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Abstract: The topic of this paper is the Kelvin-Helmholtz instability, a phenomenon which occurs on 
the interface of a stratified fluid, in the presence of a parallel shear flow, when there is a velocity and 
density difference across the interface of two adjacent layers. This paper focuses on a numerical 
simulation modelled by the Taylor-Goldstein equation, which represents a more realistic case compared 
to the basic Kelvin-Helmholtz shear flow. The Euler system is solved with new modelled smooth velocity 
and density profiles at the interface. The flux at cell boundaries is reconstructed by implementing a 
third order WENO (Weighted Essentially Non-Oscillatory) method. Next, a Riemann solver builds the 
fluxes at cell interfaces. The use of both Rusanov and HLLC solvers is investigated. Temporal 
discretization is done by applying the second order TVD (total variation diminishing) Runge-Kutta 
method on a uniform grid. Numerical simulations are performed comparatively for both Kelvin-
Helmholtz and Taylor-Goldstein instabilities, on the same simulation domains. We find that increasing 
the number of grid points leads to a better accuracy in shear layer vortices visualization. Thus, we can 
conclude that applying the Taylor-Goldstein equation improves the realism in the general fluid 
instability modelling. 
Key Words: WENO, Kelvin-Helmholtz, Taylor-Goldstein, Rusanov, Harten-Lax-van Leer Contact, TVD 
Runge-Kutta 

1. INTRODUCTION 
In many situations, flows are subject to fluid instabilities. These physical phenomena are 
triggered by infinitesimal disturbances that grow extracting either kinetic or potential energy 
from the base flow. Thus, the development of instability can eventually cascade into 
turbulence. An important example for this concept is the Kelvin-Helmholtz instability, which 
occurs when there is a velocity shear at the interface between two fluid layers that have 
different densities. Kelvin-Helmholtz mechanism is based on the competition between the 
stabilizing stratification and destabilizing velocity difference in the fluid layers [1-5]. 

For a continuously varying distribution of both density and velocity, the dynamics of the 
Kelvin-Helmholtz instability is described by the Taylor-Goldstein equation [4] and its 
subsequent conclusions. One of these is the Richardson number criterion, one of the most 
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important results of the small-scale stability theory. This index represents the lower boundary 
for the complete stability of the system, expressing the ratio of buoyancy to shear production. 

The aim of the present work is a new comparison between a simple Kelvin-Helmholtz 
case and one modelled by the Taylor-Goldstein equation. The behavior of different Riemann 
solvers (Rusanov, HLLC) is also investigated [6]. 

2. KELVIN-HELMHOLTZ INSTABILITY 
Let us consider the equations of motion with the Boussinesq approximation (i.e. the effects of 
the variation of density are retained only in buoyancy terms and not in inertia terms) [2]. Here 
we adopt a dimensionless form. We decompose the variables in sums of a basic flow plus a 
wave perturbation: 𝒗𝒗(𝑥𝑥, 𝑧𝑧, 𝑡𝑡) = �̄�𝒖 + 𝒗𝒗′(𝑥𝑥, 𝑧𝑧, 𝑡𝑡) , 𝜌𝜌 = 𝜌𝜌0 + 𝜌𝜌′𝑝𝑝(𝑥𝑥, 𝑧𝑧, 𝑡𝑡) = 𝑝𝑝0 − 𝜌𝜌𝜌𝜌𝑧𝑧 +
𝑝𝑝′(𝑥𝑥, 𝑧𝑧, 𝑡𝑡)  where 𝑝𝑝0 , 𝜌𝜌0  are reference values. The pressure also includes a hydrostatic 
component. Only small-amplitude perturbations are considered for wave dynamics, so we may 
linearize the equations for the perturbations. These are: 

⎩
⎪⎪
⎨

⎪⎪
⎧𝜕𝜕𝑢𝑢

′

𝜕𝜕𝑥𝑥
+
𝜕𝜕𝑤𝑤 ′

𝜕𝜕𝑧𝑧
= 0

𝜕𝜕𝑢𝑢′

𝜕𝜕𝑡𝑡
+ �̄�𝑢

𝜕𝜕𝑢𝑢′

𝜕𝜕𝑥𝑥
= −

1
𝜌𝜌0
𝜕𝜕𝑝𝑝′

𝜕𝜕𝑥𝑥
𝜕𝜕𝑤𝑤 ′

𝜕𝜕𝑡𝑡
+ �̄�𝑢

𝜕𝜕𝑤𝑤 ′

𝜕𝜕𝑥𝑥
= −

1
𝜌𝜌0
𝜕𝜕𝑝𝑝′

𝜕𝜕𝑧𝑧

 (1) 

By being linear, these admit solutions in the form of trigonometric functions. Phase 
propagation is accompanied by an increase in amplitude; thus, we are looking for solutions 
such as: 

𝑢𝑢′(𝑥𝑥, 𝑧𝑧, 𝑡𝑡) = 𝑈𝑈(𝑧𝑧)𝑒𝑒𝑖𝑖(𝑘𝑘𝑘𝑘−𝑤𝑤𝑤𝑤) (2) 

𝑤𝑤 ′(𝑥𝑥, 𝑧𝑧, 𝑡𝑡) = 𝑊𝑊(𝑧𝑧)𝑒𝑒𝑖𝑖(𝑘𝑘𝑘𝑘−𝜔𝜔𝑤𝑤) (3) 

𝑝𝑝′(𝑥𝑥, 𝑧𝑧, 𝑡𝑡) = 𝑃𝑃(𝑧𝑧)𝑒𝑒𝑖𝑖(𝑘𝑘𝑘𝑘−𝜔𝜔𝑤𝑤) (4) 
As opposed to the wavenumber, which is a real quantity, the frequency 𝜔𝜔  may be a 

complex number. The existence of a positive imaginary part in frequency would lead to the 
unbounded amplitude growth/ increase and instability. 

The general solution consists in a linear combination of exponentials. In each layer, the 
exponentially growing solution will be rejected, retaining only the component that decays 
away from the interface. 

The kinematic condition for the interface between the two fluid layers is applied, followed 
by matching the total pressures at the interfaces, yielding [2]: 

𝜌𝜌(𝜌𝜌2 − 𝜌𝜌1)𝑆𝑆 −
𝜌𝜌1𝑆𝑆
𝑘𝑘

(𝑘𝑘�̄�𝑢1 − 𝜔𝜔)2 =
𝜌𝜌2𝑆𝑆
𝑘𝑘

(𝑘𝑘�̄�𝑢2 − 𝜔𝜔)2 (5) 

Introducing the density difference between the two layers 𝜌𝜌2 − 𝜌𝜌1 = 𝛥𝛥𝜌𝜌 , we solve the 
quadratic equation for frequency: 

𝜔𝜔1,2 = �
2𝑘𝑘(𝜌𝜌1�̄�𝑢1 + 𝜌𝜌2�̄�𝑢2)

𝜌𝜌0
± �

−4𝑘𝑘2𝜌𝜌1𝜌𝜌2(�̄�𝑢1 − �̄�𝑢2)2

𝜌𝜌02
+

4(𝜌𝜌1 + 𝜌𝜌2)𝑘𝑘𝜌𝜌𝛥𝛥𝜌𝜌
𝜌𝜌02

�
𝜌𝜌0

2(𝜌𝜌1 + 𝜌𝜌2) (6) 
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A negative radical will lead to conjugate solutions, one of which is positive and will generate 
instability. This happens for: 

2𝜌𝜌𝛥𝛥𝜌𝜌
𝑘𝑘𝜌𝜌0

< (�̄�𝑢1 − �̄�𝑢2)2 (7) 

where 𝜌𝜌0 is the harmonic mean of the two densities of the layers. Equation (7) is equivalent 
with: 

𝜆𝜆 <
𝜋𝜋𝜌𝜌0𝛥𝛥�̄�𝑢2

𝜌𝜌𝛥𝛥𝜌𝜌
 (8) 

where 𝛥𝛥�̄�𝑢 stands for the velocity shear between the layers. In other words, all short waves up 
to a critical wavelength grow in time and lead to instability [4]. 

3. TAYLOR-GOLDSTEIN EQUATION 
The Boussinesq approximation neglects the density variation effect in the inertial terms but 
considers it in the buoyancy term. The flow becomes more realistic compared to the previous 
Kelvin-Helmholtz situation with sharp discontinuity in density and velocity, if both, 
continuous vertical mean flow shear and continuous stratification profile are considered. 
Boussinesq approximation is not valid anymore. Thus. we decompose the density and the 
velocity into a continuous stratification basic quantity and a disturbance: 𝜌𝜌(𝑥𝑥, 𝑧𝑧, 𝑡𝑡) =
�̄�𝜌(𝑧𝑧) + 𝜌𝜌′(𝑥𝑥, 𝑧𝑧, 𝑡𝑡), 𝒗𝒗(𝑥𝑥, 𝑧𝑧, 𝑡𝑡) = 𝑈𝑈(𝑧𝑧)𝒊𝒊 + 𝒗𝒗′(𝑥𝑥, 𝑧𝑧, 𝑡𝑡). In dimensionless form, the smooth density 
and velocity profile yields the compressible continuity equation: 

𝜕𝜕𝜌𝜌′

𝜕𝜕𝑡𝑡
+ �𝑈𝑈 + 𝑢𝑢′�

𝜕𝜕𝜌𝜌′

𝜕𝜕𝑥𝑥
+ 𝑤𝑤 ′ 𝜕𝜕𝜌𝜌

′

𝜕𝜕𝑧𝑧
= 0 (9) 

and the momentum equations: 

⎩
⎪
⎨

⎪
⎧𝜕𝜕𝑢𝑢

′

𝜕𝜕𝑡𝑡
+ 𝑈𝑈

𝜕𝜕𝑢𝑢′

𝜕𝜕𝑥𝑥
+ 𝑤𝑤 ′ 𝜕𝜕𝑈𝑈

𝜕𝜕𝑧𝑧
= −

1
𝜌𝜌0
𝜕𝜕𝑝𝑝
𝜕𝜕𝑥𝑥

𝜕𝜕𝑤𝑤 ′

𝜕𝜕𝑡𝑡
+ 𝑈𝑈

𝜕𝜕𝑤𝑤 ′

𝜕𝜕𝑥𝑥
= −

1
𝜌𝜌0
𝜕𝜕𝑝𝑝
𝜕𝜕𝑧𝑧

−
𝜌𝜌𝜌𝜌
𝜌𝜌0

 (10) 

where 𝜌𝜌 is the gravitational acceleration. By introducing a two-dimensional stream function: 

𝑢𝑢′(𝑥𝑥, 𝑧𝑧, 𝑡𝑡) = −
𝜕𝜕𝜕𝜕
𝜕𝜕𝑧𝑧

,𝑤𝑤 ′(𝑥𝑥, 𝑧𝑧, 𝑡𝑡) =
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥

 (11) 

the corresponding equation system to (1) becomes: 

⎩
⎪⎪
⎨

⎪⎪
⎧𝜕𝜕𝜌𝜌

′

𝜕𝜕𝑡𝑡
+ 𝑈𝑈

𝜕𝜕𝜌𝜌′

𝜕𝜕𝑥𝑥
−
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥

𝜕𝜕�̄�𝜌
𝜕𝜕𝑧𝑧

= 0

𝜕𝜕2𝜕𝜕
𝜕𝜕𝑡𝑡𝜕𝜕𝑧𝑧

+
𝜕𝜕𝑈𝑈
𝜕𝜕𝑧𝑧

�−
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥
� + 𝑈𝑈

𝜕𝜕2𝜕𝜕
𝜕𝜕𝑧𝑧𝜕𝜕𝑥𝑥

= −
1
𝜌𝜌0
𝜕𝜕𝑝𝑝
𝜕𝜕𝑥𝑥

−
𝜕𝜕2𝜕𝜕
𝜕𝜕𝑡𝑡𝜕𝜕𝑥𝑥

− 𝑈𝑈
𝜕𝜕2𝜕𝜕
𝜕𝜕𝑥𝑥2

= −
1
𝜌𝜌0
𝜕𝜕𝑝𝑝
𝜕𝜕𝑧𝑧

−
𝜌𝜌𝜌𝜌
𝜌𝜌0

 (12) 

Equation of continuity is equivalent to: 
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𝜌𝜌�(𝑧𝑧)𝜌𝜌
𝜌𝜌0

=
−𝑁𝑁2𝛹𝛹�(𝑧𝑧)
𝑈𝑈 − 𝑎𝑎

 (13) 

where 𝑎𝑎 = 𝜔𝜔/𝑘𝑘 is the complex wave velocity and 𝑁𝑁is the Brunt-Väisälä frequency, a measure 
of fluid stability to vertical displacements defined by. 

𝑁𝑁2 = −
𝜌𝜌
𝜌𝜌0
𝑑𝑑𝜌𝜌
𝑑𝑑𝑧𝑧

 (14) 

Next, the pressure and density perturbation terms are eliminated. A single equation for the 
perturbation stream function is derived, being known as the Taylor-Goldstein equation [7], [8], 
which is a second order differential equation: 

(𝑈𝑈 − 𝑎𝑎) �
𝑑𝑑2𝛹𝛹�
𝑑𝑑𝑧𝑧2

− 𝑘𝑘2𝛹𝛹�(𝑧𝑧)�+ �
𝑁𝑁2

𝑈𝑈 − 𝑎𝑎
−
𝑑𝑑2𝑈𝑈
𝑑𝑑𝑧𝑧2�

𝛹𝛹�(𝑧𝑧) = 0 (15) 

with two boundary conditions: 

𝛹𝛹�(0) = 0,𝛹𝛹�(𝐻𝐻) = 0 (16) 

By introducing a potential function: 

𝜙𝜙(𝑧𝑧) =
𝛹𝛹�(𝑧𝑧)
√𝑈𝑈 − 𝑎𝑎

 (17) 

one gets: 

� (𝑈𝑈 − 𝑎𝑎𝑟𝑟 − 𝑖𝑖𝑎𝑎𝑖𝑖)
ℎ

0
[𝑘𝑘2|𝜙𝜙|2 + |𝜙𝜙𝑧𝑧|2]𝑑𝑑𝑧𝑧 +

1
2
� 𝑈𝑈𝑧𝑧𝑧𝑧|𝜙𝜙|2𝑑𝑑𝑧𝑧
ℎ

0

= �
4𝑁𝑁2 − 𝑈𝑈𝑧𝑧2

4|𝑈𝑈 − 𝑎𝑎|2 (𝑈𝑈 − 𝑎𝑎𝑟𝑟 + 𝑖𝑖𝑎𝑎𝑖𝑖)|𝜙𝜙|2𝑑𝑑𝑧𝑧
ℎ

0
 

(18) 

Which after multiplication with the complex conjugate *φ  and integration over the domain 
[𝟎𝟎,𝑯𝑯] becomes: 

� (−𝑖𝑖𝑎𝑎𝑖𝑖)
ℎ

0
[𝑘𝑘2|𝜙𝜙|2 + |𝜙𝜙𝑧𝑧|2]𝑑𝑑𝑧𝑧 = �

4𝑁𝑁2 − 𝑈𝑈𝑧𝑧2

4|𝑈𝑈 − 𝑎𝑎|2 (𝑖𝑖𝑎𝑎𝑖𝑖)|𝜙𝜙|2𝑑𝑑𝑧𝑧
ℎ

0
 (19) 

Extracting the imaginary part of the previous equation yields: 

𝑎𝑎𝑖𝑖 � �𝑘𝑘2|𝜙𝜙|2 + |𝜙𝜙𝑧𝑧|2 +
4𝑁𝑁2 − 𝑈𝑈𝑧𝑧2

4|𝑈𝑈 − 𝑎𝑎|2
|𝜙𝜙|2�

ℎ

0
𝑑𝑑𝑧𝑧 = 0 (20) 

Since the integral is always positive if 4𝑁𝑁2 − 𝑈𝑈𝑧𝑧2 > 0, it implies that 𝑎𝑎𝑖𝑖 = 0 and the fluid is 
stable. We get the so-called Richardson number (i.e. 𝑅𝑅𝑖𝑖(𝑧𝑧)) criterion[7]: 

𝑚𝑚𝑖𝑖𝑚𝑚
𝑧𝑧
𝑅𝑅𝑖𝑖(𝑧𝑧) = 𝑚𝑚𝑖𝑖𝑚𝑚

𝑧𝑧

𝑁𝑁2

𝑈𝑈𝑧𝑧2
>

1
4

,∀𝑧𝑧 (21) 

which is actually the condition for a linearly stable flow. 
Moreover, this criterion confirms the intuitive idea that a strong stratification always has 

a stabilizing effect on a flow. 



29 Some aspects in Kelvin-Helmholtz instability with and without Boussinesq approximation 
 

INCAS BULLETIN, Volume 13, Issue 4/ 2021 

The aim of this paper is to show in comparison the pattern of the flow for both Kelvin-
Helmholtz instabilities and the impact over the flow. This article presents the numerical 
evolution for some benchmark cases that do not fulfill the conditions (8) and (21). Therefore, 
we consider the full Euler system of equations which is solved using two Riemann solvers: 
Rusanov and HLLC. Fluxes at cell interfaces is reconstructed by implementing a fifth order 
WENO (Weighted Essentially Non-Oscillatory) method. Then, a temporal discretization is 
done by applying the second order TVD (total variation diminishing) Runge-Kutta method on 
a uniform grid. 

4. SPATIAL DISCRETIZATION 
The flux at cell boundaries is calculated by implementing a WENO (Weighted Essentially 
Non-Oscillatory) method, followed by a Riemann solver. 

Firstly, physical fields are reconstructed by calculating the left and right-side values on 
the cell boundary. Numerical tests are performed on a fifth order WENO scheme, using two 
different stencils for each “target” cell [9]: 

𝑆𝑆(𝑖𝑖) = {𝐼𝐼𝑖𝑖−2, 𝐼𝐼𝑖𝑖−1, 𝐼𝐼𝑖𝑖, 𝐼𝐼𝑖𝑖+1, 𝐼𝐼𝑖𝑖+2} (22) 

Approximations of physical fields are found by calculating the cell average values: 

�̄�𝑣𝑖𝑖 =
1
𝛥𝛥𝑥𝑥𝑖𝑖

� 𝑣𝑣(𝜉𝜉)𝑑𝑑𝜉𝜉
𝑘𝑘
𝑖𝑖+12

𝑘𝑘
𝑖𝑖−12

 (23) 

Different stencils will lead to different approximations. For each interface of the target-cell, 
the fifth-order polynomial approximation 𝑓𝑓𝑖𝑖±1

2
= ℎ𝑖𝑖±1

2
+ 𝑂𝑂(𝛥𝛥𝑥𝑥5) is built by the convex 

combination of interpolated values 𝑓𝑓𝑘𝑘 �𝑥𝑥𝑖𝑖±1
2
�: 

𝑓𝑓
𝑖𝑖±12

= �𝜔𝜔𝑘𝑘𝑓𝑓𝑘𝑘
2

𝑘𝑘=0

�𝑥𝑥
𝑖𝑖±12

� (24) 

where the weights are defined as: 

𝜔𝜔𝑘𝑘 =
𝛼𝛼𝑘𝑘

∑ 𝛼𝛼𝑙𝑙2
𝑙𝑙=0

,𝛼𝛼𝑘𝑘 =
�̄�𝜔𝑘𝑘

(𝛽𝛽𝑘𝑘 + 𝜀𝜀)𝑝𝑝 (25) 

The smoothness indicators 𝛽𝛽𝑘𝑘 at the stencil 𝑆𝑆𝑘𝑘 are given by: 

𝛽𝛽𝑘𝑘 = �𝛥𝛥𝑥𝑥2𝑙𝑙−1 � �
𝑑𝑑𝑙𝑙

𝑑𝑑𝑥𝑥𝑙𝑙
𝑓𝑓𝑘𝑘(𝑥𝑥)�

𝑘𝑘+𝛥𝛥𝑘𝑘2

𝑘𝑘−𝛥𝛥𝑘𝑘2

2

𝑙𝑙=1

2

𝑑𝑑𝑥𝑥 (26) 

And explicitly, accordingly to [10]: 

⎩
⎪
⎨

⎪
⎧𝛽𝛽0 =

13
12

(𝑓𝑓𝑖𝑖−2 − 2𝑓𝑓𝑖𝑖−1 + 𝑓𝑓𝑖𝑖)2 +
1
4

(𝑓𝑓𝑖𝑖−2 − 4𝑓𝑓𝑖𝑖−1 + 3𝑓𝑓𝑖𝑖)2

𝛽𝛽0 =
13
12

(𝑓𝑓𝑖𝑖−1 − 2𝑓𝑓𝑖𝑖 + 𝑓𝑓𝑖𝑖+1)2 +
1
4

(𝑓𝑓𝑖𝑖−1 − 𝑓𝑓𝑖𝑖+1)2              

𝛽𝛽0 =
13
12

(𝑓𝑓𝑖𝑖 − 2𝑓𝑓𝑖𝑖+1 + 𝑓𝑓𝑖𝑖+2)2 +
1
4

(3𝑓𝑓𝑖𝑖 − 4𝑓𝑓𝑖𝑖+1 + 𝑓𝑓𝑖𝑖+2)2

 (27) 
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In this way, discontinuities and sharp gradient regions from the stencil are avoided [11]. The 
numerical fluxes at cell boundaries are used in updating the cell-integrated values for next time 
step. This paper focuses on analyzing and comparing performances of different solvers: the 
Rusanov flux and the HLLC (Harten-Lax-van Leer Contact) flux [6]. 

5. TEMPORAL DISCRETIZATION 
The numerical solution of the scalar conservation law is semi-discretized in the spatial domain 
using a discrete set of points. By this, the spatial partial derivatives will be replaced with 
appropriate finite differences in the grid points, leading to a system of ordinary differential 
equations: 

𝑑𝑑𝑼𝑼
𝑑𝑑𝑡𝑡

= 𝐿𝐿(𝑼𝑼(𝑡𝑡)) (28) 

Here the discrete operator L is used to solve each equation in time. Thus, we associate the time 
dependent vector 𝑼𝑼(𝑡𝑡) with 𝑼𝑼𝑗𝑗(𝑡𝑡) = 𝑼𝑼(𝑥𝑥𝑗𝑗, 𝑡𝑡), 𝑗𝑗 = 0,𝑁𝑁. 
In this paper, time discretization is implemented using a second order TVD Runge-Kutta 
(TVDRK2) [12], [13]: 

𝑼𝑼(1) = 𝑼𝑼𝑛𝑛 + 𝛥𝛥𝑡𝑡𝐿𝐿(𝑼𝑼𝑛𝑛) (29) 

𝑼𝑼𝑛𝑛+1 =
1
2
𝑼𝑼𝑛𝑛 +

1
2
𝑼𝑼(1) +

1
2
𝛥𝛥𝑡𝑡𝐿𝐿�𝑼𝑼(1)� (30) 

6. NUMERICAL TESTS 
For both cases of velocity and density profiles, the instability was studied on a domain 
comprised of two layers of fluid, each with its own velocity and density. The grid spacing was 
constant. For all the numerical tests, the boundary conditions type was periodic. The initial 
conditions for the two layers were: 

• for the upper one: 

𝜌𝜌1 = 1,𝑢𝑢1 = 0.5,𝑣𝑣1 = 0.01 𝑠𝑠𝑖𝑖𝑚𝑚(𝑘𝑘𝑥𝑥),𝑝𝑝1 = 2.5 (31) 

• for the bottom one: 

𝜌𝜌2 = 2,𝑢𝑢2 = −0.6,𝑣𝑣2 = 0.01 𝑠𝑠𝑖𝑖𝑚𝑚( 𝑘𝑘𝑥𝑥),𝑝𝑝2 = 2.5 (32) 

where 𝑘𝑘 = 2𝜋𝜋/𝐿𝐿 and 𝐿𝐿 is the length of the domain (the distance from the western frontier to 
the eastern frontier, which is equal to the vertical distance between the frontiers as well). The 
boundary conditions were transmissive. All the parameters listed above are dimensionless, 
with respect to the dimensionless formulation of Euler system. 

For the discontinuous case of Kelvin-Helmholtz instability (Figs. 1-2), the critical 
wavelength was computed as: 

𝜆𝜆𝑐𝑐𝑟𝑟 =
𝜋𝜋𝜌𝜌0𝛥𝛥�̄�𝑢2

𝜌𝜌𝛥𝛥𝜌𝜌
= 5,067 (33) 

which is clearly greater by the wavelength corresponding to the perturbation we introduced in 
the system 𝜆𝜆 = 1. The critical wavelength stability criterion is thus verified. 
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Fig. 1 The evolution of density field for the Kelvin-Helmholtz instability for discontinuous velocity and density 

profiles. Case: 250 × 250 grid points, Rusanov (up) versus HLLC (down) solver performance  
(𝑡𝑡0 = 0𝑠𝑠, 𝑡𝑡1 = 0,72𝑠𝑠, 𝑡𝑡1 = 1,02𝑠𝑠, 𝑡𝑡1 = 1,38𝑠𝑠) 

 

Fig. 2 The evolution of density field for the Kelvin-Helmholtz instability for discontinuous velocity and density 
profiles. Case: 500 × 500 grid points, Rusanov (up) versus HLLC (down) solver performance  

(𝑡𝑡0 = 0𝑠𝑠, 𝑡𝑡1 = 0,72𝑠𝑠, 𝑡𝑡1 = 1,02𝑠𝑠, 𝑡𝑡1 = 1,38𝑠𝑠) 

For the continuous case of the Kelvin-Helmholtz instability (Figs. 3-4), besides the fluid 
parameters which are the same, the added proposed smooth velocity and density profiles are:  

• smooth density profile function: 

𝜌𝜌(𝑥𝑥) =
𝜌𝜌1 + 𝜌𝜌2

2
−
𝜌𝜌2 − 𝜌𝜌1

2
𝑥𝑥
𝐻𝐻

 (34) 

• smooth velocity profile function: 

𝑈𝑈(𝑥𝑥) =
𝑈𝑈1 + 𝑈𝑈2

2
−
𝑈𝑈2 − 𝑈𝑈1

2
𝑡𝑡𝑎𝑎𝑚𝑚ℎ �9

𝑥𝑥
𝐻𝐻
� (35) 

In this case, we verified the Richardson number criterion (there are points in the domain where 
the local Richardson number is smaller than 0.25, which leads to instability in the system). 
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We evaluate the flow evolution for both discontinuous (Figs 1-2) and continuous case 
(Figs. 3-4) of the Kelvin-Helmholtz instability. The implementation of the combination 
WENO5-Rusanov and WENO5-HLLC was tested by performing computations for two 
different Cartesian meshes with spatial resolutions of 2502 and 5002 at different time instants 
𝑡𝑡1 = 0,72𝑠𝑠, 𝑡𝑡1 = 1,02𝑠𝑠 and 𝑡𝑡1 = 1,38𝑠𝑠, respectively. 
 

 
Fig. 3 The evolution of density field for the Kelvin-Helmholtz instability for continuous velocity and density 

profiles, 250 × 250 grid points, Rusanov versus HLLC solver performance  
(𝑡𝑡0 = 0𝑠𝑠, 𝑡𝑡1 = 1,48𝑠𝑠, 𝑡𝑡1 = 2,02𝑠𝑠, 𝑡𝑡1 = 3,28𝑠𝑠) 

 
Fig. 4 The evolution of density field for the Kelvin-Helmholtz instability for continuous velocity and density 

profiles, 500𝑥𝑥 × 500 grid points, Rusanov versus HLLC solver performance 
( 0 1 1 10 , 1,48 , 2,02 , 3,28t s t s t s t s= = = = ) 

Looking at the results, we can find that the combination scheme WENO5-HLLC is much 
less dissipative at small scales and produces more numerous small vortices. The interface 
simulation between two fluids is quite sensitive to the dissipation of numerical method. 
Regarding the pattern of the flow we remark that as long as the disturbances are amplified, the 
arrangement of vorticity corresponds to two parallel vortex rows which are displaced relative 
to one another. As equilibrium state exists no more, the elementary vortices have a tendency 
to rotate around their centre or, to slip around each other. Due to the advected velocity, the 
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vortices slowly become bigger vortices with time by a vortex merging mechanism. This 
process have been confirmed in experiments [14]. 

7. CONCLUSIONS 
The paper outlines the important equations which describe the flow physics, 
specifically to the Kelvin-Helmholtz instability and the Taylor–Goldstein equation. 
The numerical benchmark tests confirm the theory this paper is based on and provide a pattern 
of realistic density stratified shear flows in the presence of a free surface. Critical wavelength 
and Richardson number criterions are verified for each of the Kelvin-Helmholtz instability 
studied case (continuous and discontinuous, respectively). Based on the numerical results, we 
can also notice a better performance of the HLLC solver compared to Rusanov solver. We 
want to mention that we have also performed the same tests with HLL (Harten-Lax-van Leer) 
solver but because the results were not significantly different from those given by Rusanov we 
choose not to publish them. Moreover, we find that increasing the number of grid points leads 
to a better accuracy in shear layer vortices visualization. However, numerical tests were 
severely limited by the computational resources available. Further exploration of the topic 
includes calculations on different solvers, better grid domains, increase of the discretization 
methods used accuracy or extension of the study to a tridimensional case. 
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