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Abstract: This article aims to analyze the differences between 3 of the CVX toolbox canonical solvers: 
SDPT3, SeDuMi and ECOS; for problem formulations based on lossless convexification technique 
(LCvx). Without loss of generality, the simulations were conducted on the first stage of the launcher 
Falcon 9, while the goal of the optimization process is to minimize the fuel consumption through 
minimization of the total thrust under restrictions based on physical limitations of the vehicle. 
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1. CONVEXIFICATION TECHNIQUES: THEORETICAL ASPECTS 
The modeling technique considered in this work for addressing a nonconvex problem through 
transformation into a convex formulation is LCvx. The convexification is achieved through a 
relaxation or a revised formulation of the initial problem that guarantees a globally optimal 
solution for the initial problem via Portryagin’s maximum principle [1]. The foundational idea 
was introduced in [2], which developed an optimal (minimal fuel) thrust program for the 
terminal phase of a lunar soft-landing starting from the equation of vertical motion of a vehicle 
(1-DoF). The trajectory results based on identifying an admissible u(t) that maximizes the 
Hamiltonian and an appropriate switching function, more unequivocally detailed as a relation 
f(x1,x2)=0 that guarantees soft landing of the vehicle if thrusters switch to full force upon 
validation of this equation. 
Since the 21st century, the most prominent application of lossless techniques has been 
convexifying the thrust magnitude constraint. The nonconvexity arises from the lower bound 
for thrust and the solution is introduced in [3] by Açıkmeşe and Ploen: 

𝜌𝜌1 ≤ ‖𝑻𝑻𝑪𝑪(𝑡𝑡)‖2 ≤ 𝜌𝜌2 (1) 

where 𝜌𝜌1 and 𝜌𝜌2 represent the minimum and maximum thrust the vehicle is capable of 
generating. The convexification procedure consist of a  lift of the feasible input set, while 
rigorously proving that the optimal input from the lifted problem corresponds to a feasible 
input of the initial problem. From a geometric viewpoint, the constraint is expanded into an 
additional dimension corresponding to the slack variable: 
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Figure 1. Lossless convexification of thrust magnitude constraints [3] 

The lossless convexification procedure for a 3-DoF powered descend problem was developed 
in [4] and starts with the following non-convex mathematical framework: 

Problem 1 

𝑚𝑚𝑚𝑚𝑚𝑚
𝑻𝑻𝒄𝒄(⋅)

 �  
𝑡𝑡𝑓𝑓

0
 ‖𝑻𝑻𝒄𝒄(𝑡𝑡)‖2𝑑𝑑𝑑𝑑

subject to  𝒓̈𝒓(𝑡𝑡) = 𝒈𝒈 +
𝑻𝑻𝑪𝑪(𝑡𝑡)
𝑚𝑚(𝑡𝑡)

𝑚̇𝑚(𝑡𝑡) = −𝛼𝛼‖𝑻𝑻𝑪𝑪(𝑡𝑡)‖2
𝜌𝜌1 ≤ ‖𝑻𝑻𝑪𝑪(𝑡𝑡)‖2 ≤ 𝜌𝜌2

𝒓𝒓𝟏𝟏(𝑡𝑡) ≥ 0, 𝒓𝒓(0) = 𝒓𝒓0, 𝒓̇𝒓(0) = 𝒓̇𝒓0,𝑚𝑚(0) = 𝑚𝑚wet 

𝒓𝒓�𝑡𝑡𝑓𝑓� = 𝒓̇𝒓�𝑡𝑡𝑓𝑓� = 0,

 (2) 

The initial convex problem is augmented with a slack variable Γ that incorporates the 
information for the thrust magnitude. To handle the nonconvexities posed by the dynamic 
equations, the following substitutions are performed: 

𝒖𝒖(𝑡𝑡) =
𝑻𝑻𝑪𝑪(𝑡𝑡)
𝑚𝑚(𝑡𝑡)

,𝜎𝜎(𝑡𝑡) =
𝛤𝛤(𝑡𝑡)
𝑚𝑚(𝑡𝑡)

, 𝑧𝑧(𝑡𝑡) = 𝑙𝑙𝑙𝑙 (𝑚𝑚(𝑡𝑡)) (3) 

Based on those and the approximation for the new sigma bound constraint using the first 2 and 
3 terms of Taylor’s expansion to ensure the problem stays within the SOCP framework, the 
convex formulation based on LCvx technique is obtained in [4]: 

Problem 2 

                                                                  𝑚𝑚𝑚𝑚𝑚𝑚
𝜎𝜎(.)

 �  
𝑡𝑡𝑓𝑓

0
 𝜎𝜎(𝑡𝑡)𝑑𝑑𝑑𝑑

subject to 𝒓̈𝒓(𝑡𝑡) = 𝒈𝒈 + 𝒖𝒖(𝑡𝑡)
𝑧̇𝑧(𝑡𝑡) = −𝛼𝛼𝛼𝛼(𝑡𝑡)
‖𝒖𝒖(𝑡𝑡)‖2 ≤ 𝜎𝜎(𝑡𝑡)

𝜌𝜌1𝑒𝑒−𝑧𝑧0(𝑡𝑡) �1 − (𝑧𝑧(𝑡𝑡) − 𝑧𝑧0(𝑡𝑡)) +
(𝑧𝑧(𝑡𝑡) − 𝑧𝑧0(𝑡𝑡))2

2
� ≤ 𝜎𝜎(𝑡𝑡) ≤ 𝜌𝜌2𝑒𝑒−𝑧𝑧0(𝑡𝑡)[1 − (𝑧𝑧(𝑡𝑡) − 𝑧𝑧0(𝑡𝑡))]

𝑙𝑙𝑙𝑙 (𝑚𝑚𝑤𝑤𝑤𝑤𝑤𝑤 − 𝛼𝛼𝜌𝜌2𝑡𝑡) ≤ 𝑧𝑧(𝑡𝑡) ≤ 𝑙𝑙𝑙𝑙 (𝑚𝑚𝑤𝑤𝑤𝑤𝑤𝑤 − 𝛼𝛼𝜌𝜌1𝑡𝑡)
𝑧𝑧(0) = 𝑙𝑙𝑙𝑙 (𝑚𝑚𝑤𝑤𝑤𝑤𝑤𝑤), 𝒓𝒓(0) = 𝒓𝒓𝟎𝟎, 𝒓̇𝒓(0) = 𝒓̇𝒓0, 𝒓𝒓�𝑡𝑡𝑓𝑓� = 𝒓̇𝒓�𝑡𝑡𝑓𝑓� = 0

 (4) 
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2. MATHEMATICAL MODEL TO SOLVER FORM 
This section develops a solver-compatible mathematical framework for a 3-DoF fixed-final 
time powered descent guidance problem subjected to the following constraints: 

• Initial position, velocity and mass  
• Final position and velocity 
• Dynamics 
• Minimum mass consumption 
• Lower and upper bound for thrust magnitude 
• Maximum velocity 
• Vertical landing  
• Maximum gimbal angle 
• Maximum glideslope angle 

Based on the procedure described in [4] and the above desired constraints, the following 
continuous framework was developed:  

Problem 3 

𝑚𝑚𝑚𝑚𝑚𝑚
𝜎𝜎(.)

 �  
𝑡𝑡𝑓𝑓

0
 𝜎𝜎(𝑡𝑡)𝑑𝑑𝑑𝑑

subject to 𝒓̈𝒓(𝑡𝑡) = 𝒈𝒈 + 𝒖𝒖(𝑡𝑡)
𝑧̇𝑧(𝑡𝑡) = −𝛼𝛼𝛼𝛼(𝑡𝑡)
‖𝒖𝒖(𝑡𝑡)‖2 ≤ 𝜎𝜎(𝑡𝑡)

𝜌𝜌1𝑒𝑒−𝑧𝑧0(𝑡𝑡) �1 − (𝑧𝑧(𝑡𝑡) − 𝑧𝑧0(𝑡𝑡)) +
(𝑧𝑧(𝑡𝑡) − 𝑧𝑧0(𝑡𝑡))2

2
� ≤ 𝜎𝜎(𝑡𝑡) ≤ 𝜌𝜌2𝑒𝑒−𝑧𝑧0(𝑡𝑡)[1 − (𝑧𝑧(𝑡𝑡) − 𝑧𝑧0(𝑡𝑡))]

�𝑺𝑺𝑗𝑗𝑥𝑥(𝑡𝑡) − 𝒗𝒗𝑗𝑗� + 𝒄𝒄𝑗𝑗𝑇𝑇𝑥𝑥(𝑡𝑡) + 𝑎𝑎𝑗𝑗 ≤ 0
𝑧𝑧(0) = 𝑙𝑙𝑙𝑙 (𝑚𝑚total ), 𝑟𝑟(0) = 𝑟𝑟0, 𝑟̇𝑟(0) = 𝑟̇𝑟0, 𝑟𝑟�𝑡𝑡𝑓𝑓� = 𝑟̇𝑟�𝑡𝑡𝑓𝑓� = 0

𝑚𝑚(𝑡𝑡final ) ≥ 𝑚𝑚𝑑𝑑𝑑𝑑𝑑𝑑

𝑻𝑻𝑥𝑥(𝑡𝑡) ≥ 𝑐𝑐𝑐𝑐𝑐𝑐 (𝜃𝜃max )𝑻𝑻(𝑡𝑡)
𝑻𝑻𝑦𝑦(𝑡𝑡final ) + 𝑻𝑻𝑧𝑧(𝑡𝑡final ) → 0

‖𝒗𝒗(𝑡𝑡)‖ ≤ 𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚

 (5) 

As is the case with most optimization solvers, the solvers in the CVX toolbox require a discrete 
formulation of the problem. 
The discretization algorithm adopted from reference [4] is distinctive in its use of basic 
functions to decompose both the state and control variables, which are then used to define the 
convex optimization problem. The process begins by discretizing the continuous time domain 
into a set of time nodes. 

𝑡𝑡𝑘𝑘 = 𝑘𝑘∆𝑡𝑡, 𝑘𝑘 = 0. .𝑁𝑁 (6) 

The discretized states include positions and velocities, denoted by xk, and logarithm of mass, 
denoted by zk. 
Likewise, the control vector consists of the discretized new thrust uk and the new slack variable 
σk. The discrete state-space system is then formulated as follows: 
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�
𝒙𝒙𝑘𝑘
𝑧𝑧𝑘𝑘 � = 𝜉𝜉𝑘𝑘 + 𝜓𝜓𝑘𝑘𝜂𝜂, 𝑘𝑘 = 1 … .𝑁𝑁, where  𝜉𝜉𝑘𝑘 = 𝛷𝛷𝑘𝑘𝒚𝒚0 + 𝛬𝛬𝑘𝑘 �

𝒈𝒈
0 �

�
𝒖𝒖𝑘𝑘
𝜎𝜎𝑘𝑘 � = 𝛶𝛶𝑘𝑘𝜂𝜂, 𝑘𝑘 = 0 … .𝑁𝑁

 (7) 

where the matrices 𝜓𝜓𝑘𝑘 ,𝛷𝛷𝑘𝑘   and 𝛬𝛬𝑘𝑘 are expanded matrices of the state transition matrix and 
control input matrix: 

𝛷𝛷𝑘𝑘 = 𝑨𝑨𝑘𝑘

𝛬𝛬𝑘𝑘 = 𝑩𝑩 + 𝑨𝑨𝑨𝑨 + ⋯+ 𝑨𝑨𝑘𝑘−1𝑩𝑩

𝜓𝜓𝑘𝑘 =

⎣
⎢
⎢
⎢
⎡

0 0 0 0 0
𝑩𝑩 0 0 0 0
𝑨𝑨𝑨𝑨 𝑩𝑩 0 0 0
… 𝑨𝑨𝑨𝑨 𝑩𝑩 0 0

𝑨𝑨𝑘𝑘−1𝑩𝑩 … … … 0⎦
⎥
⎥
⎥
⎤ (8) 

Here, 𝜂𝜂 represents the optimization variable that encapsulates the thrust and sigma values at 
each discretization point and 𝛶𝛶𝑘𝑘 selects a specific timestep thrust component: 

𝜂𝜂 =

⎣
⎢
⎢
⎢
⎡
𝑢𝑢0
𝜎𝜎0
⋯
𝑢𝑢𝑁𝑁
𝜎𝜎𝑁𝑁⎦
⎥
⎥
⎥
⎤
                    𝛶𝛶𝑘𝑘 = [0 … 𝑰𝑰 … 0] (9) 

To have a complete view of the dynamics, the expanded formulation is the following: 

�
𝒓𝒓𝑘𝑘
𝒓̇𝒓𝑘𝑘

ln𝑚𝑚𝑘𝑘

� = 𝑨𝑨𝑘𝑘 �
𝒓𝒓0
𝒓̇𝒓0

ln𝑚𝑚0

� + (𝑩𝑩 + 𝑨𝑨𝑨𝑨 + ⋯𝑨𝑨𝑘𝑘−1𝑩𝑩) �
𝑔𝑔
0
0
� + 

⎣
⎢
⎢
⎢
⎢
⎡

0 0 0 0 … 0
𝑩𝑩 0 0 0 … 0
𝑨𝑨𝑨𝑨 𝑩𝑩 0 0 … 0
… … … … … 0

𝑨𝑨𝑘𝑘−1𝑩𝑩 … … … … …
0 0 0 0 … 0⎦

⎥
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎡
𝑢𝑢0
𝜎𝜎0
…

𝑢𝑢𝑁𝑁−1
𝜎𝜎𝑁𝑁−1⎦

⎥
⎥
⎥
⎤
 

(10) 

where A and B are the discretized state transition matrix and control input matrix: 

𝑨𝑨 = 𝑒𝑒𝑨𝑨𝒄𝒄𝛥𝛥𝛥𝛥 ,𝑨𝑨𝒄𝒄 = �
0 𝑰𝑰 0
0 0 0
0 0 0

� ,

𝑩𝑩 = �  
𝛥𝛥𝛥𝛥

0
 𝑒𝑒𝑨𝑨𝒄𝒄(𝛥𝛥𝛥𝛥−𝑠𝑠)𝑩𝑩𝒄𝒄𝑑𝑑𝑑𝑑,𝑩𝑩𝒄𝒄 = �

0 0
𝑰𝑰 0
0 −𝛼𝛼

�

 (11) 

Regarding the objective function, minimizing the thrust needed to sustain the trajectory is 
reformulated as the minimization of the sigma components of 𝜂𝜂, multiplied by scalar 
coefficients, which are defined by the chosen integration technique applied. 
Using the information presented above, Problem 3 is transformed into the final discrete 
formulation suitable for CVX implementation: 
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Problem 4 

min
𝜂𝜂
𝜔𝜔𝑇𝑇 𝜂𝜂 

subject to       𝑬𝑬𝑟𝑟(ξ1 + ψ1η) = 𝐫𝐫0 𝑬𝑬v(ξ1 + ψ1η) = 𝐯𝐯0 𝑬𝑬m(ξ1 + ψ1η) = mtotal  

𝑬𝑬r(ξN + ψNη) = 𝐫𝐫final  𝑬𝑬v(ξN + ψNη) = 𝐯𝐯final  𝑬𝑬m(ξN + ψNη) ≥ mdry  

‖𝑬𝑬uΥkη‖ ≤ 𝑬𝑬σΥkη 

μ1(tk) �1− �𝑭𝑭(ξk +ψkη) − z0(tk)� +
�F(ξk + ψkη) − z0(tk)�2

2 � ≤ 

𝑬𝑬σΥkη ≤ μ2(tk)�1− �𝑭𝑭(ξk + ψkη) − z0(tk)�� 

                                                         �𝐒𝐒j𝑬𝑬rv(ξk + ψkη) − 𝐯𝐯j�+ 𝐜𝐜jT(ξk + ψkη) + aj ≤ 0
                                             𝑬𝑬uxΥkη ≥ cos (θmax)‖𝑬𝑬uΥkη‖

                                         𝑬𝑬uyΥNη+ 𝑬𝑬uzΥNη → 0
                                             ‖𝑬𝑬v(ξk + ψkη)‖ ≤ vmax

 

(12) 

3. PARTICULARITIES OF EACH SOLVER 
From the CVX Toolbox, a comparative analysis is conducted between SDPT3 [5], SeDuMi 
[6]  and ECOS [7]. Although ECOS is designed to be memory-efficient and to exploit problem 
sparsity (properties well-suited for real-time use), its applicability is limited to linear 
programming (LP) and second-order cone programming (SOCP) problems, while the other 2 
can handle semidefinite constraints (SDP). The complexity of dealing with hard nonconvexity 
goes against ECOS’s design philosophy, whose simplicity brings it closer to first-order 
methods.  
Nonetheless, all three have at their core second-order primal-dual interior point methods, but 
SeDuMi has the particularity that  the self-dual embedded approach transforms the primal-
dual problem into a single feasibility problem. As for SDPT3, it is optimized by using 
Mehrotra’s predictor-corrector to converge faster and solve complex problems quicker. 
For the problem defined in this analysis, SeDuMi was not able to handle the glideslope 
constraint, therefore an approximation was considered. 
The cone was approximated as a pyramid, with its base inscribed in the square as can be seen 
in the following representation:  

 

Figure 2. Cone to pyramid approximation for SeDuMi 
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4. SIMULATION RESULTS 
The simulations were performed in the MATLAB 2023b environment. For the SDPT3 was 
used version 4.0, for SeDuMi version 1.3.4 and for ECOS version 2.0.7. The first stage of 
Falcon 9 was considered as the modelling vehicle and the following structural data served as 
inputs for the problem: 

Stage 1. Falcon 9 (Block 5) [8] 

Dry mass, (kg) 25,600 
Total mass, (kg) 421300 

Specific impulse, (s) ~282  
Maximum thrust, (MN) ~7.6 
Minimum thrust, (MN) ~2.4 

As for the other constraints, the mission is defined as starting from [1000, 300, -300] [m] with 
[-1 1 -1] [m/s]  and ends when reaching position [ 0, 0, 0] [m] with [ 0, 0, 0] [m/s] velocity. 
Additionally, a maximum gimbal angle of 20 degrees, a maximum glideslope of 30 degrees 
and a maximum velocity of 50 m/s were considered based on physical requirements defined 
for a successful mission. For all 3 solvers, the optimal value (the objective function value) was 
almost identical – approximately 302.202 – highlighting the proximity of the generated 
trajectories and therefore of the solvers, regardless of the interior search methods employed. 

 
Figure 3. SDPT3 – 3D Trajectory 

 
Figure 4. SeDuMi – 3D Trajectory 

 

Figure 5. ECOS – 3D Trajectory 

From the 3D viewpoint, the trajectories generated by all solvers are very similar, as no 
difference can be discerned between Figure 3, Figure 4 and Figure 5.  

 
Figure 6. LCvx – Position 

 
Figure 7. LCvx – Position – Zoom in 
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In Figure 6, positions of all three solver were plotted overlapping each other, and the solutions 
are so close only the last solver’s solution can be seen in Figure 6. On the right side, a zoom-
in view was provided for the interval [6, 6.0001] [s]  to differentiate each solver solution. As 
it can be seen in Figure 7, SeDuMi deviates by 0.001 m from the others two. 

 
Figure 8. LCvx - Velocity 

 
Figure 9. LCvx – Velocity – Zoom in 

The same observation is valid for velocities throughout the mission (Figure 8), while 
differences of 10-4 are observed when zoomed into the same interval as for the positions 
(Figure 9). For velocities, it is notable how the vertical velocity stays below the 50 m/s mark 
for almost half of the mission, in order to respect the maximum velocity constraint. 

 
Figure 10. LCvx - Thrust 

 
Figure 11. LCvx – Thrust – Zoom in 

All thrusts generated stay withing the interval defined by the minimum and maximum physical 
limitations for the thrust (Figure 10). When zooming in, the SeDuMi deviates by several tens 
of Newtons from the other two solvers, which remain tightly clustered (Figure 11). 

 
Figure 12. LCvx – Mass evolution 

 
Figure 13. LCvx – Mass evolution – Zoom in 
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The mass evolution follows a smooth decreasing slope for each of the 3 solvers (Figure 12). 
Even when looking in depth (Figure 13), the difference between solvers for the interval 
analyzed is less than 1 kg, an insignificant quantity compared to the approximately 40000 kg 
required to perform the mission. 

 
Figure 14. LCvx – Gimbal angle 

 
Figure 15. LCvx – Gimbal angle – Zoom in 

The maximum gimbal angle of 20 degrees constraint is respected throughout the mission, as 
can be seen in Figure 14, while it tends to reach 0 in the final stages of the mission, 
corresponding to the vertical landing required. As for difference between solvers, SDPT3 and 
ECOS give almost identical results, while SeDuMi deviates by 0.001 degrees (Figure 15). 

 
Figure 16. LCvx – Glideslope angle 

 
Figure 17. LCvx – Glideslope angle – Zoom in 

The solely observable difference when representing the entire mission is found in the 
glideslope representation, due to the division of very small values for the final step which is 
further converted in degrees, accumulating more errors (Figure 16). Except for the final step, 
differences between solvers are of 0.0001 degrees (Figure 17). 

5. CONCLUSIONS 
Based on the analysis conducted, insignificant differences in values are observed when using 
one of the 3 canonical solvers of CVX: SDPT3, SeDuMi and ECOS for the powered descend 
guidance problem based on lossless convexification techniques defined in Chapter 2. The 
observation might not hold for successive convexification implementations, where the 
iterative process can enlarge the gap between solutions, so a separate analysis must be 
conducted to assess the effect of using a particular solver. Nonetheless, an informed decision 
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must be performed when choosing the solver. Some are more robust , while others display 
sensitiveness to problem scaling. Some are well-design for embedded optimization but more 
restrictive when formulating the problem, while others can solve complex problems but 
require a proportionally heavy computational workload. Therefore, the complexity of the 
problem and requirements in terms of robustness and computational efficiency must be 
carefully traded. 
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