,0.6

0, otherwise

G x z G x z G x z x

x

u x x x

F x a F x a F x a x

         


  


   

       



 

 

 (26) 

where 

   
2

, x zG x z e  ,    
22 1/2, [max(1 ,0)]F x a x a    (27) 
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and the constants are taken as 0.5a  , 0.7z    , 0.005  , 10  , 2(log2) / 36  . 

 

 

 

Fig. 1a Comparison of  Zhong’s and Pade schemes for Test A4 

 

Fig. 1b Comparison of  Zhang’s and Pirozzoli schemes for Test A4 
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Fig. 1c Comparison of  Tam, Lele and Fu schemes for Test A4 

Thus, the Gaussian and the ellipse wave are best represented by Zhong 5-2-3-1, Fu5 and 

Pirozzoli5I.The results at 8T   with 400 grid intervals are shown in Figs. 1-5. It can be 

seen that the schemes selected above resolve different the geometrical shapes. 

The triangle wave is more accurately represented by CCS-T10 and Zhong 9-4-1-0. The 

square waves are not precisely represented by any method, except on CCS-T10. 

Nevertheless, one observes many spurious oscillations in all the solution given by the 

numerical methods. 
 

 

Fig. 2 Detailed Square. Comparison of  schemes of for Test 4 

 

Fig. 3 Detailed Ellipse .Comparison of  schemes of for Test 4 
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Fig. 4 Detailed Gauss pulse. Comparison of  schemes for Test 4 

 

Fig. 5 Detailed triangles. Comparison of  schemes for Test 4 

Test B: The inviscid Burgers equation 

The inviscid Burgers equation is an example of equation with non-linear convex flux, 

  2 / 2f u u . The problem is solved subject to initial condition  

( ,0) 1 0.5sin( )u x x    (28) 

and considering periodic boundary conditions on [ 11], , ( 1, ) (1, )u t u t  [9]. The non-

linearity of the conservation equation implies that discontinuities may develop even from 

smooth initial conditions. The problem provides an initial solution which is smooth and this 

allows for accuracy and order of convergence analyses. After a certain time 

[-1,1]1/ min[ ( ( ,0))]s xT f u x 
  , a shock is developed in the solution[14], [15]. The exact 

solution, prior to shock formation, is defined implicitly as 

 ( , ) 1 0.5sin ( , )u x t x u x t t       (29) 

Table 9: Burgers equation. Test B1a. 0 ( ) 1 0.5sin( ), 0.5u x x T    , 80N   

Method 1L  error 
2L  error L

 error 

Pirozzoli5E 2.55E-04 7.02E-04 2.85E-03 

Pirozzoli5I 8.24E-05 2.04E-04 7.43E-04 

Lele6 1.03E-04 2.14E-04 8.40E-04 

DRPO-6 7.19E-05 1.18E-04 3.84E-04 

Pade6 1.03E-04 2.14E-04 8.40E-04 

Zhong 5-2-3-1 7.33E-05 1.69E-04 7.16E-04 

Zhang-CCS T6 4.53E-05 9.08E-05 3.50E-04 

Zhong 9-4-1-0 4.33E-05 8.46E-05 2.80E-04 

An iterative procedure like Newton-Raphson was used to compute the exact solution up 

to the shock develops. As the shock time is 2sT /  , we consider two final simulation 

times, before and after the shock: 0 5T .  and 1 0T .  at a 0 5CFL . . Table 9 shows the 
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results at 0 5T .  with the grid number of 80N   and Table 10 with the grid number 

400N   considering ( )iCFL max u dt / dx  and just eight representative numerical schemes. 

For these cases, there is indistinguishable difference between all the schemes tested in this 

paper. 

On the fine grid, all schemes yield comparable errors. In smooth regions the numerical 

solutions are very accurate in all three norms. 

Table 10: Burgers equation. Test B1b., 0( ) 1 0.5sin( ), 0.5u x x T    , 400N   

Method 1L  error 
2L  error L

 error 

Pirozzoli5E 3.20E-07 9.57E-07 6.04E-06 

Pirozzoli5I 1.47E-07 2.87E-07 1.20E-06 

Lele6 1.51E-07 2.97E-07 1.19E-06 

DRPO-6 1.48E-07 2.95E-07 1.35E-06 

Pade6 1.51E-07 2.97E-07 1.19E-06 

Zhong 5-2-3-1 1.48E-07 2.87E-07 1.15E-06 

Zhang-CCS T6 1.49E-07 2.96E-07 1.27E-06 

Zhong 9-4-1-0 1.48E-07 2.87E-07 1.15E-06 

The problem provides an initial flow in which the solution is smooth, thus allowing for 

convergence order of accuracy estimates. After a certain time (the shock develops at 

2sT /  ), a shock forms in the solution and the non-oscillatory nature of the schemes can 

be assessed. Here 0 5T .  is used for convergence tests and 1 0T .  for the shock capturing 

test. The evolutions of the schemes are illustrated in Fig. 6 for the Burgers equation. The 

evolution on the left refer to the solution before shock formation, 0 5T .  and the evolution 

on the right refer to the solution after shock formation, 1 0T . . One can notice that the “fine 

grid solution” is the solution obtained on a grid of 2000 points with Pirozzli5I scheme since 

the exact solution is not available in analytical form, Fig. 7 (right). 

 

Fig. 6 Solution of Burgers equation at 0.5T  and 1.0T    

 

Fig. 7 Solution of Burgers equation for two representative schemes at 1.0T    
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The solutions obtained using Pirozzoli5I and Zhong 7-3-3-1 schemes seem to present 

some spurious oscillations in the vicinity of the shock for this problem. We do not intend to 

represent the results for the other schemes due to strong oscillations in accuracy. Regarding 

all the multistage time discretization R-K schemes, the accurate results were given by 

LDDRK4-6. 

4. CONCLUSIONS 

The most known non-compact and compact schemes are analyzed. Their behavior, in terms 

of accuracy and convergence properties, is studied on the linear advection equation and the 

inviscid Burgers equation. The schemes are tested on smooth data for periodical conditions. 

The linear advection equation is the simplest example of a scalar hyperbolic PDE, while the 

inviscid Burgers equation is an example of a scalar nonlinear hyperbolic PDE. The 

convergence behavior of the schemes is studied on smooth problems for which the exact 

solution is known. 

This assessment was made because in literature are sometimes presented only the cases 

which are favorable to a certain method and our purpose is to present objectively the 

capacity of each methods  for simple cases, like scalar conservation law problem. All 

schemes converge to the proper weak solution for linear flux and smooth initial conditions. 

However, when the flux is non-linear, the discontinuities may develop from smooth initial 

conditions and the shock must be correctly captured. All the schemes accurately identify the 

position of the shock, with the price of  the nonrealistic oscillation on the location of the 

discontinuity. Therefore, a particular care should be given in choosing the numerical 

methods to be sure that the results are not altered for  multidimensional computational fluid 

dynamics problems. 
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