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Abstract: In this paper the Cessna Citation X clearance criteria were evaluated for a new Flight 

Controller. The Flight Control Law were optimized and designed for the Cessna Citation X flight 

envelope by combining the Deferential Evolution algorithm, the Linear Quadratic Regulator method, 

and the Proportional Integral controller during a previous research presented in part 1. The optimal 

controllers were used to reach satisfactory aircraft’s dynamic and safe flight operations with respect 

to the augmentation systems’ handling qualities, and design requirements. Furthermore the number of 

controllers used to control the aircraft in its flight envelope was optimized using the Linear Fractional 

Representations features. To validate the controller over the whole aircraft flight envelope, the linear 

stability, eigenvalue, and handling qualities criteria in addition of the nonlinear analysis criteria were 

investigated during this research to assess the business aircraft for flight control clearance and 

certification. The optimized gains provide a very good stability margins as the eigenvalue analysis 

shows that the aircraft has a high stability, and a very good flying qualities of the linear aircraft 

models are ensured in its entire flight envelope, its robustness is demonstrated with respect to 

uncertainties due to its mass and center of gravity variations. 

Key Words: Flight Control; Linear Quadratic Regulator; Optimal Control; Heuristic Algorithm; 

Differential Evolution; Control Augmentation System; Stability Augmentation System; Proportional 

Integrator Derivative Tuning. 

1. INTRODUCTION 

Recently many researches were curried on in the flight control domain, to optimize and 

automate the controller performances using modern control methods such as in [1], and [2] 

the weighting functions that described the H-infinity controller were optimized using GA 

and DE algorithms the resulting controllers were successfully cleared over the entire flight 

envelope, however the H-infinity controller is of high order, which made it difficult in real 

implementation. Hence the LQR method offered relatively simple controllers of law order, 
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as the LQR controller performance rely on the weighting matrices selection, then it became 

interesting to automate the weighting searches processes, as shown in [3], where the LQR 

was genetically optimized for UAV control under wind disturbance, and gave good results in 

both performance and robustness, and [4] the authors optimized the performance of the 

controller using the LQR method, with the meta-heuristic Differential Evolution, the 

controllers were cleared for each flight condition in the Cessna Citation X aircraft flight 

envelope. In [5], and [6], LQR gains were optimized by using the Genetic Algorithm and 

were applied on Lynx helicopter, and lateral control on Cessna Citation X business aircraft, 

the robustness of the controllers was assisted by the guardian map theory, the optimized 

controllers show a very good results, in other hand, the application of the guardian map is a 

very long time computation, which made the guardian map method less desirable to clear the 

controller for the entire flight envelope. 

The flight controller clearance of modern aircrafts that need to achieve high 

performance is a very complex process as shown in [7]. The required handling qualities, 

stability, and robustness criteria should be satisfied against any possible uncertainties. Many 

factors can led to the appearance of uncertainties such as control surfaces dynamics and 

delays, aerodynamics data values, Air Data measurements errors, and the mass and Xcg 

variations [8]. The clearance of controller has to be provided for the entire flight envelope 

because of the high number of data, and the effects of uncertainties. From the Airbus team 

point of view the clearance criteria are considered as robustness criteria, and were applied in 

linear and nonlinear analysis of the HIRM+ generic model and HWEM aircraft as shown in 

[7]. Five (5) new analysis techniques highlighted the importance of the clearance task 

presented in [9], and [10]. 

In this research the clearance analysis of Linear and nonlinear Cessna Citation X 

business aircraft is addressed. By using a Cessna Citation X Level D Research Aircraft 

Flight Simulator designed and manufactured by CAE Inc the benchmark was developed at 

Laboratory of Active Controls, Avionics and AeroServoElasticity LARCASE in [10]-[11]. 

This benchmark programmed in Matlab/Simulink was already used for new identification 

methods designed and developed in [12]-[13], for advanced flight control design and 

clearance [14]-[15], and for robust control analysis in [4]-[6]. 

This paper is organized as follows: First a description of the controller optimized using 

the differential evolution algorithm, the aircraft flight envelope is detailed, and then a brief 

description of the clearance criteria. Analysis of linear and nonlinear validation results and 

conclusions is further given. 

2. TRACKING CONTROL WITH LQR-PI OPTIMIZATION 

The aircraft dynamics’ Stability Augmentation System (SAS) uses the LQR method to 

attenuate the undesired effects mainly on its longitudinal (phugoid) and lateral Dutch Roll 

modes in the presence of possible perturbations. Next, to follow the reference signals the PI 
gains are used in the control augmentation system (CAS). Where 𝑘𝑝 indicates the 

proportional gain and  𝑘𝑖 indicates the integral gain. The use of PI gains reduces the 

overshoot and eliminates the steady state error in order to improve the system response. 

Using the experimentation process to find the optimal values for these two gains can be quite 

time-consuming for a full flight envelope. Trial and error process and other types of methods 

for tuning PID gains using meta-heuristic algorithms are available, as the genetic algorithm 

GA [16], the swarm particle optimization PSO [17, 18], the Fruit Fly optimization algorithm 

[19]. Nonlinear methods such as fuzzy logic and neural network methods have also been 
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applied to identification and control ([20],[21]), hybrid fuzzy logic ([22],[23]) real time 

optimization used on a morphing wing by[24]. Other parameter estimation and control 

methodologies were used and validated during flight tests ([25]-[42]). 

All of these methods were developed with the aim of reducing the computation time 

while achieving satisfactory results. For this study, the DE algorithm was selected to tune the 

PI controller parameters, applied on a business aircraft as explained in the research presented 

in (Part 1), and the results of the optimized controller are validated in its entire aircraft flight 

envelope in this research (Part 2). In the next section the Cessna Citation X flight envelope is 

described. 

3. CESSNA CITATION X AIRCRAFT FLIGHT ENVELOPE 

Given the data extracted from the Research Aircraft Flight Simulator (RAFS) provided by 

CAE Inc., the aircraft dynamics are described for all of the flight envelope conditions. 

Figure 1 shows the 36 points obtained for straight uniform flight level inside the flight 

envelope limits, which were selected to be trimmed. The aircraft models are obtained at each 

5000 ft in the flight envelope and at 4 different speeds. 

 

Figure 1. Cessna Citation X Aircraft Flight Envelope 

Before carrying out the interpolation, two steps must be performed. The first step 

defines the region for an altitude and a range of True Air Speed (TAS) where the 

interpolation will be performed; the four corners of the region form the vertices. Each of 

these ranges has a lower and upper value, which are the bounds. The second step is the 

normalization of these bounds in order to attribute each coordinate of the vertices to a value 

equal to 1 or -1. 

To optimize the accuracy, the smallest possible regions have been defined, containing 

only 3 or 4 flight points to use as reference points for the interpolation. This definition only 

allows a bilinear interpolation, for which 4 coefficients must be found, using equations (1), 

(2) and (3), where equation (3) was used for both longitudinal and lateral matrices A. 

A𝑙𝑜𝑛𝑔/𝑙𝑎𝑡(ℎ, 𝑇𝐴𝑆) = A04,4
+ A14,4

ℎ + A24,4
𝑇𝐴𝑆 + A34,4

𝑇𝐴𝑆 × ℎ (1) 
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Blong(ℎ, 𝑇𝐴𝑆) = B04,1
+ B14,1

ℎ + B24,1
𝑇𝐴𝑆 + B34,1

𝑇𝐴𝑆 × ℎ (2) 

Blat(ℎ, 𝑇𝐴𝑆) = B04,2
+ B14,2

ℎ + B24,2
𝑇𝐴𝑆 + B34,2

𝑇𝐴𝑆 × ℎ   (3) 

The Least Square (LS) method is employed to minimize the relative error in these 

reference points. The maximum errors found for the state space matrices A and B are 

negligible, and has a value of 3.97 
11%e

, therefore the results are good. 

From these results, 26 regions are obtained, which covers a large part of the flight 

envelope. The mesh is valid for all of the weight and balance conditions presented in Figure 

3. It can be observed from Figure 2 that some of the regions superimpose others (darker 

zones) due to the common reference points, and in many cases there is not only interpolation 

but also extrapolation. 

 

Figure 2. Region definition 

 

Figure 3. Cessna Citation X Weight/Xcg conditions 
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These regions are presented by LFR models, where the center of each region is used to 

calculate a controller that can be applied on the 4 vertices of the region, which lead to an 

optimization of the number of controller used to control the aircraft in its flight envelope, 

and to ensure a relatively certain robustness against the altitude (h) and the True Air Speed 

(TAS) variations. 

All vertices of these 26 regions lead to 72 different flight points to be analyzed shown 

by Figure 4, which make it possible to more closely approximate the flight envelope limits. 

 

Figure 4. Flight points obtained by LFR models 

4. CLEARANCE CRITERIA 

A civil aircraft should have good handling qualities requirements in addition of the stability 

ones. To prove that the aircraft is stable with sufficient margin stabilities over its entire flight 

envelope is crucial for the aircraft clearance and certification as shown in [43] and [44], 

where the weight functions method was applied to assess the HIRM, and the business 

Hawker 800 XP aircrafts stability. 

In this research, Roll and Pitch linear stability margins were investigated using Bode 

plots of open-loop frequency responses for the Cessna Citation X business aircraft. However 

the closed loop eigenvalues were investigated by using zero poles maps. In addition these 

graphs were used to verify the resulting handling qualities in the frequency domain 

according to those given in the design requirements. Also the time domain criteria given by: 

Pitch acceleration peak time, pitch rate overshoot/drop back, pitch rate peak time, roll mode 

time constant, and time to bank [45]. Furthermore, the aircraft nonlinear simulations have to 

investigate problems encountered in the linear simulation, and to evaluate the aircraft 

stability, handling and control in the presence of nonlinearities. 

By using different inputs types (pull/push, step, and ramp), the aircraft maneuvers are 

usually evaluated in modern flight control, which means that the load factor and angle of 

attack are proportional to the pitch command (stick deflection), as well as the rapid roll 

control mode, which is a very important criterion to be checked, where the required aircraft 
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5. RESULTS VALIDATION 

The validation of results was performed using the nonlinear aircraft model. The nonlinear 

model, of the Cessna Citation X was formed by the aircraft’s, actuators’, and sensors’ 

dynamics. The dynamics of the aircraft, was given in Part 1. To control the augmented 

system, two internal loops were added: the first internal loop represented by the SAS, and the 

CAS formed the second internal loop; the autopilot dynamics was modeled in the external 

loop. First, the LQR weighting matrices were optimized for 36 flight conditions extracted 

from the Cessna Citation X Flight Simulator as given in [4] and then further generalized for 

72 flight conditions obtained using the interpolation method, than a second optimization is 

performed for tuning the PI controller. Both the PI and the LQR parameters were optimized 

by using the differential evolution as described in Part 1. 

5.1 Linear validation 

Simulations of both aircraft motions were performed for all CG locations and flight 

conditions given above in Figures 2 and 3. The controlled system was then simulated in the 

time domain to reach the satisfactory dynamic characteristics of the aircraft. The results were 

given for each region, delimited by four vertices which lead to 72 fight conditions as 

explained in Section 3, and for each centering, as shown in Figures 5, 8, 11, and 14. 

Pole-zero map responses were obtained for pitch angle, pitch rate, roll rate and roll angle 

as shown in Figures 6, 9, 12, and 15, where handling quality requirements parameters were 

superimposed over results. 

 

Figure 5. Pitch rate q (deg/sec) control and the resulting pitch angle 𝜃 (deg) 

 

Figure 6. Pole zero map for pitch rate control q(deg/sec) 
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Figure 7. Bode diagram for pitch rate q (deg/sec) control 

 

Figure 8. PI Tracking reference for pitch angle θ(deg) 

 

Figure 9. Pole zero map for pitch angle   θ (deg) control 
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Figure 10. Bode diagram for pitch angle θ (deg) control 

Previous research was done in [4], where the LQR and PI control were  achieved for 36 

flight conditions and 12 centre of gravity locations and showing good stability and command 

tracking of the aircraft. 

Also the system successfully tracks the reference signals when the control is generalized 

for 72 flight conditions for all aircraft motions (Figure 5, Figure 6, Figure 11 and Figure 15). 

Bode diagram is plotted for each control to assess its stability margins in Figures 7, 10, 13, 

and 16, which confirms what was said previously in Section 4.3 that the resulting controller 

gives an infinite gain margin and secure phase margin. 

 

Figure 11. Tracking references for roll rate p (deg/sec) 

Bode Diagram

Frequency  (rad/sec)

-50

0

50

100

M
a
g

n
it
u
d

e
 (

d
B

)

10
-3

10
-2

10
-1

10
0

10
1

10
2

-225

-180

-135

-90

-45

P
h
a

s
e

 (
d

e
g

)

0 1 2 3 4 5 6 7 8 9 10
-0.5

0

0.5

1

1.5

2

2.5

3

3.5

time (sec)

ro
ll 

ra
te

 c
o
n

tr
o
l 

p
(d

e
g

/s
e

g
)



53 New Methodology for Optimal Flight Control on the Cessna Citation X: Part 2. Experimental Validation 
 

INCAS BULLETIN, Volume 9, Issue 2/ 2017 

 

Figure 12. Pole zero map for roll rate p (deg/sec)  

 

Figure 13. Bode diagram for roll rate p (deg/sec) 
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Figure 14. Roll angle (deg) control and the resulting roll rate p (deg/sec) 

 

Figure 15. Pole Zero map of roll angle (deg) 

 

Figure 16. Bode diagram of roll angle  (deg) 
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These results have been validated using a linear model for all of the flight conditions. 

The steady state error is less than 2% for pitch rate 𝑞, pitch angle θ, and both roll rate 𝑝 and 

roll angle φ, while the overshoot is less than 30% for all responses, and the settling time Ts 

is less than 2 sec; therefore, the system is stable and behaves as desired, and all the 

performance criteria are reached. 

Generally, the optimal controllers with LQR-PI gains are more suitable for their stability 

performance and simplicity of integration in the FCL design. 

5.2 Nonlinear validation 

Simulations were performed for more than 500 flight points at different mass and centering 

conditions on the nonlinear model of the Cessna citation X aircraft. The results are shown in 

Figures 17, 18, 19, and 20 for pitch angle, pitch rate, roll angle and roll rate controls; all of 

these responses track the command given as input. The nonlinear simulations demonstrate 

the efficiency and the reliability of the optimal controllers. 

 

Figure 17. Pitch angle  θ (deg) control of the nonlinear aircraft model 

 

Figure 18. Pitch rate q(deg/sec) control of the nonlinear aircraft model 
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Figure 19. Roll angle  𝜑(deg) control of the nonlinear aircraft model 

 

Figure 20. Roll rate p (deg/sec) control of the nonlinear aircraft model 
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72 flight points are controlled by 26 controllers which correspond to the number of flight 

envelope regions. 

The resulting controllers were then used for the aircraft nonlinear model validation, where its 

data is extracted from the Aircraft Research Flight Simulator of Level D (highest level of 

certification for the aircraft flight dynamics). 

The flight control laws design optimization provided gains that have ensured very good 

stability margins in terms of phases and gains, these gains also provided to the aircraft very 

good flying qualities of Level 1. Regarding the manoeuvres such as the pitch and roll hold, 

their stability and robustness in presence of uncertainties dues to the mass and center of 

gravity variations was tested on the nonlinear aircraft model, and the obtained results were 

found to be very good. 
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