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Abstract: This article aims to analyze the differences between 3 of the CVX toolbox canonical solvers:
SDPT3, SeDuMi and ECOS; for problem formulations based on lossless convexification technique
(LCvx). Without loss of generality, the simulations were conducted on the first stage of the launcher
Falcon 9, while the goal of the optimization process is to minimize the fuel consumption through
minimization of the total thrust under restrictions based on physical limitations of the vehicle.
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1. CONVEXIFICATION TECHNIQUES: THEORETICAL ASPECTS

The modeling technique considered in this work for addressing a nonconvex problem through
transformation into a convex formulation is LCvx. The convexification is achieved through a
relaxation or a revised formulation of the initial problem that guarantees a globally optimal
solution for the initial problem via Portryagin’s maximum principle [1]. The foundational idea
was introduced in [2], which developed an optimal (minimal fuel) thrust program for the
terminal phase of a lunar soft-landing starting from the equation of vertical motion of a vehicle
(1-DoF). The trajectory results based on identifying an admissible #(z) that maximizes the
Hamiltonian and an appropriate switching function, more unequivocally detailed as a relation
f(x1,x2)=0 that guarantees soft landing of the vehicle if thrusters switch to full force upon
validation of this equation.

Since the 21st century, the most prominent application of lossless techniques has been
convexifying the thrust magnitude constraint. The nonconvexity arises from the lower bound
for thrust and the solution is introduced in [3] by A¢ikmese and Ploen:

p1 = ITc@Ollz < o2 (D

where p; and p, represent the minimum and maximum thrust the vehicle is capable of
generating. The convexification procedure consist of a lift of the feasible input set, while
rigorously proving that the optimal input from the lifted problem corresponds to a feasible
input of the initial problem. From a geometric viewpoint, the constraint is expanded into an
additional dimension corresponding to the slack variable:
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Figure 1. Lossless convexification of thrust magnitude constraints [3]

The lossless convexification procedure for a 3-DoF powered descend problem was developed
in [4] and starts with the following non-convex mathematical framework:

Problem 1

ty
min T .(O)|l,dt
min [ IO,

Tc(t)

m(t)
m(t) = —allTc@®)ll2
p1 < ITc(Ollz < p2

r1(t) = 0,7(0) = 1,7(0) = 79, m(0) = My
r(t) =i(t;) =0,

The initial convex problem is augmented with a slack variable 7~ that incorporates the
information for the thrust magnitude. To handle the nonconvexities posed by the dynamic
equations, the following substitutions are performed:

Tc(t) _r@

m© o(t) = %,Z(t) = In (m(1)) 3)

subjectto 7(t) = g +

)

u(t) =

Based on those and the approximation for the new sigma bound constraint using the first 2 and
3 terms of Taylor’s expansion to ensure the problem stays within the SOCP framework, the
convex formulation based on LCvx technique is obtained in [4]:

Problem 2

tr
minf o(t)dt
a() 0

subject to #(t) = g + u(t)
zZ(t) = —ao(t)

(), < o (2) )
_ 2
M} < 0 (t) < pae 0O = (2(t) — 20(6))]

In (mwet - apzt) sz(t)<lIn (mwet - aplt)
z(0) = In (Mye), 1(0) = 10, 7(0) = 7, T(tf) = f‘(tf) =0

pre 11— (z(t) — z(t) +

INCAS BULLETIN, Volume 17, Issue 3/ 2025



5 Solver comparison for LCvx-based powered descend guidance problems

2. MATHEMATICAL MODEL TO SOLVER FORM

This section develops a solver-compatible mathematical framework for a 3-DoF fixed-final
time powered descent guidance problem subjected to the following constraints:

Initial position, velocity and mass

Final position and velocity

Dynamics

Minimum mass consumption

Lower and upper bound for thrust magnitude
Maximum velocity

Vertical landing

Maximum gimbal angle

Maximum glideslope angle

Based on the procedure described in [4] and the above desired constraints, the following
continuous framework was developed:

Problem 3

ty
r(r}(lglfo o(t)dt
subject to #+(t) = g + u(t)
Z(t) = —ao(t)
lu@®ll; < a(t)

w] < g(t) < pze_ZO(t) [1 - (Z(t) - Zo(t))]

|S;x(0) —v;|| + €] x(©) +a; < 0
z(0) = In (M ), 7(0) = 15, 7(0) = fo,r(tf) = f(tf) =0
m(tﬁnal) = Mary
T (£) = c0S (Ormax )T (1)
T, (thna ) + T, (Eoina ) = 0
vl < Vinax

As is the case with most optimization solvers, the solvers in the CVX toolbox require a discrete
formulation of the problem.

The discretization algorithm adopted from reference [4] is distinctive in its use of basic
functions to decompose both the state and control variables, which are then used to define the
convex optimization problem. The process begins by discretizing the continuous time domain
into a set of time nodes.

pre W |1 — (z(t) — zo(t)) +
Q)

t, =kAt, k=0..N (6)

The discretized states include positions and velocities, denoted by xx, and logarithm of mass,
denoted by z.

Likewise, the control vector consists of the discretized new thrust u, and the new slack variable
or. The discrete state-space system is then formulated as follows:
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[5:] =& +Ynk=1...N,where { = @y, + A, [g] 7
[;‘:]=Yk7]:k=0....N (7

where the matrices Y, @, and Ay are expanded matrices of the state transition matrix and
control input matrix:

@, = AF
Ay=B+AB+ -+ A*'B
0 0 0 0 O
B 0 0 0 O (3
Y. =| AB B 0 0 0
. AB B 0 0
A .. .. .. 0

Here, n represents the optimization variable that encapsulates the thrust and sigma values at
each discretization point and Y} selects a specific timestep thrust component:

_uO

0o

n=|" po=[0 .. I .. 0] )
Uy

_O-N

To have a complete view of the dynamics, the expanded formulation is the following:

L ry g
[ Ty |=A%| 7o |+ (B+AB+--A*1B) [0]-1—
Inm, | Inm, 0
0 0 0 0 01 4
B 0 0 0 o] o (10)
AB B 0 0 of| °
0
Uy_
AB L o
0 0 0 0 Nt
where 4 and B are the discretized state transition matrix and control input matrix:
0O I 0
A= eACAt,AC ={o o o,
0 0 O
At 0 O D
B= f eAcAt=)B ds,B, =|I 0
0 0 —«a

Regarding the objective function, minimizing the thrust needed to sustain the trajectory is
reformulated as the minimization of the sigma components of 7, multiplied by scalar
coefficients, which are defined by the chosen integration technique applied.

Using the information presented above, Problem 3 is transformed into the final discrete
formulation suitable for CVX implementation:
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Problem 4
minw’ n
n

subjectto  E.(§; +yyn) =19 Ey(§ + Wm) = vo Epy (81 + Pim) = My
E (& + Wnn) = hna Ev(En + UNN) = Vipa Em Gy + Wnm) = mgyy
”Equn” < EGYkn

2
F —
60 |1 = (PGt ) — 20(00) + ot 0D Z20(00) | (12)

E5Yin < pp(t)[1 — (FE + Wien) — zo(t))]

||S;E v (& + Wien) — vj|| + ¢ G + W) +2; < 0
Euxykn = cos (emax)”Equn”
EuyYNT] + EuZYNT] -0

IEv (B + W)l < Vinax

3. PARTICULARITIES OF EACH SOLVER

From the CVX Toolbox, a comparative analysis is conducted between SDPT3 [5], SeDuMi
[6] and ECOS [7]. Although ECOS is designed to be memory-efficient and to exploit problem
sparsity (properties well-suited for real-time use), its applicability is limited to linear
programming (LP) and second-order cone programming (SOCP) problems, while the other 2
can handle semidefinite constraints (SDP). The complexity of dealing with hard nonconvexity
goes against ECOS’s design philosophy, whose simplicity brings it closer to first-order
methods.

Nonetheless, all three have at their core second-order primal-dual interior point methods, but
SeDuMi has the particularity that the self-dual embedded approach transforms the primal-
dual problem into a single feasibility problem. As for SDPT3, it is optimized by using
Mehrotra’s predictor-corrector to converge faster and solve complex problems quicker.

For the problem defined in this analysis, SeDuMi was not able to handle the glideslope
constraint, therefore an approximation was considered.

The cone was approximated as a pyramid, with its base inscribed in the square as can be seen
in the following representation:

Figure 2. Cone to pyramid approximation for SeDuMi

INCAS BULLETIN, Volume 17, Issue 3/ 2025



Alexandra BOTEZ, Stefan Dragos DRAGAN 8

4. SIMULATION RESULTS

The simulations were performed in the MATLAB 2023b environment. For the SDPT3 was
used version 4.0, for SeDuMi version 1.3.4 and for ECOS version 2.0.7. The first stage of
Falcon 9 was considered as the modelling vehicle and the following structural data served as
inputs for the problem:

Stage 1. Falcon 9 (Block 5) [8]

Dry mass, (kg) 25,600

Total mass, (kg) 421300
Specific impulse, (s) ~282
Maximum thrust, (MN) ~7.6
Minimum thrust, (MN) ~2.4

As for the other constraints, the mission is defined as starting from [1000, 300, -300] [m] with
[-1 1-1] [m/s] and ends when reaching position [ 0, 0, 0] [m] with [ 0, 0, 0] [m/s] velocity.
Additionally, a maximum gimbal angle of 20 degrees, a maximum glideslope of 30 degrees
and a maximum velocity of 50 m/s were considered based on physical requirements defined
for a successful mission. For all 3 solvers, the optimal value (the objective function value) was
almost identical — approximately 302.202 — highlighting the proximity of the generated
trajectories and therefore of the solvers, regardless of the interior search methods employed.

LCvx - Simulated 3D trajectory LCvx - Simulated 3D trajectory LCvx - Simulated 3D trajectory
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Figure 3. SDPT3 — 3D Trajectory  Figure 4. SeDuMi — 3D Trajectory Figure 5. ECOS — 3D Trajectory

From the 3D viewpoint, the trajectories generated by all solvers are very similar, as no
difference can be discerned between Figure 3, Figure 4 and Figure 5.
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In Figure 6, positions of all three solver were plotted overlapping each other, and the solutions
are so close only the last solver’s solution can be seen in Figure 6. On the right side, a zoom-
in view was provided for the interval [6, 6.0001] [s] to differentiate each solver solution. As
it can be seen in Figure 7, SeDuMi deviates by 0.001 m from the others two.
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Figure 9. LCvx — Velocity — Zoom in

The same observation is valid for velocities throughout the mission (Figure 8), while
differences of 10 are observed when zoomed into the same interval as for the positions
(Figure 9). For velocities, it is notable how the vertical velocity stays below the 50 m/s mark
for almost half of the mission, in order to respect the maximum velocity constraint.
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Figure 10. LCvx - Thrust
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Figure 11. LCvx — Thrust — Zoom in

All thrusts generated stay withing the interval defined by the minimum and maximum physical
limitations for the thrust (Figure 10). When zooming in, the SeDuMi deviates by several tens
of Newtons from the other two solvers, which remain tightly clustered (Figure 11).
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Figure 12. LCvx — Mass evolution
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Figure 13. LCvx — Mass evolution — Zoom in
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The mass evolution follows a smooth decreasing slope for each of the 3 solvers (Figure 12).
Even when looking in depth (Figure 13), the difference between solvers for the interval
analyzed is less than 1 kg, an insignificant quantity compared to the approximately 40000 kg
required to perform the mission.
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Figure 14. LCvx — Gimbal angle Figure 15. LCvx — Gimbal angle — Zoom in

The maximum gimbal angle of 20 degrees constraint is respected throughout the mission, as
can be seen in Figure 14, while it tends to reach O in the final stages of the mission,
corresponding to the vertical landing required. As for difference between solvers, SDPT3 and
ECOS give almost identical results, while SeDuMi deviates by 0.001 degrees (Figure 15).
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Figure 16. LCvx — Glideslope angle Figure 17. LCvx — Glideslope angle — Zoom in

The solely observable difference when representing the entire mission is found in the
glideslope representation, due to the division of very small values for the final step which is
further converted in degrees, accumulating more errors (Figure 16). Except for the final step,
differences between solvers are of 0.0001 degrees (Figure 17).

5. CONCLUSIONS

Based on the analysis conducted, insignificant differences in values are observed when using
one of the 3 canonical solvers of CVX: SDPT3, SeDuMi and ECOS for the powered descend
guidance problem based on lossless convexification techniques defined in Chapter 2. The
observation might not hold for successive convexification implementations, where the
iterative process can enlarge the gap between solutions, so a separate analysis must be
conducted to assess the effect of using a particular solver. Nonetheless, an informed decision
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11 Solver comparison for LCvx-based powered descend guidance problems

must be performed when choosing the solver. Some are more robust , while others display
sensitiveness to problem scaling. Some are well-design for embedded optimization but more
restrictive when formulating the problem, while others can solve complex problems but
require a proportionally heavy computational workload. Therefore, the complexity of the
problem and requirements in terms of robustness and computational efficiency must be
carefully traded.
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